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Information 
Technology ServicesGoals

● Acquaint users with the concept of shared memory 
parallelism

● Acquaint users with the basics of programming with 
OpenMP
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Information 
Technology ServicesDistributed memory model

● Each process has its own 
address space

● Data is local to each process
● Data sharing achieved via 

explicit message passing
● Example

● MPI

http://www.hpc.lsu.edu/
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Information 
Technology ServicesShared memory model

● All threads can access the 
global memory space

● Data sharing achieved via 
writing to/reading from the 
same memory location

● Example
● OpenMP
● Pthreads
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Information 
Technology ServicesClusters of SMP nodes

● The shared memory model 
is most commonly 
represented by Symmetric 
Multi-Processing (SMP) 
systems

● Identical processors
● Equal access time to memory

● Large shared memory 
systems are rare, clusters 
of SMP nodes are popular

http://www.hpc.lsu.edu/
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Information 
Technology ServicesShared vs Distributed

● Pros
● Memory scalable with 

number of number of 
processors

● Easier and cheaper to 
build 

● Cons
● Difficult load balancing
● Data sharing is slow

● Pros
● Global address space is user-

friendly
● Data sharing is fast

● Cons
● Lack of scalability
● Data conflict issues

Shared MemoryShared MemoryDistributed MemoryDistributed Memory
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Information 
Technology ServicesOpenMP

● OpenMP is an Application Program Interface (API) for 
thread based parallelism; Supports Fortran, C and C++

● Uses a fork-join execution model
● OpenMP structures are built with program directives, 

runtime libraries and environment variables
● OpenMP has been the industry standard for shared 

memory programming over the last decade
● Permanent members of the OpenMP Architecture Review 

Board: AMD, Cray, Fujutsu, HP, IBM, Intel, Microsoft, NEC, 
PGI, SGI, Sun

● OpenMP 3.1 was released in September 2011

http://www.hpc.lsu.edu/
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Information 
Technology ServicesAdvantages of OpenMP

● Portability
● Standard among many shared memory platforms
● Implemented in major compiler suites

● Ease to use 
● Serial programs can be parallelized by adding compiler 

directives
● Allows for incremental parallelization – a serial program 

evolves into a parallel program by parallelizing different 
sections incrementally

http://www.hpc.lsu.edu/
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Information 
Technology ServicesFork-join Execution Model

● Parallelism is achieved by 
generating multiple threads that 
run in parallel

● A fork is when a single thread is 
made into multiple, concurrently 
executing threads

● A join is when the concurrently 
executing threads synchronize back 
into a single thread

● OpenMP programs essentially 
consist of a series of forks and 
joins.
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Information 
Technology ServicesBuilding Blocks of OpenMP

● Program directives
● Syntax

● C/C++: #pragma omp <directive> [clause]
● Fortran: !$omp <directive> [clause]

● Parallel regions
● Parallel loops
● Synchronization
● Data structure
● ...

● Runtime library routines
● Environment variables

http://www.hpc.lsu.edu/
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Information 
Technology ServicesHello World: C

#include <omp.h>
#include <stdio.h>
int main() {
#pragma omp parallel
{
printf("Hello from thread %d out of %d 
threads\n", omp_get_thread_num(), 
omp_get_num_threads());
}
return 0;
}

Output
Hello from thread 0 out of 
4 threads
Hello from thread 1 out of 
4 threads
Hello from thread 2 out of 
4 threads
Hello from thread 3 out of 
4 threads

OpenMP include fileOpenMP include fileOpenMP include fileOpenMP include file

Parallel region starts hereParallel region starts here

Parallel region ends hereParallel region ends here

Runtime library functionsRuntime library functions
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Information 
Technology ServicesHello World: Fortran

program hello
  implicit none
  integer omp_get_thread_num,omp_get_num_threads
  !$omp parallel
  print *,'Hello from thread',omp_get_thread_num(),'out 
of',omp_get_num_threads(),'threads'
  !$omp end parallel
end program hello

