
Parallel Computing Concepts

Le Yan
Scientific Computing Consultant

LONI/LSU HPC

6/22/2011 HPC training series Summer 2011 1

Outline

• Introduction
• Parallel programming models
• Parallel programming hurdles
• Heterogeneous computing

6/22/2011 HPC training series Summer 2011 2

Why parallel computing

• Parallel computing might be the only way to
achieve certain goals
– Problem size (memory, disk etc.)
– Time needed to solve problems

• Parallel computing allows us to take advantage of
ever-growing parallelism at all levels
– Multi-core, many-core, cluster, grid, cloud…

6/22/2011 HPC training series Summer 2011 3

Latest Top 500 List

• Released on Monday (6/20/11)
• Japan claims the top spot, again

– Built by Fujitsu
– 8 PetaFLOPS (1015) sustained
– More than half million cores
– Power close to 10 MW

• Only one US machine in the top 5 for
the first time in 5 year (in history?)

6/22/2011 HPC training series Summer 2011 4

Supercomputing on a cell phone?

• Quad-core processors are
coming to your phone
– Nvidia, TI, QualComm…
– Processing power in the

neighborhood of 10
GigaFLOPS

– Would make the top 500
list 15 years ago

6/22/2011 HPC training series Summer 2011 5

What is parallel computing

• Multiple processing units work together to solve
a task
– The processing units can be tightly or loosely coupled
– Not every part of the task is parallelizable
– In most cases, communication among processing units

is necessary for the purpose of coordination
• Embarrassingly Parallel

– Subtasks are independent, therefore communication
is unnecessary

6/22/2011 HPC training series Summer 2011 6

An example of parallel computing
(not really)

• A group of people move a pile of boxes from location A
to location B

• The benefit of going parallel: for a fixed number of
boxes, more workers mean less time

6/22/2011 HPC training series Summer 2011 7

Worker Location A Location B

1

2

3

4

Evaluating parallel programs (1)

• Speedup
– Probably the most import metric (that matters)
– Let Nproc be the number of parallel processes

– Speedup (Nproc) = ்௜௠௘	௨௦௘ௗ	௕௬	௕௘௦௧	௦௘௥௜௔௟	௣௥௢௚௥௔௠	்௜௠௘	௨௦௘ௗ	௕௬	௣௔௥௔௟௟௘௟	௣௥௢௚௥௔௠
– Between 0 and Nproc (for most cases)

• Efficiency
– Efficiency(Nproc)=Speedup/Nproc

– Between 0 and 1

6/22/2011 HPC training series Summer 2011 8

Evaluating parallel programs (2)

• For our box moving example
– Assuming we have 20 boxes total and it takes 1 minute for

1 worker to move 1 box, ideally we will see:

6/22/2011 HPC training series Summer 2011 9

Number of
workers

Time used
(minutes) Speedup Efficiency

1 20 1 1

2 10 2 1

5 4 5 1

10 2 10 1

20 1 20 1

40 0.5? 1? ? ?

… ? ? ?

Speedup as a function of Nproc

• Ideally
– The speedup will be linear

• Even better
– (in very rare cases) we can

have superlinear speedup
• But in reality

– Efficiency decreases with
increasing number of
processes

6/22/2011 HPC training series Summer 2011 10

Ideal

Reality

Sp
ee

du
p

Nproc

Amdahl’s law (1)
• Let f be the fraction of the serial program that cannot be

parallelized
• Assume that the rest of the serial program can be perfectly

parallelized (linear speedup)
• Then

– ܶ݅݉݁௣௔௥௔௟௟௘௟ ൌ ܶ݅݉݁௦௘௥௜௔௟ ∙ ሺ݂ ൅ ଵି௙ே೛ೝ೚೎ሻ
• Or

– ݌ݑ݀݁݁݌ܵ ൌ ଵ௙ା భష೑ಿ೛ೝ೚೎ ൑ ଵ௙

6/22/2011 HPC training series Summer 2011 11

Maximal Possible Speedup

6/22/2011 HPC training series Summer 2011 12

Source: Stout & Jablonowski, Parallel computing 101, SC10

Amdahl’s law (2)

