
http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology Services

Introduction to OpenMP

Le Yan

Scientific computing consultant
User services group

High Performance Computing @ LSU

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesGoals

● Acquaint users with the concept of shared memory
parallelism

● Acquaint users with the basics of programming with
OpenMP

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesDistributed memory model

● Each process has its own
address space

● Data is local to each process
● Data sharing achieved via

explicit message passing
● Example

● MPI

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesShared memory model

● All threads can access the
global memory space

● Data sharing achieved via
writing to/reading from the
same memory location

● Example
● OpenMP
● Pthreads

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesClusters of SMP nodes

● The shared memory model
is most commonly
represented by Symmetric
Multi-Processing (SMP)
systems

● Identical processors
● Equal access time to memory

● Large shared memory
systems are rare, clusters
of SMP nodes are popular

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesShared vs Distributed

● Pros
● Memory scalable with

number of number of
processors

● Easier and cheaper to
build

● Cons
● Difficult load balancing
● Data sharing is slow

● Pros
● Global address space is user-

friendly
● Data sharing is fast

● Cons
● Lack of scalability
● Data conflict issues

Shared MemoryShared MemoryDistributed MemoryDistributed Memory

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesOpenMP

● OpenMP is an Application Program Interface (API) for
thread based parallelism; Supports Fortran, C and C++

● Uses a fork-join execution model
● OpenMP structures are built with program directives,

runtime libraries and environment variables
● OpenMP has been the industry standard for shared

memory programming over the last decade
● Permanent members of the OpenMP Architecture Review

Board: AMD, Cray, Fujutsu, HP, IBM, Intel, Microsoft, NEC,
PGI, SGI, Sun

● OpenMP 3.1 was released in September 2011

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesAdvantages of OpenMP

● Portability
● Standard among many shared memory platforms
● Implemented in major compiler suites

● Ease to use
● Serial programs can be parallelized by adding compiler

directives
● Allows for incremental parallelization – a serial program

evolves into a parallel program by parallelizing different
sections incrementally

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesFork-join Execution Model

● Parallelism is achieved by
generating multiple threads that
run in parallel

● A fork is when a single thread is
made into multiple, concurrently
executing threads

● A join is when the concurrently
executing threads synchronize back
into a single thread

● OpenMP programs essentially
consist of a series of forks and
joins.

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesBuilding Blocks of OpenMP

● Program directives
● Syntax

● C/C++: #pragma omp <directive> [clause]
● Fortran: !$omp <directive> [clause]

● Parallel regions
● Parallel loops
● Synchronization
● Data structure
● ...

● Runtime library routines
● Environment variables

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesHello World: C

#include <omp.h>
#include <stdio.h>
int main() {
#pragma omp parallel
{
printf("Hello from thread %d out of %d
threads\n", omp_get_thread_num(),
omp_get_num_threads());
}
return 0;
}

Output
Hello from thread 0 out of
4 threads
Hello from thread 1 out of
4 threads
Hello from thread 2 out of
4 threads
Hello from thread 3 out of
4 threads

OpenMP include fileOpenMP include fileOpenMP include fileOpenMP include file

Parallel region starts hereParallel region starts here

Parallel region ends hereParallel region ends here

Runtime library functionsRuntime library functions

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesHello World: Fortran

program hello
 implicit none
 integer omp_get_thread_num,omp_get_num_threads
 !$omp parallel
 print *,'Hello from thread',omp_get_thread_num(),'out
of',omp_get_num_threads(),'threads'
 !$omp end parallel
end program hello

Parallel region starts hereParallel region starts here

Parallel region ends hereParallel region ends here

Runtime library functionsRuntime library functions

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesCompilation and Execution

● IBM p575 clusters
● Use the thread-safe compilers (with “_r”)
● Use '-qsmp=omp' option

● Dell Linux clusters
● Use '-openmp' option (Intel compiler)

%xlc_r -qsmp=omp test.c && OMP_NUM_THREADS=4 ./a.out

%icc -openmp test.c && OMP_NUM_THREADS=4 ./a.out

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesExercise 1: Hello World

● Write a “hello world” program with OpenMP where
● If the thread id is odd, then print a message “Hello world from

thread x, I'm odd!”
● If the thread id is even, then print a message “Hello world from

thread x, I am even!”