Parallel region starts hereParallel region starts here

Parallel region ends hereParallel region ends here

Runtime library functionsRuntime library functions
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Information 
Technology ServicesCompilation and Execution

● IBM p575 clusters
● Use the thread-safe compilers (with “_r”)
● Use '-qsmp=omp' option

● Dell Linux clusters
● Use '-openmp' option (Intel compiler)

%xlc_r -qsmp=omp test.c && OMP_NUM_THREADS=4 ./a.out

%icc -openmp test.c && OMP_NUM_THREADS=4 ./a.out

http://www.hpc.lsu.edu/
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Information 
Technology ServicesExercise 1: Hello World

● Write a “hello world” program with OpenMP where
● If the thread id is odd, then print a message “Hello world from 

thread x, I'm odd!”
● If the thread id is even, then print a message “Hello world from 

thread x, I am even!”

http://www.hpc.lsu.edu/
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Information 
Technology ServicesSolution

#include <omp.h>
#include <stdio.h>
int main() {
  int id;
#pragma omp parallel private(id)
  {
    id = omp_get_thread_num();
    if (id%2==1)
      printf("Hello world from 
thread %d, I am odd\n", id);
    else
      printf("Hello world from 
thread %d, I am even\n", id);
  }
}

C/C++C/C++

program hello
  implicit none
  integer i,omp_get_thread_num
  !$omp parallel private(i)
  i = omp_get_thread_num()
  if (mod(i,2).eq.1) then
     print *,'Hello world from 
thread',i,', I am odd!'
  else
     print *,'Hello world from 
thread',i,', I am even!'
  endif
  !$omp end parallel
end program hello

FortranFortran

http://www.hpc.lsu.edu/
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Information 
Technology ServicesWork Sharing: Parallel Loops

● We need to share work among threads to achieve 
parallelism

● Loops are the most likely targets when parallelizing a 
serial program

● Syntax
● Fortran: !$omp parallel do
● C/C++: #pragma omp parallel for

● Other working sharing directives available
● Sections (discussed later)
● Tasks (new feature in OpenMP 3.0)

http://www.hpc.lsu.edu/
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Information 
Technology ServicesExample: Parallel Loops

#include <omp.h>
int main() { 
  int i=0,N=100,a[100];
#pragma omp parallel for
  for (i=0;i<N;i++){
    a[i]=user_function(i);
  }
}

C/C++C/C++

program paralleldo
  implicit none
  integer i,n,a(100)
  i=0
  n=100
  !$omp parallel do
  do i=1,n
     a(i)=user_function(i)
  enddo
end program paralleldo

FortranFortran
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Information 
Technology ServicesLoad Balancing (1)

● OpenMP provides different methods to divide iterations 
among threads, indicated by the schedule clause

● Syntax: schedule(<method>,[chunk size])
● Methods include

● Static: the default schedule; divide iterations into chunks 
according to size, then distribute chunks to each thread in a 
round-robin manner;

● Dynamic: each thread grabs a chunk of iterations, then 
requests another chunk upon the completion of the current one, 
until all iterations executed

● Guided: similar to dynamic; the only difference is that the 
chunk size starts large and shrinks to size eventually

http://www.hpc.lsu.edu/
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Information 
Technology ServicesLoad Balancing (2)

4 threads, 100 iterations4 threads, 100 iterations

Schedule
Iterations mapped onto thread

0 1 2 3

Static 1-25 26-50 51-75 76-100

Static,20 1-20,81-100 21-40 41-60 61-80

Dynamic 1... 2... 3... 4...