• What Amdahl’s law says
– It puts an upper bound on speedup (for a given f), no

matter how many processes are thrown at it
• Beyond Amdahl’s law

– Parallelization adds overhead (communication)
– f could be a variable too

• It may drop when problem size and Nproc increase
– Parallel algorithm is different from the serial one

6/22/2011 HPC training series Summer 2011 13

Writing a parallel program step by step

• Step 1. Start from serial programs as a baseline
– Something to check correctness and efficiency against

• Step 2. Analyze and profile the serial program
– Identify the “hotspot”
– Identify the parts that can be parallelized

• Step 3. Parallelize code incrementally
• Step 4. Check correctness of the parallel code
• Step 5. Iterate step 3 and 4

6/22/2011 HPC training series Summer 2011 14

An REAL example of parallel
computing

• Dense matrix multiplication MmdxNdn=Pmn

• Formula

• For our 4x4 example

6/22/2011 HPC training series Summer 2011 15

2,2
M

N

P

௜,௝݌ ൌ ෍݉௜,௞ ∙ ݊௞,௝ௗ
௞ୀଵ

p2,2=m2,1*n1,2+
m2,2*n2,2+
m2,3*n3,2+
m2,4*n4,2

Parallelizing matrix multiplication

• Divide work among processors
• In our 4x4 example

– Assuming 4 processors
– Each responsible for a 2x2 tile

(submatrix)
– Can we do 4x1 or 1x4?

6/22/2011 HPC training series Summer 2011 16

1 2

3 4

Pseudo code

6/22/2011 HPC training series Summer 2011 17

Serial Parallel

for i = 1 to 4
for j = 1 to 4

for k = 1 to 4
P(i,j) += M(I,k)*N(I,k);

Each process figures out its own
starting and ending indices;
for i = istart to iend

for j = jstart to jend
for k = 1 to 4

P(i,j) += M(I,k)*N(I,k);

Outline

• Introduction
• Parallel programming models
• Parallel programming hurdles
• Heterogeneous computing

6/22/2011 HPC training series Summer 2011 18

Single Program Multiple Data (SPMD)

• All program instances execute same program
• Data parallel - Each instance works on different

part of the data
• The majority of parallel programs are of this type
• Can also have

– SPSD: serial program
– MPSD: rare
– MPMD

6/22/2011 HPC training series Summer 2011 19

Memory system models

• Different ways of sharing data among
processors
– Distributed Memory
– Shared Memory
– Other memory models

• Hybrid model
• PGAS (Partitioned Global Address Space)

6/22/2011 HPC training series Summer 2011 20

Distributed memory model

• Each process has its own
address space
– Data is local to each process

• Data sharing achieved via
explicit message passing
(through network)

• Example: MPI (Message Passing
Interface)

4/13/2011 LSU HPC training series 21

C

M

Node interconnect

C

M

C

M

C

M
data

Shared memory model

• All threads can access the
global address space

• Data sharing achieved via
writing to/reading from the
same memory location

• Example: OpenMP

4/13/2011 LSU HPC training series 22

C C C C

M
data

Distributed vs. shared memory

Distributed
• Pro

– Memory amount is scalable
– Cheaper to build

• Con
– Slow data sharing

• Hard to balance the load

• Pro and con?
– Explicit data transfer

Shared
• Pro

– Easy to use
– Fast data sharing

• Con
– Memory amount is not

scalable
– Expensive to build

• Pro and con?
– Implicit data transfer

6/22/2011 HPC training series Summer 2011 23

Hybrid model

• Clusters of SMP (symmetric
multi-processing) nodes
dominate nowadays

• Hybrid model matches the
physical structure of SMP
clusters
– OpenMP within nodes
– MPI between nodes

