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GPU Computing History 

 

 The first GPU (Graphics Processing Unit)s were designed as graphics 

accelerators, supporting only specific fixed-function pipelines.  

 Starting in the late 1990s, the hardware became increasingly 

programmable, culminating in NVIDIA's first GPU in 1999. 

 Researchers were tapping its excellent floating point performance. 

The General Purpose GPU (GPGPU) movement had dawned.  

 NVIDIA unveiled CUDA in 2006, the world's first solution for general-

computing on GPUs.  

 CUDA (Compute Unified Device Architecture) is a parallel computing 

platform and programming model created by NVIDIA and implemented 

by the GPUs that they produce. 

 

10/22/2014 Introduction to GPU Programming 2 



GPU CPU 

Add GPUs: Accelerate Science Applications 
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Why is GPU this different from a CPU? 

 Different goals produce different designs 

– GPU assumes work load is highly parallel 

– CPU must be good at everything, parallel or not 

 

 CPU: minimize latency experienced by 1 thread 

– big on-chip caches 

– sophisticated control logic 

 

 GPU: maximize throughput of all threads 

– # threads in flight limited by resources => lots of resources (registers, 
bandwidth, etc.) 

– multithreading can hide latency => skip the big caches 

– share control logic across many threads 
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Overview of the GPU nodes 

 CPU: Two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit Processors (16) 

– 64GB 1666MHz Ram 

 GPU: Two NVIDIA Tesla K20Xm  

– 14 Streaming Multiprocessor (SMX) 

– 2688 SP Cores 

– 896 DP Cores 

– 6G global memory 

Introduction to GPU Programming 

K20Xm GPU Architecture 

SMX (192 SP, 64 DP) 
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Key Architectural Ideas 

 SIMT (Single Instruction Multiple Thread) execution 

– threads run in groups of 32 called warps 

– threads in a warp share instruction unit (IU) 

– HW automatically handles divergence 

 

 Hardware multithreading 

– HW resource allocation & thread scheduling 

– HW relies on threads to hide latency 

 

 Threads have all resources needed to run 

– any warp not waiting for something can run 

– context switching is (basically) free 
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Enter CUDA 

 Scalable parallel programming model 

 

 Minimal extensions to familiar C/C++ environment 

 

 Heterogeneous serial-parallel computing 
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CUDA Execution Model 

Introduction to GPU Programming 

Application Code 

Offload to 
GPU 
Parallization 

Compute-Intensive 
Functions 

Rest of 
Sequential 
CPU Code 

 Sequential code executes in a Host (CPU) thread 

 Parallel code executes in many Device (GPU) threads across multiple 

processing elements 

CPU 
Optimized for  
Serial Tasks 

GPU Accelerator 
Optimized for Many  

Parallel Tasks 
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Heterogeneous Computing 
#include <iostream> 

#include <algorithm> 

 

using namespace std; 

 

#define N          1024 

#define RADIUS     3 

#define BLOCK_SIZE 16 

 

__global__ void stencil_1d(int *in, int *out) { 

 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 

 int gindex = threadIdx.x + blockIdx.x * blockDim.x; 

 int lindex = threadIdx.x + RADIUS; 

 

 // Read input elements into shared memory 

 temp[lindex] = in[gindex]; 

 if (threadIdx.x < RADIUS) { 

  temp[lindex - RADIUS] = in[gindex - RADIUS]; 

  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 

 } 

 

 // Synchronize (ensure all the data is available) 

 __syncthreads(); 

 

 // Apply the stencil 

 int result = 0; 

 for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 

  result += temp[lindex + offset]; 

 

 // Store the result 

 out[gindex] = result; 

} 

 

void fill_ints(int *x, int n) { 

 fill_n(x, n, 1); 

} 

 

int main(void) { 

 int *in, *out;              // host copies of a, b, c 

 int *d_in, *d_out;          // device copies of a, b, c 

 int size = (N + 2*RADIUS) * sizeof(int); 

 

 // Alloc space for host copies and setup values 

 in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS); 

 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS); 

  

 // Alloc space for device copies 

 cudaMalloc((void **)&d_in,  size); 

 cudaMalloc((void **)&d_out, size); 

 

 // Copy to device 

 cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice); 

 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice); 

 

 // Launch stencil_1d() kernel on GPU 

 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, 

d_out + RADIUS); 

 

 // Copy result back to host 

 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); 

 

 // Cleanup 

 free(in); free(out); 

 cudaFree(d_in); cudaFree(d_out); 

 return 0; 

} 

 

serial code 

parallel code 

serial code 

parallel function 
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Heterogeneous Computing 

 Terminology: 

 Host The CPU and its memory (host memory) 

 Device The GPU and its memory (device memory) 

Host Device 
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Simple Processing Flow 

1. Copy input data from CPU memory 

to GPU memory 

PCI Bus 
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Simple Processing Flow 

1. Copy input data from CPU memory 

to GPU memory 

2. Load GPU program and execute, 

caching data on chip for 

performance 

Introduction to GPU Programming 

PCI Bus 
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Simple Processing Flow 

1. Copy input data from CPU memory 

to GPU memory 

2. Load GPU program and execute, 

caching data on chip for 

performance 

3. Copy results from GPU memory to 

CPU memory 

Introduction to GPU Programming 

PCI Bus 
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Motivation 
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3 Ways to Accelerate Applications 
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Some GPU-accelerated Libraries 

Introduction to GPU Programming 

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP 

Vector Signal 
Image Processing 

GPU Accelerated 
Linear Algebra 

Matrix Algebra 
on GPU and 
Multicore 

NVIDIA cuFFT 

C++ STL 
Features for 

CUDA 
IMSL Library 

Building-block 
Algorithms for 

CUDA 
ArrayFire Matrix 

Computations 

Sparse Linear 
Algebra 
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GPU Programming Languages 

Introduction to GPU Programming 

OpenACC, CUDA Fortran Fortran 

OpenACC, CUDA C C 

Thrust, CUDA C++ C++ 

PyCUDA, Copperhead Python 

Alea.cuBase F# 

MATLAB, Mathematica, LabVIEW Numerical analytics 
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VECTOR ADDITION 