Dynamic,10 1-10... 11-20... 21-30... 31-40...

http://www.hpc.lsu.edu/
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Information 
Technology ServicesLoad Balancing (3)

Schedule When to use

Static

Dynamic

Guided

Even and predictable workload per iteration; 
scheduling may be done at compilation time, 

least work at runtime;

Highly variable and unpredictable workload 
per iteration; most work at runtime

Special case of dynamic scheduling; 
compromise between load balancing and 

scheduling overhead at runtime

http://www.hpc.lsu.edu/
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Information 
Technology ServicesWorking Sharing: Sections

#pragma omp parallel
{
  #pragma omp sections
  {
  #pragma omp section
    some_calculation();
  #pragma omp section
    more_calculation();
  #pragma omp section
    yet_more_calculation();
  }
}

C/C++C/C++

!$omp parallel
  !$omp sections
  !$omp section

call some_calculation
  !$omp section

call more_calculation
  !$omp section

call yet_more_calculation
  !$omp end sections  
!$omp end parallel

FortranFortran

● Gives a different block to each thread

http://www.hpc.lsu.edu/
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Information 
Technology ServicesScope of Variables

● Shared(list)
● Specifies the variables that are shared among all the threads

● Private(list)
● Creates a local copy of the specified variables for each thread 
● the value is uninitialized!

● Default(shared|private|none)
● Defines the default scope of variables
● C/C++ API does not have default(private)

● Most variables are shared by default
● A few exceptions: iteration variables; stack variables in 

subroutines; automatic variables within a statement block

http://www.hpc.lsu.edu/
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Information 
Technology ServicesPrivate Variables

● Not initialized at the 
beginning of parallel 
region

● After the parallel 
region

● Not defined in OpenMP 
2.x

● 0 in OpenMP 3.x

void wrong()
{
  int tmp=0;
#pragma omp for private(tmp)
  for (int j=0; j<100; ++j)
    tmp += j
  printf(“%d\n”,tmp)
}

OpenMP 2.5: tmp undefined
OpenMP 3.0: tmp is 0
OpenMP 2.5: tmp undefined
OpenMP 3.0: tmp is 0

tmp not initialized heretmp not initialized here

http://www.hpc.lsu.edu/
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Information 
Technology ServicesExercise 2: Calculate pi

by Numerical Integration
● We know that:

● So numerically we can 
approximate pi as the sum of the 
area of a number of rectangles

Source: Meadows et al, A “hands-on” introduction to OpenMP, SC09
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Information 
Technology ServicesExercise 2: serial version

double x,deltax,pi,sum=0.0
int i,nstep=<a large number>

deltax=1./(double)nstep

for (i=0; i<nstep; i++)
{
  x=(i+0.5)*deltax
  sum=sum+4./(1.+x*x)
}

pi=deltax*sum

C/C++C/C++

Real*8 :: x,deltax,pi,sum
integer :: i,nstep

nstep=<a large number>
sum=0

deltax=1./float(nstep)

do i=1,nstep
  x=(i+0.5)*deltax
  sum=sum+4./(1.+x*x)
enddo

pi=deltax*sum

FortranFortran

http://www.hpc.lsu.edu/


http://www.loni.org

 

High Performance Computing Training Series – Louisiana State University
October 19, 2011

High Performance Computing @ Louisiana State University - High Performance Computing @ Louisiana State University - http://www.hpc.lsu.eduhttp://www.hpc.lsu.edu//

Information 
Technology ServicesExercise 2: OpenMP version

● Create a parallel version of the program with OpenMP

http://www.hpc.lsu.edu/
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Information 
Technology ServicesSpecial Cases of Private

● Firstprivate
● Initialize each private 

copy with the 
corresponding value 
from the master thread

● Lastprivate
● Allows the value of a 

private variable to be 
passed to the shared 
variable outside the 
parallel region

void correct()
{
  int tmp=0;
#pragma omp for firstprivate(tmp) \
  lastprivate(tmp)
  for (int j=0; j<100; ++j)
    tmp += j
  printf(“%d\n”,tmp)

The value of tmp is the value 
when j=99
The value of tmp is the value 
when j=99

tmp initialized as 0tmp initialized as 0

http://www.hpc.lsu.edu/
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Information 
Technology ServicesReduction

● The reduction clause allows accumulative operations 
on the value of variables

● Syntax: reduction(operator:variable list)
● A private copy of each variable appears in reduction 

is created as if the private clause is specified
● Operators

● Arithmetic
● Bitwise 
● Logical

http://www.hpc.lsu.edu/
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Information 
Technology ServicesExample: Reduction

