
An Introduction to

GPU Programming

Feng Chen

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

October 22, 2014

GPU Computing History

 The first GPU (Graphics Processing Unit)s were designed as graphics

accelerators, supporting only specific fixed-function pipelines.

 Starting in the late 1990s, the hardware became increasingly

programmable, culminating in NVIDIA's first GPU in 1999.

 Researchers were tapping its excellent floating point performance.

The General Purpose GPU (GPGPU) movement had dawned.

 NVIDIA unveiled CUDA in 2006, the world's first solution for general-

computing on GPUs.

 CUDA (Compute Unified Device Architecture) is a parallel computing

platform and programming model created by NVIDIA and implemented

by the GPUs that they produce.

10/22/2014 Introduction to GPU Programming 2

GPU CPU

Add GPUs: Accelerate Science Applications

Introduction to GPU Programming 10/22/2014 3

Why is GPU this different from a CPU?

 Different goals produce different designs

– GPU assumes work load is highly parallel

– CPU must be good at everything, parallel or not

 CPU: minimize latency experienced by 1 thread

– big on-chip caches

– sophisticated control logic

 GPU: maximize throughput of all threads

– # threads in flight limited by resources => lots of resources (registers,
bandwidth, etc.)

– multithreading can hide latency => skip the big caches

– share control logic across many threads

10/22/2014 Introduction to GPU Programming 4

Overview of the GPU nodes

 CPU: Two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit Processors (16)

– 64GB 1666MHz Ram

 GPU: Two NVIDIA Tesla K20Xm

– 14 Streaming Multiprocessor (SMX)

– 2688 SP Cores

– 896 DP Cores

– 6G global memory

Introduction to GPU Programming

K20Xm GPU Architecture

SMX (192 SP, 64 DP)

10/22/2014 5

Key Architectural Ideas

 SIMT (Single Instruction Multiple Thread) execution

– threads run in groups of 32 called warps

– threads in a warp share instruction unit (IU)

– HW automatically handles divergence

 Hardware multithreading

– HW resource allocation & thread scheduling

– HW relies on threads to hide latency

 Threads have all resources needed to run

– any warp not waiting for something can run

– context switching is (basically) free

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

10/22/2014 Introduction to GPU Programming 6

Enter CUDA

 Scalable parallel programming model

 Minimal extensions to familiar C/C++ environment

 Heterogeneous serial-parallel computing

10/22/2014 Introduction to GPU Programming 7

CUDA Execution Model

Introduction to GPU Programming

Application Code

Offload to
GPU
Parallization

Compute-Intensive
Functions

Rest of
Sequential
CPU Code

 Sequential code executes in a Host (CPU) thread

 Parallel code executes in many Device (GPU) threads across multiple

processing elements

CPU
Optimized for
Serial Tasks

GPU Accelerator
Optimized for Many

Parallel Tasks

10/22/2014 8

Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;

 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory

 temp[lindex] = in[gindex];

 if (threadIdx.x < RADIUS) {

 temp[lindex - RADIUS] = in[gindex - RADIUS];

 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

 }

 // Synchronize (ensure all the data is available)

 __syncthreads();

 // Apply the stencil

 int result = 0;

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

 result += temp[lindex + offset];

 // Store the result

 out[gindex] = result;

}

void fill_ints(int *x, int n) {

 fill_n(x, n, 1);

}

int main(void) {

 int *in, *out; // host copies of a, b, c

 int *d_in, *d_out; // device copies of a, b, c

 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values

 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies

 cudaMalloc((void **)&d_in, size);

 cudaMalloc((void **)&d_out, size);

 // Copy to device

 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU

 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

 // Copy result back to host

 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(in); free(out);

 cudaFree(d_in); cudaFree(d_out);

 return 0;

}

serial code

parallel code

serial code

parallel function

Introduction to GPU Programming 10/22/2014 9

Heterogeneous Computing

 Terminology:

 Host The CPU and its memory (host memory)

 Device The GPU and its memory (device memory)

Host Device

Introduction to GPU Programming 10/22/2014 10

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

PCI Bus

Introduction to GPU Programming 10/22/2014 11

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

Introduction to GPU Programming

PCI Bus

10/22/2014 12

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

3. Copy results from GPU memory to

CPU memory

Introduction to GPU Programming

PCI Bus

10/22/2014 13

Motivation

110-240X

45X 100X

35X

17X

13–457x

10/22/2014 Introduction to GPU Programming 14

3 Ways to Accelerate Applications

Introduction to GPU Programming

Applications

CUDA

Accelerated

Libraries

“Drop-in”

Acceleration

Programming

Languages

OpenACC

Directives

Easily Accelerate

Applications

Maximum

Flexibility

Increasing programming effort

10/22/2014 15

Some GPU-accelerated Libraries

Introduction to GPU Programming

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra
on GPU and
Multicore

NVIDIA cuFFT

C++ STL
Features for

CUDA
IMSL Library

Building-block
Algorithms for

CUDA
ArrayFire Matrix

Computations

Sparse Linear
Algebra

10/22/2014 16

http://code.google.com/p/thrust/downloads/list

GPU Programming Languages

Introduction to GPU Programming

OpenACC, CUDA Fortran Fortran

OpenACC, CUDA C C

Thrust, CUDA C++ C++

PyCUDA, Copperhead Python

Alea.cuBase F#

MATLAB, Mathematica, LabVIEW Numerical analytics

10/22/2014 17

3 Ways to Accelerate Applications

Introduction to GPU Programming

Applications

CUDA

Accelerated

Libraries

“Drop-in”