WITH CUDA 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

Shared memory 

__syncthreads() 

Asynchronous operation 

Handling errors 

Managing devices 

CONCEPTS 



Parallel Programming in CUDA 

C/C++ 

• We’ll start by adding two integers and 

build up to vector addition 

a b c 
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Addition on the Device 

 First recall how to write a pure C function: 

 

   void add(int *a, int *b, int *c) { 

       *c = *a + *b; 

   } 

 

 Then we have a simple kernel to add two integers 

 

   __global__ void add(int *a, int *b, int *c) { 

       *c = *a + *b; 

   } 

 

 As before __global__ is a CUDA C/C++ keyword meaning 

– add() is a kernel function that will execute on the device 

– add() will be called from the host 
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Addition on the Device 

 Note that we use pointers for the variables 

 

 __global__ void add(int *a, int *b, int *c) { 

  *c = *a + *b; 

 } 

 

 add() runs on the device, so a, b and c must point to device 

memory 

 

 We need to allocate memory on the GPU 
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Memory Management 

 Host and device memory are separate entities 

– Device pointers point to GPU memory 

May be passed to/from host code 

May not be dereferenced in host code 

– Host pointers point to CPU memory 

May be passed to/from device code 

May not be dereferenced in device code 

 

 Simple CUDA API for handling device memory 

– cudaMalloc(), cudaFree(), cudaMemcpy() 

– Similar to the C equivalents malloc(), free(), memcpy() 
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Addition on the Device: add() 

 Returning to our add() kernel 

 

__global__ void add(int *a, int *b, int *c) { 

 *c = *a + *b; 

  } 

 

 

 Let’s take a look at main()… 
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Addition on the Device: main() 

 int main(void) { 

  int a, b, c;      // host copies of a, b, c 

  int *d_a, *d_b, *d_c;      // device copies of a, b, c 

  int size = sizeof(int); 

   

  // Allocate space for device copies of a, b, c 

  cudaMalloc((void **)&d_a, size); 

  cudaMalloc((void **)&d_b, size); 

  cudaMalloc((void **)&d_c, size); 

 

  // Setup input values 

  a = 2; 

  b = 7; 
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Addition on the Device: main() 

  // Copy inputs to device 

  cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice); 

  cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice); 

 

  // Launch add() kernel on GPU 

  add<<<1,1>>>(d_a, d_b, d_c); 

 

  // Copy result back to host 

  cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost); 

 

  // Cleanup 

  cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

  return 0; 

 } 
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Compile and Run 

 Changes to the ~/.soft file: 

[fchen14@mike2 gpuex]$ cat ~/.soft 

+cuda-5.5.22 

+Intel-13.1.3 

+portland-14.3 

@default 

 Request an interactive session in GPU queue: 

qsub -I -X -l nodes=1:ppn=16 -l walltime=01:00:00 -q gpu -A 
your_allocation_name 

 Compile and run the first vector addition: 

[fchen14@mike424 gpuex]$ nvcc my_vec_add.cu 

[fchen14@mike424 gpuex]$ ./a.out 

c=9 
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RUNNING IN 

PARALLEL 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

CONCEPTS 
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Moving to Parallel 

 GPU computing is about massive parallelism 

– So how do we run code in parallel on the device? 

 

  add<<< 1, 1 >>>(); 

 

  add<<< N, 1 >>>(); 

 
 Instead of executing add() once, execute N times in parallel 
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Vector Addition on the Device 

 With add() running in parallel we can do vector addition 

 

 Terminology: each parallel invocation of add() is referred to as a block 

– The set of blocks is referred to as a grid 

– Each invocation can refer to its block index using blockIdx.x 

 

    __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

    } 

 

 By using blockIdx.x to index into the array, each block handles a different 

index 
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Vector Addition on the Device 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

 

 On the device, each block can execute in parallel: 

 

c[0]  = a[0] + b[0]; c[1]  = a[1] + b[1]; c[2]  = a[2] + b[2]; c[3]  = a[3] + b[3]; 

Block 0 Block 1 Block 2 Block 3 
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Vector Addition on the Device: add() 

 Returning to our parallelized add() kernel 

 

 __global__ void add(int *a, int *b, int *c) { 

  c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 

 } 

 

 

 Let’s take a look at main()… 
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Vector Addition on the Device:  
main() 

    #define N 512 

    int main(void) { 

 int *a, *b, *c; // host copies of a, b, c 

 int *d_a, *d_b, *d_c; // device copies of a, b, c 

 int size = N * sizeof(int); 

   

 // Alloc space for device copies of a, b, c 

 cudaMalloc((void **)&d_a, size); 

 cudaMalloc((void **)&d_b, size); 

 cudaMalloc((void **)&d_c, size); 

 

 // Alloc space for host copies of a, b, c and setup input values 

 a = (int *)malloc(size);  

 b = (int *)malloc(size);  

 c = (int *)malloc(size); 
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Vector Addition on the Device:  
main() 

        // Copy inputs to device 

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 

 

        // Launch add() kernel on GPU with N blocks 

        add<<<N,1>>>(d_a, d_b, d_c); 

 

        // Copy result back to host 

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 

 

        // Cleanup 

        free(a); free(b); free(c); 

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

        return 0; 

    } 
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Review (1 of 2) 

 Difference between host and device 

– Host CPU 

– Device GPU 

 

 Using __global__ to declare a function as device code 

– Executes on the device 

– Called from the host 

 

 Passing parameters from host code to a device function 
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Review (2 of 2) 

 Basic device memory management 

– cudaMalloc() 

– cudaMemcpy() 

– cudaFree() 

 

 Launching parallel kernels 

– Launch N copies of add() with add<<<N,1>>>(…); 

– Use blockIdx.x to access block index 
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INTRODUCING 

THREADS 

Heterogeneous Computing  

Blocks 

Threads 

Indexing 

CONCEPTS 
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CUDA Threads 

 Terminology: a block can be split into parallel threads  

– OR: block is composed of threads 

 