#include <omp.h>
int main() { 
  int i,N=100,sum,a[100],b[100];
  for (i=0;i<N;i++){
    a[i]=i;
    b[i]=1;
  }
  sum=0;
#pragma omp parallel for 
reduction(+:sum)
  for (i=0;i<N;i++){
    sum=sum+a[i]*b[i];
  }
}

C/C++C/C++ FortranFortran

program reduction
  implicit none
  integer i,n,sum,a(100),b(100)
  n=100
  do i=1,n
     a(i)=i
  enddo
  b=1
  sum=0
  !$omp parallel do reduction(+:sum)
  do i=1,n
     sum=sum+a(i)*b(i)
  enddo
end

http://www.hpc.lsu.edu/
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Information 
Technology ServicesExercise 3: pi calculation with 

reduction
● Redo exercise 2 with reduction

http://www.hpc.lsu.edu/
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Information 
Technology ServicesPitfalls (1): False Sharing

● Array elements that are in the same cache line can lead 
to false sharing

● The system handles cache coherence on a cache line basis, not 
on a byte or word basis

● Each update of a single element could invalidate the entire 
cache line

!$omp parallel
myid=omp_get_thread_num()
nthreads=omp_get_num_threads()
do i=myid+1,n,nthreads

a(i)=some_function(i)
enddo

http://www.hpc.lsu.edu/
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Information 
Technology ServicesPitfalls (2): Race Condition

● Multiple threads try to write to 
the same memory location at the 
same time

● Indeterministic results
● Inappropriate scope of variable 

can cause indeterministic results 
too

● When having indeterministic 
results, set the number of threads 
to 1 to check

● If problem persists: scope problem
● If problem is solved: race condition

●

!$omp parallel do
do i=1,n

if (a(i).gt.max) then
max=a(i)

endif
enddo

http://www.hpc.lsu.edu/
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Information 
Technology ServicesSynchronization: Barrier

● “Stop sign” where every thread waits until all threads 
arrive

● Purpose: protect access to shared data
● Syntax

● Fortran: !$omp barrier
● C/C++: #pragma omp barrier

● A barrier is implied at the end of every parallel region
● Use the nowait clause to turn if off

● Synchronizations are costly so their usage should be 
minimized

http://www.hpc.lsu.edu/
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Information 
Technology ServicesSynchronization: Critical and 

Atomic
● Critical

● Only one thread at 
a time can enter a 
critical region

● Atomic
● Only one thread at 

a time can update 
a memory location

double x;
#pragma omp parallel for
for (i=0;i<N;i++)
{ 
  a = some_calculation(i)
#pragma omp critical
  some_function(a,x);
}

double a;
#pragma omp parallel
{ double b;
  b = some_calculation(); 
#pragma omp atomic

a += b;
}

http://www.hpc.lsu.edu/
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Information 
Technology ServicesRuntime Library Functions

● Modify/query the number of threads
● omp_set_num_threads(), omp_get_num_threads(), 
omp_get_thread_num(), omp_get_max_threads()

● Query the number of processes
● omp_num_procs()

● Query whether or not in an active parallel region
● omp_in_parallel() 

● Control the behavior of dynamic threads
● omp_set_dynamic(), omp_get_dynamic() 

http://www.hpc.lsu.edu/
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Information 
Technology ServicesEnvironment Variables

● OMP_NUM_THREADS: set default number of threads 
to use

● OMP_SCHEDULE: control how iterations are 
scheduled for parallel loops

http://www.hpc.lsu.edu/
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Information 
Technology ServicesReferences

● https://docs.loni.org/wiki/Using_OpenMP
● http://en.wikipedia.org/wiki/OpenMP
● http://www.nersc.gov/nusers/help/tutorials/openmp/
● http://www.llnl.gov/computing/tutorials/openMP/
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Information 
Technology ServicesNext week's training

● What: Shell scripting tutorial
● Where: Frey 307
● When: Oct 26, Wednesday, 10am-12pm

http://www.hpc.lsu.edu/
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