Acceleration

Programming

Languages

OpenACC

Directives

Easily Accelerate

Applications

Maximum

Flexibility

Increasing programming effort

10/22/2014 18

VECTOR ADDITION

WITH CUDA

Heterogeneous Computing

Blocks

Threads

Indexing

Shared memory

__syncthreads()

Asynchronous operation

Handling errors

Managing devices

CONCEPTS

Parallel Programming in CUDA

C/C++

• We’ll start by adding two integers and

build up to vector addition

a b c

Introduction to GPU Programming 10/22/2014 20

Addition on the Device

 First recall how to write a pure C function:

 void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

 Then we have a simple kernel to add two integers

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

 As before __global__ is a CUDA C/C++ keyword meaning

– add() is a kernel function that will execute on the device

– add() will be called from the host

Introduction to GPU Programming 10/22/2014 21

Addition on the Device

 Note that we use pointers for the variables

 __global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

 add() runs on the device, so a, b and c must point to device

memory

 We need to allocate memory on the GPU

Introduction to GPU Programming 10/22/2014 22

Memory Management

 Host and device memory are separate entities

– Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

– Host pointers point to CPU memory

May be passed to/from device code

May not be dereferenced in device code

 Simple CUDA API for handling device memory

– cudaMalloc(), cudaFree(), cudaMemcpy()

– Similar to the C equivalents malloc(), free(), memcpy()

Introduction to GPU Programming 10/22/2014 23

Addition on the Device: add()

 Returning to our add() kernel

__global__ void add(int *a, int *b, int *c) {

 *c = *a + *b;

 }

 Let’s take a look at main()…

Introduction to GPU Programming 10/22/2014 24

Addition on the Device: main()

 int main(void) {

 int a, b, c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = sizeof(int);

 // Allocate space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Setup input values

 a = 2;

 b = 7;

Introduction to GPU Programming 10/22/2014 25

Addition on the Device: main()

 // Copy inputs to device

 cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<1,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

Introduction to GPU Programming 10/22/2014 26

Compile and Run

 Changes to the ~/.soft file:

[fchen14@mike2 gpuex]$ cat ~/.soft

+cuda-5.5.22

+Intel-13.1.3

+portland-14.3

@default

 Request an interactive session in GPU queue:

qsub -I -X -l nodes=1:ppn=16 -l walltime=01:00:00 -q gpu -A
your_allocation_name

 Compile and run the first vector addition:

[fchen14@mike424 gpuex]$ nvcc my_vec_add.cu

[fchen14@mike424 gpuex]$./a.out

c=9

10/22/2014 Introduction to GPU Programming 27

RUNNING IN

PARALLEL

Heterogeneous Computing

Blocks

Threads

Indexing

CONCEPTS

Introduction to GPU Programming 10/22/2014 28

Moving to Parallel

 GPU computing is about massive parallelism

– So how do we run code in parallel on the device?

 add<<< 1, 1 >>>();

 add<<< N, 1 >>>();

 Instead of executing add() once, execute N times in parallel

Introduction to GPU Programming 10/22/2014 29

Vector Addition on the Device

 With add() running in parallel we can do vector addition

 Terminology: each parallel invocation of add() is referred to as a block

– The set of blocks is referred to as a grid

– Each invocation can refer to its block index using blockIdx.x

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

 By using blockIdx.x to index into the array, each block handles a different

index

Introduction to GPU Programming 10/22/2014 30

Vector Addition on the Device

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

 On the device, each block can execute in parallel:

c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];

Block 0 Block 1 Block 2 Block 3

Introduction to GPU Programming 10/22/2014 31

Vector Addition on the Device: add()

 Returning to our parallelized add() kernel

 __global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

 }

 Let’s take a look at main()…

Introduction to GPU Programming 10/22/2014 32

Vector Addition on the Device:
main()

 #define N 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size);

 b = (int *)malloc(size);

 c = (int *)malloc(size);

Introduction to GPU Programming 10/22/2014 33

Vector Addition on the Device:
main()

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N blocks

 add<<<N,1>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

Introduction to GPU Programming 10/22/2014 34

Review (1 of 2)

 Difference between host and device

– Host CPU

– Device GPU

 Using __global__ to declare a function as device code

– Executes on the device

– Called from the host

 Passing parameters from host code to a device function

Introduction to GPU Programming 10/22/2014 35

Review (2 of 2)

 Basic device memory management

– cudaMalloc()

– cudaMemcpy()

– cudaFree()

 Launching parallel kernels

– Launch N copies of add() with add<<<N,1>>>(…);

– Use blockIdx.x to access block index

Introduction to GPU Programming 10/22/2014 36

INTRODUCING

THREADS

Heterogeneous Computing

Blocks

Threads

Indexing

CONCEPTS

Introduction to GPU Programming 10/22/2014 37

CUDA Threads

 Terminology: a block can be split into parallel threads

– OR: block is composed of threads

 Let’s change add() to use parallel threads instead of parallel blocks

10/22/2014 Introduction to GPU Programming 38

 We use threadIdx.x instead of blockIdx.x

 Need to make one change in main()…

__global__ void add(int *a, int *b, int *c) {

 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}

Vector Addition Using Threads:
main()

 #define N 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size);

 b = (int *)malloc(size);

 c = (int *)malloc(size);

 for (int i=0; i<N; i++) a[i]=2, b[i]=7;