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesSolution

#include <omp.h>
#include <stdio.h>
int main() {
 int id;
#pragma omp parallel private(id)
 {
 id = omp_get_thread_num();
 if (id%2==1)
 printf("Hello world from
thread %d, I am odd\n", id);
 else
 printf("Hello world from
thread %d, I am even\n", id);
 }
}

C/C++C/C++

program hello
 implicit none
 integer i,omp_get_thread_num
 !$omp parallel private(i)
 i = omp_get_thread_num()
 if (mod(i,2).eq.1) then
 print *,'Hello world from
thread',i,', I am odd!'
 else
 print *,'Hello world from
thread',i,', I am even!'
 endif
 !$omp end parallel
end program hello

FortranFortran

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesWork Sharing: Parallel Loops

● We need to share work among threads to achieve
parallelism

● Loops are the most likely targets when parallelizing a
serial program

● Syntax
● Fortran: !$omp parallel do
● C/C++: #pragma omp parallel for

● Other working sharing directives available
● Sections (discussed later)
● Tasks (new feature in OpenMP 3.0)

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesExample: Parallel Loops

#include <omp.h>
int main() {
 int i=0,N=100,a[100];
#pragma omp parallel for
 for (i=0;i<N;i++){
 a[i]=user_function(i);
 }
}

C/C++C/C++

program paralleldo
 implicit none
 integer i,n,a(100)
 i=0
 n=100
 !$omp parallel do
 do i=1,n
 a(i)=user_function(i)
 enddo
end program paralleldo

FortranFortran

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesLoad Balancing (1)

● OpenMP provides different methods to divide iterations
among threads, indicated by the schedule clause

● Syntax: schedule(<method>,[chunk size])
● Methods include

● Static: the default schedule; divide iterations into chunks
according to size, then distribute chunks to each thread in a
round-robin manner;

● Dynamic: each thread grabs a chunk of iterations, then
requests another chunk upon the completion of the current one,
until all iterations executed

● Guided: similar to dynamic; the only difference is that the
chunk size starts large and shrinks to size eventually

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesLoad Balancing (2)

4 threads, 100 iterations4 threads, 100 iterations

Schedule
Iterations mapped onto thread

0 1 2 3

Static 1-25 26-50 51-75 76-100

Static,20 1-20,81-100 21-40 41-60 61-80

Dynamic 1... 2... 3... 4...

Dynamic,10 1-10... 11-20... 21-30... 31-40...

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesLoad Balancing (3)

Schedule When to use

Static

Dynamic

Guided

Even and predictable workload per iteration;
scheduling may be done at compilation time,

least work at runtime;

Highly variable and unpredictable workload
per iteration; most work at runtime

Special case of dynamic scheduling;
compromise between load balancing and

scheduling overhead at runtime

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesWorking Sharing: Sections

#pragma omp parallel
{
 #pragma omp sections
 {
 #pragma omp section
 some_calculation();
 #pragma omp section
 more_calculation();
 #pragma omp section
 yet_more_calculation();
 }
}

C/C++C/C++

!$omp parallel
 !$omp sections
 !$omp section

call some_calculation
 !$omp section

call more_calculation
 !$omp section

call yet_more_calculation
 !$omp end sections
!$omp end parallel

FortranFortran

● Gives a different block to each thread

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesScope of Variables

● Shared(list)
● Specifies the variables that are shared among all the threads

● Private(list)
● Creates a local copy of the specified variables for each thread
● the value is uninitialized!

● Default(shared|private|none)
● Defines the default scope of variables
● C/C++ API does not have default(private)

● Most variables are shared by default
● A few exceptions: iteration variables; stack variables in

subroutines; automatic variables within a statement block

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesPrivate Variables

● Not initialized at the
beginning of parallel
region

● After the parallel
region

● Not defined in OpenMP
2.x

● 0 in OpenMP 3.x

void wrong()
{
 int tmp=0;
#pragma omp for private(tmp)
 for (int j=0; j<100; ++j)
 tmp += j
 printf(“%d\n”,tmp)
}

OpenMP 2.5: tmp undefined
OpenMP 3.0: tmp is 0
OpenMP 2.5: tmp undefined
OpenMP 3.0: tmp is 0

tmp not initialized heretmp not initialized here

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesExercise 2: Calculate pi

by Numerical Integration
● We know that:

● So numerically we can
approximate pi as the sum of the
area of a number of rectangles

Source: Meadows et al, A “hands-on” introduction to OpenMP, SC09

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesExercise 2: serial version

double x,deltax,pi,sum=0.0
int i,nstep=<a large number>

deltax=1./(double)nstep

for (i=0; i<nstep; i++)
{
 x=(i+0.5)*deltax
 sum=sum+4./(1.+x*x)
}

pi=deltax*sum

C/C++C/C++

Real*8 :: x,deltax,pi,sum
integer :: i,nstep

nstep=<a large number>
sum=0

deltax=1./float(nstep)

do i=1,nstep
 x=(i+0.5)*deltax
 sum=sum+4./(1.+x*x)
enddo

pi=deltax*sum

FortranFortran

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesExercise 2: OpenMP version