 Let’s change add() to use parallel threads instead of parallel blocks 
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 We use threadIdx.x instead of blockIdx.x 

 

 Need to make one change in main()… 

__global__ void add(int *a, int *b, int *c) { 

    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; 

} 



Vector Addition Using Threads:  
main() 

    #define N 512 

    int main(void) { 

        int *a, *b, *c;  // host copies of a, b, c 

        int *d_a, *d_b, *d_c;  // device copies of a, b, c 

        int size = N * sizeof(int); 

   

        // Alloc space for device copies of a, b, c 

        cudaMalloc((void **)&d_a, size); 

        cudaMalloc((void **)&d_b, size); 

        cudaMalloc((void **)&d_c, size); 

         

        // Alloc space for host copies of a, b, c and setup input values 

        a = (int *)malloc(size); 

        b = (int *)malloc(size); 

        c = (int *)malloc(size); 

 

        for (int i=0; i<N; i++) a[i]=2, b[i]=7; 
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Vector Addition Using Threads:  
main() 

         // Copy inputs to device 

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 

 

        // Launch add() kernel on GPU with N threads 

        add<<<1,N>>>(d_a, d_b, d_c); 

 

        // Copy result back to host 

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 

 

        // Cleanup 

        free(a); free(b); free(c); 

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

        return 0; 

    } 
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COMBINING THREADS 
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Heterogeneous Computing  

Blocks 

Threads 

Indexing 

CONCEPTS 
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Combining Blocks and Threads 

 We’ve seen parallel vector addition using: 

– Many blocks with one thread each 

– One block with many threads 

 

 Let’s adapt vector addition to use both blocks and threads 

 

 Why? We’ll come to that… 

 

 First let’s discuss data indexing… 
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IDs and Dimensions 
 Threads: 

– 3D IDs, unique within a block 

 Blocks: 

– 2D IDs, unique within a grid 

 Dimensions set at launch  

– Can be unique for each grid 

 Built-in variables: 

– threadIdx, blockIdx 

– blockDim, gridDim 

 

 We will only discuss the usage of 

     one dimension (x) 

 

 

Device 

Grid 1 

Block 

(0, 0) 

Block 

(1, 0) 

Block 

(2, 0) 

Block 

(0, 1) 

Block 

(1, 1) 

Block 
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Thread 
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(0, 2) 
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(3, 2) 

Thread 

(4, 2) 
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(0, 0) 
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(1, 0) 
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(2, 0) 
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(3, 0) 

Thread 

(4, 0) 
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0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 

Indexing Arrays with Blocks and Threads 

  

 No longer as simple as using blockIdx.x and threadIdx.x 

– Consider indexing an array with one element per thread (8 threads/block) 

 

 

 

 

 

 

 With M (M=8 here) threads per block a unique index for each thread is 

given by: 

int index = threadIdx.x + blockIdx.x * M; 

 

 

 

threadIdx.x threadIdx.x threadIdx.x threadIdx.x 

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3 
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Indexing Arrays: Example 

 Which thread will operate on the red element? 

 

 int index = threadIdx.x + blockIdx.x * M; 

           =      5      +     2      * 8; 

           = 21; 

 

0 1 7 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 

threadIdx.x = 5 

blockIdx.x = 2 

0 1 31 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

M = 8 
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Vector Addition with Blocks and Threads 

 

 

 

 Use the built-in variable blockDim.x for threads per block 

   int index = threadIdx.x + blockIdx.x * blockDim.x; 

 

 Combined version of add()to use parallel threads and parallel blocks 

 

 

 

 

 

 What changes need to be made in main()? 

 

 

 

__global__ void add(int *a, int *b, int *c) { 

    int index = threadIdx.x + blockIdx.x * blockDim.x; 

    c[index] = a[index] + b[index]; 

} 
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Addition with Blocks and Threads:  
main() 

    #define N (2048*2048) 

    #define THREADS_PER_BLOCK 512 

    int main(void) { 

        int *a, *b, *c;  // host copies of a, b, c 

        int *d_a, *d_b, *d_c;  // device copies of a, b, c 

        int size = N * sizeof(int); 

  

        // Alloc space for device copies of a, b, c 

        cudaMalloc((void **)&d_a, size); 

        cudaMalloc((void **)&d_b, size); 

        cudaMalloc((void **)&d_c, size); 

 

        // Alloc space for host copies of a, b, c and setup input values 

        a = (int *)malloc(size); 

        b = (int *)malloc(size);  

        c = (int *)malloc(size); 
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Addition with Blocks and Threads:  
main() 

        // Copy inputs to device 

        cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice); 

        cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice); 

 

        // Launch add() kernel on GPU 

        add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c); 

 

        // Copy result back to host 

        cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost); 

 

        // Cleanup 

        free(a); free(b); free(c); 

        cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); 

        return 0; 

    } 
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Handling Arbitrary Vector Sizes 

 Update the kernel launch: 

 add<<<(N + M-1) / M,M >>>(d_a, d_b, d_c, N); 

 

 Typical problems are not friendly multiples of blockDim.x 

 

 Avoid accessing beyond the end of the arrays: 

__global__ void add(int *a, int *b, int *c, int n) { 

    int index = threadIdx.x + blockIdx.x * blockDim.x; 

    if (index < n) 

        c[index] = a[index] + b[index]; 

} 
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Review 

 Launching parallel kernels 

– Launch N copies of add() with add<<<N/M,M>>>(…); 

– Use blockIdx.x to access block index 

– Use threadIdx.x to access thread index within block 

 

 Allocate elements to threads: 

 

  int index = threadIdx.x + blockIdx.x * blockDim.x; 
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3 Ways to Accelerate Applications 
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To be covered 

 OpenACC overview 

 First OpenACC program and basic OpenACC directives 

 Data region concept 

 How to parallize our examples: 

– Laplacian solver 

 Hands-on exercise 

– Matrix Multiplication 

– SAXPY 

– Calculate 𝜋 
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What is OpenACC 

 OpenACC (for Open Accelerators) is a programming standard for 

parallel computing developed by Cray, CAPS, Nvidia and PGI. The 

standard is designed to simplify parallel programming of 

heterogeneous CPU/GPU systems. 