Introduction to GPU Programming 10/22/2014 39

Vector Addition Using Threads:
main()

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU with N threads

 add<<<1,N>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

Introduction to GPU Programming 10/22/2014 40

COMBINING THREADS

AND BLOCKS

Heterogeneous Computing

Blocks

Threads

Indexing

CONCEPTS

Introduction to GPU Programming 10/22/2014 41

Combining Blocks and Threads

 We’ve seen parallel vector addition using:

– Many blocks with one thread each

– One block with many threads

 Let’s adapt vector addition to use both blocks and threads

 Why? We’ll come to that…

 First let’s discuss data indexing…

Introduction to GPU Programming 10/22/2014 42

IDs and Dimensions
 Threads:

– 3D IDs, unique within a block

 Blocks:

– 2D IDs, unique within a grid

 Dimensions set at launch

– Can be unique for each grid

 Built-in variables:

– threadIdx, blockIdx

– blockDim, gridDim

 We will only discuss the usage of

 one dimension (x)

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

10/22/2014 Introduction to GPU Programming 43

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

 No longer as simple as using blockIdx.x and threadIdx.x

– Consider indexing an array with one element per thread (8 threads/block)

 With M (M=8 here) threads per block a unique index for each thread is

given by:

int index = threadIdx.x + blockIdx.x * M;

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

Introduction to GPU Programming 10/22/2014 44

Indexing Arrays: Example

 Which thread will operate on the red element?

 int index = threadIdx.x + blockIdx.x * M;

 = 5 + 2 * 8;

 = 21;

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

Introduction to GPU Programming 10/22/2014 45

Vector Addition with Blocks and Threads

 Use the built-in variable blockDim.x for threads per block

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 Combined version of add()to use parallel threads and parallel blocks

 What changes need to be made in main()?

__global__ void add(int *a, int *b, int *c) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 c[index] = a[index] + b[index];

}

Introduction to GPU Programming 10/22/2014 46

Addition with Blocks and Threads:
main()

 #define N (2048*2048)

 #define THREADS_PER_BLOCK 512

 int main(void) {

 int *a, *b, *c; // host copies of a, b, c

 int *d_a, *d_b, *d_c; // device copies of a, b, c

 int size = N * sizeof(int);

 // Alloc space for device copies of a, b, c

 cudaMalloc((void **)&d_a, size);

 cudaMalloc((void **)&d_b, size);

 cudaMalloc((void **)&d_c, size);

 // Alloc space for host copies of a, b, c and setup input values

 a = (int *)malloc(size);

 b = (int *)malloc(size);

 c = (int *)malloc(size);

Introduction to GPU Programming 10/22/2014 47

Addition with Blocks and Threads:
main()

 // Copy inputs to device

 cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

 cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

 // Launch add() kernel on GPU

 add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

 // Copy result back to host

 cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

 // Cleanup

 free(a); free(b); free(c);

 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

 return 0;

 }

Introduction to GPU Programming 10/22/2014 48

Handling Arbitrary Vector Sizes

 Update the kernel launch:

 add<<<(N + M-1) / M,M >>>(d_a, d_b, d_c, N);

 Typical problems are not friendly multiples of blockDim.x

 Avoid accessing beyond the end of the arrays:

__global__ void add(int *a, int *b, int *c, int n) {

 int index = threadIdx.x + blockIdx.x * blockDim.x;

 if (index < n)

 c[index] = a[index] + b[index];

}

Introduction to GPU Programming 10/22/2014 49

Review

 Launching parallel kernels

– Launch N copies of add() with add<<<N/M,M>>>(…);

– Use blockIdx.x to access block index

– Use threadIdx.x to access thread index within block

 Allocate elements to threads:

 int index = threadIdx.x + blockIdx.x * blockDim.x;

Introduction to GPU Programming 10/22/2014 50

3 Ways to Accelerate Applications

Introduction to GPU Programming

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages

OpenACC

Directives

Easily Accelerate

Applications

Maximum

Flexibility

Increasing programming effort

10/22/2014 51

To be covered

 OpenACC overview

 First OpenACC program and basic OpenACC directives

 Data region concept

 How to parallize our examples:

– Laplacian solver

 Hands-on exercise

– Matrix Multiplication

– SAXPY

– Calculate 𝜋

Introduction to GPU Programming 10/22/2014 52

What is OpenACC

 OpenACC (for Open Accelerators) is a programming standard for

parallel computing developed by Cray, CAPS, Nvidia and PGI. The

standard is designed to simplify parallel programming of

heterogeneous CPU/GPU systems.

 It provides a model for accelerator programming that is portable

across operating systems and various types of host CPUs and

accelerators.

 Full OpenACC 2.0 Specification available online

– http://www.openacc-standard.org/

– Implementations available now from PGI, Cray, and CAPS

Introduction to GPU Programming 10/22/2014 53

OpenACC Directives

Introduction to GPU Programming

Program myproject
 ... serial code ...
!$acc kernels
 do k = 1,n1
 do i = 1,n2
 ... parallel code ...
 enddo
 enddo
!$acc end kernels
 ...
End Program myproject

CPU GPU

Your original

Fortran or C code

Simple Compiler hints

Compiler Parallelizes

code

Works on many-core

GPUs & multicore CPUs

OpenACC

Compiler

Hints

10/22/2014 54

The Standard for GPU Directives
 Simple and high-level :

– Directive are the easy path to accelerate compute intensive

applications. Non-GPU programmers can play along.