● Create a parallel version of the program with OpenMP

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesSpecial Cases of Private

● Firstprivate
● Initialize each private

copy with the
corresponding value
from the master thread

● Lastprivate
● Allows the value of a

private variable to be
passed to the shared
variable outside the
parallel region

void correct()
{
 int tmp=0;
#pragma omp for firstprivate(tmp) \
 lastprivate(tmp)
 for (int j=0; j<100; ++j)
 tmp += j
 printf(“%d\n”,tmp)

The value of tmp is the value
when j=99
The value of tmp is the value
when j=99

tmp initialized as 0tmp initialized as 0

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesReduction

● The reduction clause allows accumulative operations
on the value of variables

● Syntax: reduction(operator:variable list)
● A private copy of each variable appears in reduction

is created as if the private clause is specified
● Operators

● Arithmetic
● Bitwise
● Logical

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesExample: Reduction

#include <omp.h>
int main() {
 int i,N=100,sum,a[100],b[100];
 for (i=0;i<N;i++){
 a[i]=i;
 b[i]=1;
 }
 sum=0;
#pragma omp parallel for
reduction(+:sum)
 for (i=0;i<N;i++){
 sum=sum+a[i]*b[i];
 }
}

C/C++C/C++ FortranFortran

program reduction
 implicit none
 integer i,n,sum,a(100),b(100)
 n=100
 do i=1,n
 a(i)=i
 enddo
 b=1
 sum=0
 !$omp parallel do reduction(+:sum)
 do i=1,n
 sum=sum+a(i)*b(i)
 enddo
end

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesExercise 3: pi calculation with

reduction
● Redo exercise 2 with reduction

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesPitfalls (1): False Sharing

● Array elements that are in the same cache line can lead
to false sharing

● The system handles cache coherence on a cache line basis, not
on a byte or word basis

● Each update of a single element could invalidate the entire
cache line

!$omp parallel
myid=omp_get_thread_num()
nthreads=omp_get_num_threads()
do i=myid+1,n,nthreads

a(i)=some_function(i)
enddo

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesPitfalls (2): Race Condition

● Multiple threads try to write to
the same memory location at the
same time

● Indeterministic results
● Inappropriate scope of variable

can cause indeterministic results
too

● When having indeterministic
results, set the number of threads
to 1 to check

● If problem persists: scope problem
● If problem is solved: race condition

●

!$omp parallel do
do i=1,n

if (a(i).gt.max) then
max=a(i)

endif
enddo

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesSynchronization: Barrier

● “Stop sign” where every thread waits until all threads
arrive

● Purpose: protect access to shared data
● Syntax

● Fortran: !$omp barrier
● C/C++: #pragma omp barrier

● A barrier is implied at the end of every parallel region
● Use the nowait clause to turn if off

● Synchronizations are costly so their usage should be
minimized

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesSynchronization: Critical and

Atomic
● Critical

● Only one thread at
a time can enter a
critical region

● Atomic
● Only one thread at

a time can update
a memory location

double x;
#pragma omp parallel for
for (i=0;i<N;i++)
{
 a = some_calculation(i)
#pragma omp critical
 some_function(a,x);
}

double a;
#pragma omp parallel
{ double b;
 b = some_calculation();
#pragma omp atomic

a += b;
}

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesRuntime Library Functions

● Modify/query the number of threads
● omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()

● Query the number of processes
● omp_num_procs()

● Query whether or not in an active parallel region
● omp_in_parallel()

● Control the behavior of dynamic threads
● omp_set_dynamic(), omp_get_dynamic()

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesEnvironment Variables

● OMP_NUM_THREADS: set default number of threads
to use

● OMP_SCHEDULE: control how iterations are
scheduled for parallel loops

http://www.hpc.lsu.edu/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesReferences

● https://docs.loni.org/wiki/Using_OpenMP
● http://en.wikipedia.org/wiki/OpenMP
● http://www.nersc.gov/nusers/help/tutorials/openmp/
● http://www.llnl.gov/computing/tutorials/openMP/

http://www.hpc.lsu.edu/
https://docs.loni.org/wiki/Using_OpenMP
http://en.wikipedia.org/wiki/OpenMP
http://www.nersc.gov/nusers/help/tutorials/openmp/
http://www.llnl.gov/computing/tutorials/openMP/

http://www.loni.org

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information
Technology ServicesNext week's training

● What: Shell scripting tutorial
● Where: Frey 307
● When: Oct 26, Wednesday, 10am-12pm

http://www.hpc.lsu.edu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