 It provides a model for accelerator programming that is portable 

across operating systems and various types of host CPUs and 

accelerators.  

 Full OpenACC 2.0 Specification available online 

– http://www.openacc-standard.org/ 

– Implementations available now from PGI, Cray, and CAPS 
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OpenACC Directives 

Introduction to GPU Programming 

Program myproject 
  ... serial code ... 
!$acc kernels 
  do k = 1,n1 
    do i = 1,n2 
      ... parallel code ... 
    enddo 
  enddo 
!$acc end kernels  
  ... 
End Program myproject 

CPU GPU 

Your original  

Fortran or C code 

Simple Compiler hints 

Compiler Parallelizes 

code 

Works on many-core 

GPUs & multicore CPUs 

OpenACC 

Compiler 

Hints 
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The Standard for GPU Directives 
 Simple and high-level :  

– Directive are the easy path to accelerate compute intensive 

applications. Non-GPU programmers can play along.  

– Single Source: Compile the same program for accelerators or serial, No 

involvement of OpenCL, CUDA, etc.  

 Open and performance portable:  

– OpenACC is an open GPU directives standard, making GPU 

programming straightforward and portable across parallel and multi-core 

processors 

– Supports GPU accelerators and co-processors from multiple vendors, 

current and future versions.  

 Powerful and Efficient:  

– Directives allow complete access to the massive parallel power of GPU.  

– Experience shows very favorable comparison to low-level 

implementations of same algorithms.   

– Developers can port and tune parts of their application as resources and 

profiling dictates. No need to restructure the program.   
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Directive-based programming 

 Directives provide a high-level alternative  

– Based on original source code (Fortran, C, C++)  

– Easier to maintain/port/extend code  

– Users with OpenMP experience find it a familiar programming model  

– Compiler handles repetitive coding (cudaMalloc, cudaMemcpy...)  

– Compiler handles default scheduling; user tunes only where needed  

 Possible performance sacrifice  

– Small performance sacrifice is acceptable  

– trading-off portability and productivity against this  

– after all, who hand-codes in assembly for CPUs these days? 

 As researchers in science and engineering, you often need to balance 

between: 

 Time needed to develop your code 

 Time needed to focus on the problem itself 
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General Directive Syntax and Scope 

 Fortran 

!$acc directive [clause [,] clause]...] 

Often paired with a matching end directive surrounding a 
structured code block 

!$acc end directive  

 C 

#pragma acc directive [clause [,] clause]...] 

{ 

Often followed by a structured code block (compound 
statement) 

} 

Introduction to GPU Programming 10/22/2014 57 



The “restrict” keyword in C 
 Declaration of intent given by the programmer to the compiler 

– Applied to a pointer, e.g. float *restrict ptr;  

– Meaning: “for the lifetime of ptr, only it or a value directly derived from it 

(such as ptr + 1) will be used to access the object to which it points”* 

– In simple, the ptr will only point to the memory space of itself 

 OpenACC compilers often require restrict to determine independence. 

– Otherwise the compiler can’t parallelize loops that access ptr 

– Note: if programmer violates the declaration, behavior is undefined. 

Introduction to GPU Programming 

*http://en.wikipedia.org/wiki/Restrict 

THE RESTRICT CONTRACT 

I, [insert your name], a PROFESSIONAL or AMATEUR [circle 

one] programmer, solemnly declare that writes through this 

pointer will not effect the values read through any other 

pointer available in the same context which is also 

declared as restricted. 

 

* Your agreement to this contract is implied by use of the 

restrict keyword ;) 
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The First Simple Exercise: SAXPY 

Introduction to GPU Programming 

 
 

subroutine saxpy(n, a, x, y) 
  real :: x(:), y(:), a 
  integer :: n, i 
!$acc kernels 
  do i=1,n 
    y(i) = a*x(i)+y(i) 
  enddo 
!$acc end kernels 
end subroutine saxpy 
 
... 
!Perform SAXPY on 1M elements 
call saxpy(2**20, 2.0, x_d, y_d) 
... 

 

void saxpy(int n,  
           float a,  
           float *x,  
           float *restrict y) 
{ 
#pragma acc kernels 
  for (int i = 0; i < n; ++i) 
    y[i] = a*x[i] + y[i]; 
} 
 
... 
// Perform SAXPY on 1M elements 
saxpy(1<<20, 2.0, x, y); 
... 
 

*restrict:  
“y does not alias x” 
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Complete saxpy.c 

 Only a single line to the above example is needed to produce an 

OpenACC SAXPY in C. 
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int main(int argc, char **argv) 
{ 
    int n = 1<<20; // 1 million floats 
 
    float *x = (float*)malloc(n*sizeof(float)); 
    float *y = (float*)malloc(n*sizeof(float)); 
    for (int i = 0; i < n; ++i) { 
        x[i] = 2.0f; 
        y[i] = 1.0f; 
    } 
    saxpy(n, 3.0f, x, y); 
    free(x); 
    free(y); 
    return 0; 
} 

void saxpy(int n,  
           float a,  
           float *x,  
           float *restrict y) 
{ 
#pragma acc kernels 
  for (int i = 0; i < n; ++i) 
    y[i] = a*x[i] + y[i]; 
} 

10/22/2014 60 



SAXPY code (only functions) in CUDA C 
// define CUDA kernel function 

__global__ void saxpy_kernel( float a, float* x, float* y, int n ){ 

    int i; 

    i = blockIdx.x*blockDim.x + threadIdx.x; 

    if( i <= n ) y[i] = a*x[i] + y[i]; 

} 

 

void saxpy( float a, float* x, float* y, int n ){ 

    float *xd, *yd; 

    // manage device memory 

    cudaMalloc( (void**)&xd, n*sizeof(float) ); 

    cudaMalloc( (void**)&yd, n*sizeof(float) );  

    cudaMemcpy( xd, x, n*sizeof(float), cudaMemcpyHostToDevice ); 

    cudaMemcpy( yd, y, n*sizeof(float), cudaMemcpyHostToDevice ); 

    // calls the kernel function 

    saxpy_kernel<<< (n+31)/32, 32 >>>( a, xd, yd, n ); 

    cudaMemcpy( x, xd, n*sizeof(float), cudaMemcpyDeviceToHost ); 

    // free device memory after use 

    cudaFree( xd );  

    cudaFree( yd ); 

}  
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CUDA C/OpenACC – Big Difference 

 With CUDA, we changed the structure of the old code. Non-CUDA 

programmers can’t understand new code. It is not even ANSI standard 

code. 