– Single Source: Compile the same program for accelerators or serial, No

involvement of OpenCL, CUDA, etc.

 Open and performance portable:

– OpenACC is an open GPU directives standard, making GPU

programming straightforward and portable across parallel and multi-core

processors

– Supports GPU accelerators and co-processors from multiple vendors,

current and future versions.

 Powerful and Efficient:

– Directives allow complete access to the massive parallel power of GPU.

– Experience shows very favorable comparison to low-level

implementations of same algorithms.

– Developers can port and tune parts of their application as resources and

profiling dictates. No need to restructure the program.

Introduction to GPU Programming 10/22/2014 55

Directive-based programming

 Directives provide a high-level alternative

– Based on original source code (Fortran, C, C++)

– Easier to maintain/port/extend code

– Users with OpenMP experience find it a familiar programming model

– Compiler handles repetitive coding (cudaMalloc, cudaMemcpy...)

– Compiler handles default scheduling; user tunes only where needed

 Possible performance sacrifice

– Small performance sacrifice is acceptable

– trading-off portability and productivity against this

– after all, who hand-codes in assembly for CPUs these days?

 As researchers in science and engineering, you often need to balance

between:

 Time needed to develop your code

 Time needed to focus on the problem itself

Introduction to GPU Programming 10/22/2014 56

General Directive Syntax and Scope

 Fortran

!$acc directive [clause [,] clause]...]

Often paired with a matching end directive surrounding a
structured code block

!$acc end directive

 C

#pragma acc directive [clause [,] clause]...]

{

Often followed by a structured code block (compound
statement)

}

Introduction to GPU Programming 10/22/2014 57

The “restrict” keyword in C
 Declaration of intent given by the programmer to the compiler

– Applied to a pointer, e.g. float *restrict ptr;

– Meaning: “for the lifetime of ptr, only it or a value directly derived from it

(such as ptr + 1) will be used to access the object to which it points”*

– In simple, the ptr will only point to the memory space of itself

 OpenACC compilers often require restrict to determine independence.

– Otherwise the compiler can’t parallelize loops that access ptr

– Note: if programmer violates the declaration, behavior is undefined.

Introduction to GPU Programming

*http://en.wikipedia.org/wiki/Restrict

THE RESTRICT CONTRACT

I, [insert your name], a PROFESSIONAL or AMATEUR [circle

one] programmer, solemnly declare that writes through this

pointer will not effect the values read through any other

pointer available in the same context which is also

declared as restricted.

* Your agreement to this contract is implied by use of the

restrict keyword ;)

10/22/2014 58

http://en.wikipedia.org/wiki/Restrict
http://en.wikipedia.org/wiki/Restrict

The First Simple Exercise: SAXPY

Introduction to GPU Programming

subroutine saxpy(n, a, x, y)
 real :: x(:), y(:), a
 integer :: n, i
!$acc kernels
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
!$acc end kernels
end subroutine saxpy

...
!Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x_d, y_d)
...

void saxpy(int n,
 float a,
 float *x,
 float *restrict y)
{
#pragma acc kernels
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

...
// Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);
...

*restrict:
“y does not alias x”

10/22/2014 59

Complete saxpy.c

 Only a single line to the above example is needed to produce an

OpenACC SAXPY in C.

Introduction to GPU Programming

int main(int argc, char **argv)
{
 int n = 1<<20; // 1 million floats

 float *x = (float*)malloc(n*sizeof(float));
 float *y = (float*)malloc(n*sizeof(float));
 for (int i = 0; i < n; ++i) {
 x[i] = 2.0f;
 y[i] = 1.0f;
 }
 saxpy(n, 3.0f, x, y);
 free(x);
 free(y);
 return 0;
}

void saxpy(int n,
 float a,
 float *x,
 float *restrict y)
{
#pragma acc kernels
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

10/22/2014 60

SAXPY code (only functions) in CUDA C
// define CUDA kernel function

__global__ void saxpy_kernel(float a, float* x, float* y, int n){

 int i;

 i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i <= n) y[i] = a*x[i] + y[i];

}

void saxpy(float a, float* x, float* y, int n){

 float *xd, *yd;

 // manage device memory

 cudaMalloc((void**)&xd, n*sizeof(float));

 cudaMalloc((void**)&yd, n*sizeof(float));

 cudaMemcpy(xd, x, n*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(yd, y, n*sizeof(float), cudaMemcpyHostToDevice);

 // calls the kernel function

 saxpy_kernel<<< (n+31)/32, 32 >>>(a, xd, yd, n);

 cudaMemcpy(x, xd, n*sizeof(float), cudaMemcpyDeviceToHost);

 // free device memory after use

 cudaFree(xd);

 cudaFree(yd);

}

Introduction to GPU Programming 10/22/2014 61

CUDA C/OpenACC – Big Difference

 With CUDA, we changed the structure of the old code. Non-CUDA

programmers can’t understand new code. It is not even ANSI standard

code.

– We have separate sections for the host code, and the GPU device

code. Different flow of code. Serial path now gone forever.

– Although CUDA C gives you maximum flexibility, the effort needed for

restructuring the code seems to be high.

– OpenACC seems ideal for researchers in science and engineering.

Introduction to GPU Programming 10/22/2014 62

Compiler output of the first example

 C

pgcc -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c

 Fortran

pgf90 -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c

 Use “man pgcc/pgf90” to check the meaning of the compiler switches.