– We have separate sections for the host code, and the GPU device 

code. Different flow of code. Serial path now gone forever. 

– Although CUDA C gives you maximum flexibility, the effort needed for 

restructuring the code seems to be high. 

– OpenACC seems ideal for researchers in science and engineering. 
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Compiler output of the first example 

 C 

pgcc -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c 

 Fortran 

pgf90 -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c 

 Use “man pgcc/pgf90” to check the meaning of the compiler switches. 

 Compiler output : 
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pgcc -acc -Minfo=accel -ta=nvidia,time saxpy_1stexample.c  

saxpy: 

     26, Generating present_or_copyin(x[:n]) 

         Generating present_or_copy(y[:n]) 

         Generating NVIDIA code 

     27, Loop is parallelizable 

         Accelerator kernel generated 

         27, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ 

 Emit information about accelerator region targeting. 
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Add PGI compiler to your environment 

[fchen14@mike424 gpuex]$ cat ~/.soft 

# This is the .soft file. 

# It is used to customize your environment by setting up environment 

# variables such as PATH and MANPATH. 

# To learn what can be in this file, use 'man softenv'. 

+portland-14.3 

@default 

[fchen14@mike424 gpuex]$ resoft 

[fchen14@mike424 gpuex]$ pgcc -V 

[fchen14@mike424 gpuex]$ cp –r /home/fchen14/gpuex/ ./ 

pgcc 14.3-0 64-bit target on x86-64 Linux -tp sandybridge 

The Portland Group - PGI Compilers and Tools 

Copyright (c) 2014, NVIDIA CORPORATION.  All rights reserved. 

[fchen14@mike424 gpuex]$ cd ~/gpuex 

[fchen14@mike424 gpuex]$ cat saxpy_1stexample.c 

[fchen14@mike424 gpuex]$ pgcc -acc -Minfo=accel -ta=nvidia,time 
saxpy_1stexample.c 
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Runtime output 

[fchen14@mike424 gpuex]$ ./a.out 

 

Accelerator Kernel Timing data 

/home/fchen14/loniworkshop2014/laplace/openacc/c/saxpy_1stexample.c 

  saxpy  NVIDIA  devicenum=0 

    time(us): 2,247 

    26: data region reached 1 time 

        26: data copyin reached 2 times 

             device time(us): total=1,421 max=720 min=701 avg=710 

        29: data copyout reached 1 time 

             device time(us): total=637 max=637 min=637 avg=637 

    26: compute region reached 1 time 

        26: kernel launched 1 time 

            grid: [4096]  block: [256] 

             device time(us): total=189 max=189 min=189 avg=189 

            elapsed time(us): total=201 max=201 min=201 avg=201 
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2,247 = 1,421 + 637 + 189 
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OpenACC kernels directive 

 What is a kernel? A function that runs in parallel on the GPU. 

– The kernels directive expresses that a region may contain parallelism 

and the compiler determines what can be safely parallelized.  

– The compiler breaks code in the kernel region into a sequence of 

kernels for execution on the accelerator device. 

– When a program encounters a kernels construct, it will launch a 

sequence of kernels in order on the device. 

 The compiler identifies 2 parallel loops and generates 2 kernels below. 
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#pragma acc kernels 
{ 
    for (i = 0; i < n; i++){ 
        x[i] = 1.0; 
        y[i] = 2.0; 
    } 
    for (i = 0; i < n; i++){ 
        y[i] = a*x[i] + y[i]; 
    } 
} 

!$acc kernels 
do i = 1, n 
    x(i) = 1.0 
    y(i) = 2.0 
end do 
do i = 1, n 
    y(i) = y(i) + a * x(i) 
end do 
!$acc end kernels 
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OpenACC parallel directive 

 Similar to OpenMP, the parallel directive identifies a block of code as 

having parallelism. 

 Compiler generates one parallel kernel for that loop. 

 C 

#pragma acc parallel [clauses] 

 Fortran 

!$acc parallel [clauses] 
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#pragma acc parallel 
{ 
    for (i = 0; i < n; i++){ 
        x[i] = 1.0 ; 
        y[i] = 2.0 ; 
    } 
    for (i = 0; i < n; i++){ 
        y[i] = a*x[i] + y[i]; 
    } 
} 

!$acc parallel 
do i = 1, n 
    x(i) = 1.0 
    y(i) = 2.0 
end do 
do i = 1, n 
    y(i) = y(i) + a * x(i) 
end do 
!$acc end parallel 
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OpenACC loop directive 

 Loops are the most likely targets for parallelizing. 

– The Loop directive is used within a parallel or kernels directive 

identifying a loop that can be executed on the accelerator device. 

– The loop directive can be combined with the enclosing parallel or 

kernels 

– The loop directive clauses can be used to optimize the code. This 

however requires knowledge of the accelerator device. 

– Clauses: gang, worker, vector, num_gangs, num_workers 

 C: #pragma acc [parallel/kernels] loop [clauses] 

 Fortran: !$acc [parallel/kernels] loop [clauses] 
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#pragma acc loop 
for (i = 0; i < n; i++){ 
    y[i] = a*x[i] + y[i]; 
} 

 
!$acc loop 
do i = 1, n 
    y(i) = y(i) + a * x(i) 
end do 
!$acc end loop 
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OpenACC kernels vs parallel 

 kernels 

– Compiler performs parallel analysis and parallelizes what it believes is 

safe. 

– Can cover larger area of code with single directive. 

 parallel 

– Requires analysis by programmer to ensure safe parallelism. 

– Straightforward path from OpenMP 

 Both approaches are equally valid and can perform equally well. 
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Clauses 

 data management clauses 

– copy(...),copyin(...), copyout(...) 