 Compiler output :

Introduction to GPU Programming

pgcc -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c

saxpy:

 26, Generating present_or_copyin(x[:n])

 Generating present_or_copy(y[:n])

 Generating NVIDIA code

 27, Loop is parallelizable

 Accelerator kernel generated

 27, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 Emit information about accelerator region targeting.

10/22/2014 63

Add PGI compiler to your environment

[fchen14@mike424 gpuex]$ cat ~/.soft

This is the .soft file.

It is used to customize your environment by setting up environment

variables such as PATH and MANPATH.

To learn what can be in this file, use 'man softenv'.

+portland-14.3

@default

[fchen14@mike424 gpuex]$ resoft

[fchen14@mike424 gpuex]$ pgcc -V

[fchen14@mike424 gpuex]$ cp –r /home/fchen14/gpuex/ ./

pgcc 14.3-0 64-bit target on x86-64 Linux -tp sandybridge

The Portland Group - PGI Compilers and Tools

Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.

[fchen14@mike424 gpuex]$ cd ~/gpuex

[fchen14@mike424 gpuex]$ cat saxpy_1stexample.c

[fchen14@mike424 gpuex]$ pgcc -acc -Minfo=accel -ta=nvidia,time
saxpy_1stexample.c

Introduction to GPU Programming 10/22/2014 64

Runtime output

[fchen14@mike424 gpuex]$./a.out

Accelerator Kernel Timing data

/home/fchen14/loniworkshop2014/laplace/openacc/c/saxpy_1stexample.c

 saxpy NVIDIA devicenum=0

 time(us): 2,247

 26: data region reached 1 time

 26: data copyin reached 2 times

 device time(us): total=1,421 max=720 min=701 avg=710

 29: data copyout reached 1 time

 device time(us): total=637 max=637 min=637 avg=637

 26: compute region reached 1 time

 26: kernel launched 1 time

 grid: [4096] block: [256]

 device time(us): total=189 max=189 min=189 avg=189

 elapsed time(us): total=201 max=201 min=201 avg=201

Introduction to GPU Programming

2,247 = 1,421 + 637 + 189

10/22/2014 65

OpenACC kernels directive

 What is a kernel? A function that runs in parallel on the GPU.

– The kernels directive expresses that a region may contain parallelism

and the compiler determines what can be safely parallelized.

– The compiler breaks code in the kernel region into a sequence of

kernels for execution on the accelerator device.

– When a program encounters a kernels construct, it will launch a

sequence of kernels in order on the device.

 The compiler identifies 2 parallel loops and generates 2 kernels below.

Introduction to GPU Programming

#pragma acc kernels
{
 for (i = 0; i < n; i++){
 x[i] = 1.0;
 y[i] = 2.0;
 }
 for (i = 0; i < n; i++){
 y[i] = a*x[i] + y[i];
 }
}

!$acc kernels
do i = 1, n
 x(i) = 1.0
 y(i) = 2.0
end do
do i = 1, n
 y(i) = y(i) + a * x(i)
end do
!$acc end kernels

10/22/2014 66

OpenACC parallel directive

 Similar to OpenMP, the parallel directive identifies a block of code as

having parallelism.

 Compiler generates one parallel kernel for that loop.

 C

#pragma acc parallel [clauses]

 Fortran

!$acc parallel [clauses]

Introduction to GPU Programming

#pragma acc parallel
{
 for (i = 0; i < n; i++){
 x[i] = 1.0 ;
 y[i] = 2.0 ;
 }
 for (i = 0; i < n; i++){
 y[i] = a*x[i] + y[i];
 }
}

!$acc parallel
do i = 1, n
 x(i) = 1.0
 y(i) = 2.0
end do
do i = 1, n
 y(i) = y(i) + a * x(i)
end do
!$acc end parallel

10/22/2014 67

OpenACC loop directive

 Loops are the most likely targets for parallelizing.

– The Loop directive is used within a parallel or kernels directive

identifying a loop that can be executed on the accelerator device.

– The loop directive can be combined with the enclosing parallel or

kernels

– The loop directive clauses can be used to optimize the code. This

however requires knowledge of the accelerator device.

– Clauses: gang, worker, vector, num_gangs, num_workers

 C: #pragma acc [parallel/kernels] loop [clauses]

 Fortran: !$acc [parallel/kernels] loop [clauses]

Introduction to GPU Programming

#pragma acc loop
for (i = 0; i < n; i++){
 y[i] = a*x[i] + y[i];
}

!$acc loop
do i = 1, n
 y(i) = y(i) + a * x(i)
end do
!$acc end loop

10/22/2014 68

OpenACC kernels vs parallel

 kernels

– Compiler performs parallel analysis and parallelizes what it believes is

safe.

– Can cover larger area of code with single directive.

 parallel

– Requires analysis by programmer to ensure safe parallelism.

– Straightforward path from OpenMP

 Both approaches are equally valid and can perform equally well.

Introduction to GPU Programming 10/22/2014 69

Clauses

 data management clauses

– copy(...),copyin(...), copyout(...)

– create(...), present(...)

– present_or_copy{,in,out}(...) or pcopy{,in,out}(...)

– present_or_create(...) or pcreate(...)

 reduction(operator:list)

 if (condition)

 async (expression)

Introduction to GPU Programming 10/22/2014 70

Runtime Libraries

 System setup routines

– acc_init(acc_device_nvidia)

– acc_set_device_type(acc_device_nvidia)

– acc_set_device_num(acc_device_nvidia)

 Synchronization routines

– acc_async_wait(int)

– acc_async_wait_all()

 For more information, refer to the OpenACC standard

Introduction to GPU Programming 10/22/2014 71

Second example: Jacobi Iteration

 Solve Laplace equation in 2D:

– Iteratively converges to correct value (e.g. Temperature), by computing

new values at each point from the average of neighboring points.

𝛻2𝑓 𝑥, 𝑦 = 0

Introduction to GPU Programming

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

A(i,j) A(i+1,j) A(i-1,j)

A(i,j-1)

A(i,j+1)

10/22/2014 72

Graphical representation for Jacobi iteration

Current Array: A

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 2.0 4.0 6.0 8.0 10.0 12.0 1.0

1.0 3.0 5.0 7.0 9.0 11.0 13.0 1.0

1.0 2.0 6.0 1.0 3.0 7.0 5.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Introduction to GPU Programming

Next Array: Anew

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 2.25 3.56 6.0 1.0

1.0 5.0 1.0

1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

10/22/2014 73

Serial version of the Jacobi Iteration

while (error > tol && iter < iter_max)

{

 error=0.0;

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 error = fmax(error, abs(Anew[j][i] - A[j][i]);

 }

 }

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

Introduction to GPU Programming

Iterate until

converged

Iterate across matrix

elements

Calculate new value

from neighbors

Compute max error

for convergence

Swap input/output

arrays

10/22/2014 74

First Attempt in OpenACC

// first attempt in C

while (error > tol && iter < iter_max) {

 error=0.0;

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

Introduction to GPU Programming

Execute GPU kernel

for loop nest

Execute GPU kernel

for loop nest

10/22/2014 75

Compiler Output

pgcc -acc -Minfo=accel -ta=nvidia,time laplace_openacc.c -o laplace_acc.out

main:

 65, Generating present_or_copyin(Anew[1:4094][1:4094])

 Generating present_or_copyin(A[:4096][:4096])

 Generating NVIDIA code

 66, Loop is parallelizable

 67, Loop is parallelizable

 Accelerator kernel generated

 66, #pragma acc loop gang /* blockIdx.y */

 67, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 70, Max reduction generated for error

 75, Generating present_or_copyin(Anew[1:4094][1:4094])

 Generating present_or_copyin(A[1:4094][1:4094])

 Generating NVIDIA code

 76, Loop is parallelizable

 77, Loop is parallelizable

 Accelerator kernel generated

 76, #pragma acc loop gang /* blockIdx.y */

 77, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

Introduction to GPU Programming

present_or_copyin

present_or_copyin

10/22/2014 76

Performance of First Jacobi ACC Attempt

 CPU: Intel(R) Xeon(R) CPU E5-2670 @ 2.60GHz

 GPU: Nvidia Tesla K20Xm

 The OpenACC code is even slower than the single thread/serial

version of the code

 What is the reason for the significant slow-down?

Introduction to GPU Programming

Execution Time (sec) Speedup

OpenMP 1 threads 45.64 --

OpenMP 2 threads 30.05 1.52

OpenMP 4 threads 24.91 1.83

OpenMP 8 threads 25.24 1.81

OpenMP 16 threads 26.19 1.74

OpenACC w/GPU 190.32 0.24

10/22/2014 77

Output Timing Information from Profiler

 Use compiler flag: -ta=nvidia, time

– Link with a profile library to collect simple timing information for

accelerator regions.

 OR set environmental variable: export PGI_ACC_TIME=1

– Enables the same lightweight profiler to measure data movement and

accelerator kernel execution time and print a summary at the end of

program execution.

 Either way can output profiling information

Introduction to GPU Programming 10/22/2014 78

Accelerator Kernel Timing data (1st attempt)
time(us): 88,460,895

 60: data region reached 1000 times

 60: data copyin reached 8000 times

 device time(us): total=22,281,725 max=2,909 min=2,752 avg=2,785

 71: data copyout reached 8000 times

 device time(us): total=20,120,805 max=2,689 min=2,496 avg=2,515

 60: compute region reached 1000 times

 63: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 device time(us): total=2,325,634 max=2,414 min=2,320 avg=2,325

 elapsed time(us): total=2,334,977 max=2,428 min=2,329 avg=2,334

 63: reduction kernel launched 1000 times

 grid: [1] block: [256]

 device time(us): total=25,988 max=90 min=24 avg=25

 elapsed time(us): total=35,063 max=99 min=33 avg=35

 71: data region reached 1000 times

 71: data copyin reached 8000 times

 device time(us): total=21,905,025 max=2,849 min=2,725 avg=2,738

 79: data copyout reached 8000 times

 device time(us): total=20,121,342 max=2,805 min=2,496 avg=2,515

 71: compute region reached 1000 times

 74: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 device time(us): total=1,680,376 max=1,758 min=1,670 avg=1,680

 elapsed time(us): total=1,689,640 max=1,768 min=1,679 avg=1,689

Introduction to GPU Programming

Total 42.4 sec spent on data

transfer

Total 42.0 sec spent on data

transfer

Around 84 sec on data transfer, huge

bottleneck

10/22/2014 79

Recall Basic Concepts on Offloading

 CPU and GPU have their respective memory, connected through PCI-e

bus

 Processing Flow of the offloading

1. Copy input data from CPU memory to GPU memory

2. Load GPU program and execute

3. Copy results from GPU memory to CPU memory

Introduction to GPU Programming

PCI-e Bus

GPU CPU

GPU Memory CPU Memory

Offloading

1. CPU -> GPU

3. CPU <- GPU

2

10/22/2014 80

Excessive Data Transfers

Introduction to GPU Programming

// first attempt in C

while (error > tol && iter < iter_max) {

 error=0.0;