– create(...), present(...) 

– present_or_copy{,in,out}(...) or pcopy{,in,out}(...) 

– present_or_create(...) or pcreate(...) 

 reduction(operator:list) 

 if (condition) 

 async (expression) 
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Runtime Libraries 

 System setup routines 

– acc_init(acc_device_nvidia) 

– acc_set_device_type(acc_device_nvidia) 

– acc_set_device_num(acc_device_nvidia) 

 Synchronization routines 

– acc_async_wait(int) 

– acc_async_wait_all() 

 For more information, refer to the OpenACC standard 
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Second example: Jacobi Iteration 

 Solve Laplace equation in 2D: 

– Iteratively converges to correct value (e.g. Temperature), by computing 

new values at each point from the average of neighboring points.  

 
𝛻2𝑓 𝑥, 𝑦 = 0 
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𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1  

4
 

A(i,j) A(i+1,j) A(i-1,j) 

A(i,j-1) 

A(i,j+1) 
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Graphical representation for Jacobi iteration 

Current Array: A 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 2.0 4.0 6.0 8.0 10.0 12.0 1.0 

1.0 3.0 5.0 7.0 9.0 11.0 13.0 1.0 

1.0 2.0 6.0 1.0 3.0 7.0 5.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Next Array: Anew 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 2.25 3.56 6.0 1.0 

1.0 5.0 1.0 

1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Serial version of the Jacobi Iteration 

while ( error > tol && iter < iter_max )  

{ 

  error=0.0; 

 

  for( int j = 1; j < n-1; j++) { 

    for(int i = 1; i < m-1; i++) { 

       

      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 

                           A[j-1][i] + A[j+1][i]); 

 

      error = fmax(error, abs(Anew[j][i] - A[j][i]); 

    } 

  } 

 

  for( int j = 1; j < n-1; j++) { 

    for( int i = 1; i < m-1; i++ ) { 

      A[j][i] = Anew[j][i];       

    } 

  } 

  iter++; 

} 
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Iterate until 

converged 

Iterate across matrix 

elements 

Calculate new value 

from neighbors 

Compute max error 

for convergence 

Swap input/output 

arrays 
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First Attempt in OpenACC 

// first attempt in C 

while ( error > tol && iter < iter_max ) { 

  error=0.0; 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for(int i = 1; i < m-1; i++) { 

      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 

                           A[j-1][i] + A[j+1][i]); 

      error = max(error, abs(Anew[j][i] - A[j][i]); 

    } 

  } 

 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for( int i = 1; i < m-1; i++ ) { 

      A[j][i] = Anew[j][i];       

    } 

  } 

  iter++; 

} 
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Execute GPU kernel 

for loop nest 

Execute GPU kernel 

for loop nest 
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Compiler Output 

pgcc -acc -Minfo=accel -ta=nvidia,time laplace_openacc.c -o laplace_acc.out 

main: 

     65, Generating present_or_copyin(Anew[1:4094][1:4094]) 

         Generating present_or_copyin(A[:4096][:4096]) 

         Generating NVIDIA code 

     66, Loop is parallelizable 

     67, Loop is parallelizable 

         Accelerator kernel generated 

         66, #pragma acc loop gang /* blockIdx.y */ 

         67, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ 

         70, Max reduction generated for error 

     75, Generating present_or_copyin(Anew[1:4094][1:4094]) 

         Generating present_or_copyin(A[1:4094][1:4094]) 

         Generating NVIDIA code 

     76, Loop is parallelizable 

     77, Loop is parallelizable 

         Accelerator kernel generated 

         76, #pragma acc loop gang /* blockIdx.y */ 

         77, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */ 
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present_or_copyin 

present_or_copyin 
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Performance of First Jacobi ACC Attempt 

 CPU: Intel(R) Xeon(R) CPU E5-2670  @ 2.60GHz 

 GPU: Nvidia Tesla K20Xm 

 The OpenACC code is even slower than the single thread/serial 

version of the code 

 What is the reason for the significant slow-down? 
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Execution Time (sec) Speedup 

OpenMP 1 threads 45.64 -- 

OpenMP 2 threads 30.05 1.52 

OpenMP 4 threads 24.91 1.83 

OpenMP 8 threads 25.24 1.81 

OpenMP 16 threads 26.19 1.74 

OpenACC w/GPU 190.32 0.24 
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Output Timing Information from Profiler 

 Use compiler flag: -ta=nvidia, time 

– Link with a profile library to collect simple timing information for 

accelerator regions. 

 OR set environmental variable: export PGI_ACC_TIME=1 

– Enables the same lightweight profiler to measure data movement and 

accelerator kernel execution time and print a summary at the end of 

program execution. 

 Either way can output profiling information 
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Accelerator Kernel Timing data (1st attempt) 
time(us): 88,460,895 

    60: data region reached 1000 times 

        60: data copyin reached 8000 times 

             device time(us): total=22,281,725 max=2,909 min=2,752 avg=2,785 

        71: data copyout reached 8000 times 

             device time(us): total=20,120,805 max=2,689 min=2,496 avg=2,515 

    60: compute region reached 1000 times 

        63: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

             device time(us): total=2,325,634 max=2,414 min=2,320 avg=2,325 

            elapsed time(us): total=2,334,977 max=2,428 min=2,329 avg=2,334 

        63: reduction kernel launched 1000 times 

            grid: [1]  block: [256] 

             device time(us): total=25,988 max=90 min=24 avg=25 

            elapsed time(us): total=35,063 max=99 min=33 avg=35 

    71: data region reached 1000 times 

        71: data copyin reached 8000 times 

             device time(us): total=21,905,025 max=2,849 min=2,725 avg=2,738 

        79: data copyout reached 8000 times 

             device time(us): total=20,121,342 max=2,805 min=2,496 avg=2,515 

    71: compute region reached 1000 times 

        74: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

             device time(us): total=1,680,376 max=1,758 min=1,670 avg=1,680 

            elapsed time(us): total=1,689,640 max=1,768 min=1,679 avg=1,689 
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Total 42.4 sec spent on data 

transfer 

Total 42.0 sec spent on data 

transfer 

Around 84 sec on data transfer, huge 

bottleneck 
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Recall Basic Concepts on Offloading 