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

2 copies happen every
iteration

Copy

Copy

Copy

2 copies happen every
iteration

Copy

A, Anew on host A, Anew on accelerator

A, Anew on host A, Anew on accelerator

A, Anew on host A, Anew on accelerator

A, Anew on host A, Anew on accelerator

10/22/2014 81

Rules of Coprocessor (GPU) Programming

 Transfer the data across the PCI-e bus onto the device and keep it

there.

 Give the device enough work to do (avoid preparing data).

 Focus on data reuse within the coprocessor(s) to avoid memory

bandwidth bottlenecks.

Introduction to GPU Programming 10/22/2014 82

OpenACC Data Management with Data Region

 C syntax

#pragma acc data [clause]

{ structured block/statement }

 Fortran syntax

!$acc data [clause]

structured block

!$acc end data

 Data regions may be nested.

Introduction to GPU Programming 10/22/2014 83

Data Clauses

 copy (list)

/* Allocates memory on GPU and copies data from host to GPU

when entering region and copies data to the host when exiting region.*/

 copyin (list)

/* Allocates memory on GPU and copies data from host to GPU when
entering region. */

 copyout (list)

/* Allocates memory on GPU and copies data to the host when exiting
region. */

 create (list)

/* Allocates memory on GPU but does not copy. */

 present (list)

/* Data is already present on GPU from another containing data region.
*/

 and present_or_copy[in|out], present_or_create, deviceptr.

Introduction to GPU Programming 10/22/2014 84

Second Attempt: OpenACC C

#pragma acc data copy(A), create(Anew)

while (error > tol && iter < iter_max) {

 error=0.0;

 #pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

 A[j-1][i] + A[j+1][i]);

 error = max(error, abs(Anew[j][i] - A[j][i]);

 }

 }

#pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 A[j][i] = Anew[j][i];

 }

 }

 iter++;

}

Introduction to GPU Programming

Copy A in at beginning of
loop, out at end. Allocate

Anew on accelerator

10/22/2014 85

Second Attempt: OpenACC Fortran

!$acc data copy(A), create(Anew)

do while (err > tol .and. iter < iter_max)

 err=0._fp_kind

!$acc kernels

 do j=1,m

 do i=1,n

 Anew(i,j) = .25_fp_kind * (A(i+1, j) + A(i-1, j) + &

 A(i , j-1) + A(i , j+1))

 err = max(err, Anew(i,j) - A(i,j))

 end do

 end do

!$acc end kernels

...

iter = iter +1

end do

!$acc end data

Introduction to GPU Programming

Copy A in at beginning of loop,
out at end. Allocate Anew on

accelerator

10/22/2014 86

Second Attempt: Performance

 Significant speedup after the insertion of the data region directive

 CPU: Intel Xeon CPU E5-2670 @ 2.60GHz

 GPU: Nvidia Tesla K20Xm

Introduction to GPU Programming

Execution Time (sec) Speedup

OpenMP 1 threads 45.64 --

OpenMP 2 threads 30.05 1.52

OpenMP 4 threads 24.91 1.83

OpenACC w/GPU

(data region)
4.47

10.21 (serial)

5.57 (4 threads)

10/22/2014 87

Accelerator Kernel Timing data (2nd attempt)

 time(us): 4,056,477

 54: data region reached 1 time

 54: data copyin reached 8 times

 device time(us): total=22,249 max=2,787 min=2,773 avg=2,781

 84: data copyout reached 9 times

 device time(us): total=20,082 max=2,510 min=11 avg=2,231

 60: compute region reached 1000 times

 63: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 device time(us): total=2,314,738 max=2,407 min=2,311 avg=2,314

 elapsed time(us): total=2,323,334 max=2,421 min=2,319 avg=2,323

 63: reduction kernel launched 1000 times

 grid: [1] block: [256]

 device time(us): total=24,904 max=78 min=24 avg=24

 elapsed time(us): total=34,206 max=87 min=32 avg=34

 71: compute region reached 1000 times

 74: kernel launched 1000 times

 grid: [16x512] block: [32x8]

 device time(us): total=1,674,504 max=1,727 min=1,657 avg=1,674

 elapsed time(us): total=1,683,604 max=1,735 min=1,667 avg=1,683

Introduction to GPU Programming

Only 42.2 ms spent on data

transfer

10/22/2014 88

Array Shaping

 Compiler sometimes cannot determine size of arrays

– Sometimes we just need to use a portion of the arrays

– we will see this example in the exercise

 Under such case, we must specify explicitly using data clauses and

array “shape” for this case

 C

#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

 Fortran

!$pragma acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

 The number between brackets are the beginning element followed by

the number of elements to copy:

– [start_element:number_of_elements_to_copy]

– In C/C++, this means start at a[0] and continue for “size” elements.

 Note: data clauses can be used on data, kernels or parallel

Introduction to GPU Programming 10/22/2014 89

Update Construct

 Fortran

#pragma acc update [clause ...]

 C

!$acc update [clause ...]