 CPU and GPU have their respective memory, connected through PCI-e 

bus 

 Processing Flow of the offloading 

1. Copy input data from CPU memory to GPU memory 

2. Load GPU program and execute 

3. Copy results from GPU memory to CPU memory 
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PCI-e Bus 

GPU CPU 

GPU Memory CPU Memory 

Offloading 

1. CPU -> GPU 

3. CPU <- GPU 

2 
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Excessive Data Transfers 

Introduction to GPU Programming 

// first attempt in C 

while ( error > tol && iter < iter_max ) { 

  error=0.0; 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for(int i = 1; i < m-1; i++) { 

      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 

                           A[j-1][i] + A[j+1][i]); 

      error = max(error, abs(Anew[j][i] - A[j][i]); 

    } 

  } 

 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for( int i = 1; i < m-1; i++ ) { 

      A[j][i] = Anew[j][i];       

    } 

  } 

  iter++; 

} 

2 copies happen every 
iteration 

Copy 

Copy 

Copy 

2 copies happen every 
iteration 

Copy 

A, Anew on host A, Anew on accelerator 

A, Anew on host A, Anew on accelerator 

A, Anew on host A, Anew on accelerator 

A, Anew on host A, Anew on accelerator 
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Rules of Coprocessor (GPU) Programming 

 Transfer the data across the PCI-e bus onto the device and keep it 

there.  

 Give the device enough work to do (avoid preparing data). 

 Focus on data reuse within the coprocessor(s) to avoid memory 

bandwidth bottlenecks. 
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OpenACC Data Management with Data Region 

 C syntax 

#pragma acc data [clause] 

{ structured block/statement } 

 Fortran syntax 

!$acc data [clause] 

structured block 

!$acc end data 

 Data regions may be nested. 
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Data Clauses 

 copy ( list )  

/* Allocates memory on GPU and copies data from host to GPU  

when entering region and copies data to the host when exiting region.*/ 

 copyin ( list )  

/* Allocates memory on GPU and copies data from host to GPU when 
entering region. */ 

 copyout ( list )  

/* Allocates memory on GPU and copies data to the host when exiting 
region. */ 

 create ( list )  

/* Allocates memory on GPU but does not copy. */ 

 present ( list )  

/* Data is already present on GPU from another containing data region. 
*/ 

 and present_or_copy[in|out], present_or_create, deviceptr. 

Introduction to GPU Programming 10/22/2014 84 



Second Attempt: OpenACC C 

#pragma acc data copy(A), create(Anew) 

while ( error > tol && iter < iter_max ) { 

  error=0.0; 

 

  #pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for(int i = 1; i < m-1; i++) { 

      Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] + 

                           A[j-1][i] + A[j+1][i]); 

 

      error = max(error, abs(Anew[j][i] - A[j][i]); 

    } 

  } 

#pragma acc kernels 

  for( int j = 1; j < n-1; j++) { 

    for( int i = 1; i < m-1; i++ ) { 

      A[j][i] = Anew[j][i];       

    } 

  } 

  iter++; 

} 
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Copy A in at beginning of 
loop, out at end.  Allocate 

Anew on accelerator 
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Second Attempt: OpenACC Fortran 

!$acc data copy(A), create(Anew) 

do while ( err > tol .and. iter < iter_max ) 

  err=0._fp_kind 

!$acc kernels 

  do j=1,m 

    do i=1,n        

      Anew(i,j) = .25_fp_kind * (A(i+1, j  ) + A(i-1, j  ) + & 

                                 A(i  , j-1) + A(i  , j+1))    

      err = max(err, Anew(i,j) - A(i,j)) 

    end do 

  end do 

!$acc end kernels 

... 

iter = iter +1 

end do 

!$acc end data 
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Copy A in at beginning of loop, 
out at end.  Allocate Anew on 

accelerator 
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Second Attempt: Performance 

 Significant speedup after the insertion of the data region directive 

 CPU: Intel Xeon CPU E5-2670  @ 2.60GHz 

 GPU: Nvidia Tesla K20Xm 
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Execution Time (sec) Speedup 

OpenMP 1 threads 45.64 -- 

OpenMP 2 threads 30.05 1.52 

OpenMP 4 threads 24.91 1.83 

OpenACC w/GPU 

(data region) 
4.47 

10.21       (serial) 

5.57 (4 threads) 
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Accelerator Kernel Timing data (2nd attempt) 

 time(us): 4,056,477 

    54: data region reached 1 time 

        54: data copyin reached 8 times 

             device time(us): total=22,249 max=2,787 min=2,773 avg=2,781 

        84: data copyout reached 9 times 

             device time(us): total=20,082 max=2,510 min=11 avg=2,231 

    60: compute region reached 1000 times 

        63: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

             device time(us): total=2,314,738 max=2,407 min=2,311 avg=2,314 

            elapsed time(us): total=2,323,334 max=2,421 min=2,319 avg=2,323 

        63: reduction kernel launched 1000 times 

            grid: [1]  block: [256] 

             device time(us): total=24,904 max=78 min=24 avg=24 

            elapsed time(us): total=34,206 max=87 min=32 avg=34 

    71: compute region reached 1000 times 

        74: kernel launched 1000 times 

            grid: [16x512]  block: [32x8] 

             device time(us): total=1,674,504 max=1,727 min=1,657 avg=1,674 

            elapsed time(us): total=1,683,604 max=1,735 min=1,667 avg=1,683 
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Only 42.2 ms spent on data 

transfer 
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Array Shaping 

 Compiler sometimes cannot determine size of arrays 

– Sometimes we just need to use a portion of the arrays 

– we will see this example in the exercise 

 Under such case, we must specify explicitly using data clauses and 

array “shape” for this case 

 C 

#pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4]) 

 Fortran 

!$pragma acc data copyin(a(1:size)), copyout(b(s/4:3*s/4)) 

 The number between brackets are the beginning element followed by 

the number of elements to copy: 

– [start_element:number_of_elements_to_copy] 

– In C/C++, this means start at a[0] and continue for “size” elements. 

 Note: data clauses can be used on data, kernels or parallel 
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Update Construct 

 Fortran 

#pragma acc update [clause ...]  

 C 

!$acc update [clause ...] 

 Used to update existing data after it has changed in its corresponding 

copy (e.g. update device copy after host copy changes) 

 Move data from GPU to host, or host to GPU. Data movement can be 

conditional, and asynchronous. 
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Further Speedups 

 OpenACC gives us more detailed control over parallelization via gang, 

worker, and vector clauses 

– PE (processing element) as a SM (streaming multiprocessor) 

– gang == CUDA threadblock 

– worker == CUDA warp 

– vector == CUDA thread 

 By understanding more about OpenACC execution model and GPU 

hardware organization, we can get higher speedups on this code 

 By understanding bottlenecks in the code via profiling, we can 

reorganize the code for higher performance 
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Finding Parallelism in your code 

 (Nested) for loops are best for parallelization 

– Large loop counts needed to offset GPU/memcpy overhead 

 Iterations of loops must be independent of each other 

– To help compiler:  

• restrict keyword  

• independent clause 

 Compiler must be able to figure out sizes of data regions 

– Can use directives to explicitly control sizes 

 Pointer arithmetic should be avoided if possible 

– Use subscripted arrays, rather than pointer-indexed arrays. 

 Function calls within accelerated region must be inlineable. 
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Exercise 1 

 For the matrix multiplication code 

𝐴 ∙ 𝐵 = 𝐶 

     where: 

𝑎𝑖,𝑗 = 𝑖 + 𝑗 

𝑏𝑖,𝑗 = 𝑖 ∙ 𝑗 

𝑐𝑖,𝑗 = 𝑎𝑖,𝑘 ∙ 𝑏𝑘,𝑗
𝑘

 

1. For mm_acc_v0.c, speedup the matrix multiplication code segment 

using OpenACC directives 

2. For mm_acc_v1.c: 

• Change A, B and C to dynamic arrays, i.e., the size of the matrix can be 

specified at runtime; 

• Complete the function matmul_acc using the OpenACC directives; 

• Compare performance with serial and OpenMP results 
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Exercise 2 

 Complete the saxpy example using OpenACC directives.  

𝑦 = 𝑎 ∙ 𝑥 + 𝑦  
 Calculate the result of a constant times a vector plus a vector:    

– where a is a constant,  𝑥   and 𝑦  are one dimensional vectors. 

 

1. Add OpenACC directives for initialization of x and y arrays; 

2. Add OpenACC directives for the code for the vector addition; 

3. Compare the performance with OpenMP results; 
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Exercise 3 

 Calculate 𝜋 value using the equation: 

 
4.0

1.0 + 𝑥2

1

0

= 𝜋 

with the numerical integration: 

 
4.0

1.0 + 𝑥𝑖 ∙ 𝑥𝑖
∆𝑥

𝑛

𝑖=1

≈ 𝜋 

 

1. Complete the code using OpenACC directives  
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3 Ways to Accelerate Applications 

Introduction to GPU Programming 

Applications 

CUDA 

Accelerated 

Libraries 

“Drop-in” 

Acceleration 

Programming 

Languages 

OpenACC 

Directives 

Easily Accelerate 

Applications 

Maximum 

Flexibility 

Increasing programming effort 

10/22/2014 96 



int N = 1 << 20; 

 

 

 

 

 

 

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[] 

 

cublasSaxpy(h, N, &alpha, d_x, 1, d_y, 1); 

 

 

 

Drop-In Acceleration (Step 1) 

Add “cublas” prefix 

and use device 

variables 
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int N = 1 << 20; 

cublasHandle_t h; 

cublasCreate(&h); 

 

 

 

 

 

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[] 

cublasSaxpy(h, N, &alpha, d_x, 1, d_y, 1); 

 

 

 

 

 

cublasDestroy(h); 

cudaDeviceReset(); 

 

Drop-In Acceleration (Step 2) 

Initialize CUBLAS 

Shut down CUBLAS 
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int N = 1 << 20; 

cublasHandle_t h; 

cublasCreate(&h); 

cudaMalloc((void**)&d_x, N*sizeof(float)); 

cudaMalloc((void**)&d_y, N*sizeof(float)); 

 

 

 

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[] 

cublasSaxpy(h, N, &alpha, d_x, 1, d_y, 1); 

 

 

 

cudaFree(d_x); 

cudaFree(d_y); 

cublasDestroy(h); 

cudaDeviceReset(); 

Drop-In Acceleration (Step 3) 

Allocate device 

vectors 

Deallocate device 

vectors 
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int N = 1 << 20; 

cublasHandle_t h; 

cublasCreate(&h); 

cudaMalloc((void**)&d_x, N*sizeof(float)); 

cudaMalloc((void**)&d_y, N*sizeof(float)); 

cudaMemcpy(d_x, &x[0], N*sizeof(float), cudaMemcpyHostToDevice); 

cudaMemcpy(d_y, &y[0], N*sizeof(float), cudaMemcpyHostToDevice); 

 

// Perform SAXPY on 1M elements: d_y[]=a*d_x[]+d_y[] 

cublasSaxpy(h, N, &alpha, d_x, 1, d_y, 1); 

 

cudaMemcpy(&y[0], d_y, N*sizeof(float), cudaMemcpyDeviceToHost); 

 

cudaFree(d_x); 

cudaFree(d_y); 

cublasDestroy(h); 

cudaDeviceReset(); 

Drop-In Acceleration (Step 4) 

Transfer 

data to GPU 

Read data 

back GPU 
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Compile and Run 

 Need to link to the cublas library  

[fchen14@mike424 gpuex]$ nvcc cublas_vec_add.cu -l cublas 

[fchen14@mike424 gpuex]$ 

 Run example: 

[fchen14@mike424 gpuex]$ ./a.out 

cublas time took 0.307 ms 

x[0] = 7.200000 

y[0] = 5.300000 

z[0] = 12.500000 
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