 Used to update existing data after it has changed in its corresponding

copy (e.g. update device copy after host copy changes)

 Move data from GPU to host, or host to GPU. Data movement can be

conditional, and asynchronous.

Introduction to GPU Programming 10/22/2014 90

Further Speedups

 OpenACC gives us more detailed control over parallelization via gang,

worker, and vector clauses

– PE (processing element) as a SM (streaming multiprocessor)

– gang == CUDA threadblock

– worker == CUDA warp

– vector == CUDA thread

 By understanding more about OpenACC execution model and GPU

hardware organization, we can get higher speedups on this code

 By understanding bottlenecks in the code via profiling, we can

reorganize the code for higher performance

Introduction to GPU Programming 10/22/2014 91

Finding Parallelism in your code

 (Nested) for loops are best for parallelization

– Large loop counts needed to offset GPU/memcpy overhead

 Iterations of loops must be independent of each other

– To help compiler:

• restrict keyword

• independent clause

 Compiler must be able to figure out sizes of data regions

– Can use directives to explicitly control sizes

 Pointer arithmetic should be avoided if possible

– Use subscripted arrays, rather than pointer-indexed arrays.

 Function calls within accelerated region must be inlineable.

Introduction to GPU Programming 10/22/2014 92

Exercise 1

 For the matrix multiplication code

𝐴 ∙ 𝐵 = 𝐶

 where:

𝑎𝑖,𝑗 = 𝑖 + 𝑗

𝑏𝑖,𝑗 = 𝑖 ∙ 𝑗

𝑐𝑖,𝑗 = 𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗
𝑘

1. For mm_acc_v0.c, speedup the matrix multiplication code segment

using OpenACC directives

2. For mm_acc_v1.c:

• Change A, B and C to dynamic arrays, i.e., the size of the matrix can be

specified at runtime;

• Complete the function matmul_acc using the OpenACC directives;

• Compare performance with serial and OpenMP results

Introduction to GPU Programming 10/22/2014 93

Exercise 2

 Complete the saxpy example using OpenACC directives.

𝑦 = 𝑎 ∙ 𝑥 + 𝑦
 Calculate the result of a constant times a vector plus a vector:

– where a is a constant, 𝑥 and 𝑦 are one dimensional vectors.

1. Add OpenACC directives for initialization of x and y arrays;

2. Add OpenACC directives for the code for the vector addition;

3. Compare the performance with OpenMP results;

Introduction to GPU Programming 10/22/2014 94

Exercise 3

 Calculate 𝜋 value using the equation:

4.0

1.0 + 𝑥2

1

0

= 𝜋

with the numerical integration:

4.0

1.0 + 𝑥𝑖 ∙ 𝑥𝑖
∆𝑥

𝑛

𝑖=1

≈ 𝜋

1. Complete the code using OpenACC directives

Introduction to GPU Programming 10/22/2014 95

3 Ways to Accelerate Applications

Introduction to GPU Programming

Applications

CUDA

Accelerated

Libraries

“Drop-in”

Acceleration

Programming

Languages

OpenACC

Directives

Easily Accelerate

Applications

Maximum

Flexibility

Increasing programming effort

10/22/2014 96

int N = 1 << 20;

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]

cublasSaxpy(h, N, &alpha, d_x, 1, d_y, 1);

Drop-In Acceleration (Step 1)

Add “cublas” prefix

and use device

variables

Introduction to GPU Programming 10/22/2014 97

int N = 1 << 20;

cublasHandle_t h;

cublasCreate(&h);

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]

cublasSaxpy(h, N, &alpha, d_x, 1, d_y, 1);

cublasDestroy(h);

cudaDeviceReset();

Drop-In Acceleration (Step 2)

Initialize CUBLAS

Shut down CUBLAS

Introduction to GPU Programming 10/22/2014 98

int N = 1 << 20;

cublasHandle_t h;

cublasCreate(&h);

cudaMalloc((void**)&d_x, N*sizeof(float));

cudaMalloc((void**)&d_y, N*sizeof(float));

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]

cublasSaxpy(h, N, &alpha, d_x, 1, d_y, 1);

cudaFree(d_x);

cudaFree(d_y);

cublasDestroy(h);

cudaDeviceReset();

Drop-In Acceleration (Step 3)

Allocate device

vectors

Deallocate device

vectors

Introduction to GPU Programming 10/22/2014 99

int N = 1 << 20;

cublasHandle_t h;

cublasCreate(&h);

cudaMalloc((void**)&d_x, N*sizeof(float));

cudaMalloc((void**)&d_y, N*sizeof(float));

cudaMemcpy(d_x, &x[0], N*sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(d_y, &y[0], N*sizeof(float), cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[]

cublasSaxpy(h, N, &alpha, d_x, 1, d_y, 1);

cudaMemcpy(&y[0], d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(d_x);

cudaFree(d_y);

cublasDestroy(h);

cudaDeviceReset();

Drop-In Acceleration (Step 4)

Transfer

data to GPU

Read data

back GPU

Introduction to GPU Programming 10/22/2014 100

Compile and Run

 Need to link to the cublas library

[fchen14@mike424 gpuex]$ nvcc cublas_vec_add.cu -l cublas

[fchen14@mike424 gpuex]$

 Run example:

[fchen14@mike424 gpuex]$./a.out

cublas time took 0.307 ms

x[0] = 7.200000

y[0] = 5.300000

z[0] = 12.500000

10/22/2014 Introduction to GPU Programming 101