4/13/2011 LSU HPC training series 24

C C C C
M

Node interconnect

C C C C
M

CCCC
M

CCCC
M

Potential benefits of hybrid model

• Message-passing within nodes (loopback) is eliminated
• Number of MPI processes is reduced, which means

– Message size increases
– Message number decreases

• Memory usage could be reduced
– Eliminate replicated data

• Those are good, but in reality, (most) pure MPI
programs run as fast (sometimes faster than) as hybrid
ones…

4/13/2011 LSU HPC training series 25

Reasons why NOT using hybrid model

• Some (most?) MPI libraries already use internally
different protocols
– Shared memory data exchange within SMP nodes
– Network communication between SMP nodes

• Overhead associated with thread management
– Thread fork/join
– Additional synchronization with hybrid programs

4/13/2011 LSU HPC training series 26

Partitioned Global Address Space
(PGAS)

• PGAS languages present programmers a global address
space, regardless the type of the underlying system
– Simulates hardware with software
– Logically shared, physically distributed

• Examples
– Unified Parallel C (UPC), CoArray Fortran (CAF), Fortress,

Chapel, X10…
• Limitation

– Lack of standard

6/22/2011 HPC training series Summer 2011 27

Outline

• Introduction
• Parallel programming models
• Parallel programming hurdles
• Heterogeneous computing

6/22/2011 HPC training series Summer 2011 28

Parallel Programming Hurdles

• Hidden serializations
• Overhead caused by parallelization
• Load balancing
• Synchronization issues

6/22/2011 HPC training series Summer 2011 29

Hidden Serialization (1)

• Back to our box moving example
• What if there is a very long corridor that allows only

one work to pass at a time between Location A and B?

6/22/2011 HPC training series Summer 2011 30

Worker Location A Location B

1

2

3

4

Hidden Serialization (2)

• It is not the part in serial programs that is hard
or impossible to parallelize
– Intrinsic serialization (the f in Amdahl’s law)

• Examples of hidden serialization:
– System resources contention, e.g. I/O hotspot
– Internal serialization, e.g. library functions that

cannot be executed in parallel for correctness

6/22/2011 HPC training series Summer 2011 31

Communication overhead

• Sharing data across network is slow
– Mainly a problem for distributed memory systems

• There are two parts of it
– Latency: startup cost for each transfer
– Bandwidth: extra cost for each byte

• Reduce communication overhead
– Avoid unnecessary message passing
– Reduce number of messages by combining them

6/22/2011 HPC training series Summer 2011 32

Memory Hierarchy

• Avoid unnecessary data transfer
• Load data in blocks (spatial locality)
• Reuse loaded data (temporal locality)
• All these apply to serial programs as well

6/22/2011 HPC training series Summer 2011 33

CPU
register Cache Memory Disk Other

computers

small size big

fast speed slow

Load balancing (1)
• Back to our box moving example, again
• Anyone sees a problem?

6/22/2011 HPC training series Summer 2011 34

Worker Location A Location B

1

2

3

4

Load balancing (2)

• Work load not evenly distributed
– Some are working while others are idle
– The slowest worker dominates in extreme cases

• Solutions
– Explore various decomposition techniques
– Dynamic load balancing

• Hard for distributed memory
• Adds overhead

6/22/2011 HPC training series Summer 2011 35

Synchronization issues - deadlock

6/22/2011 HPC training series Summer 2011 36

Source: Stout & Jablonowski, Parallel computing 101, SC10

Deadlock

• Often caused by “blocking” communication
operations
– “Blocking” means “I will not proceed until the current

operation is over”
• Solution

– Use “non-blocking” operations
– Caution: tradeoff between data safety and

performance

6/22/2011 HPC training series Summer 2011 37

Outline

• Introduction
• Parallel programming models
• Parallel programming hurdles
• Heterogeneous computing

6/22/2011 HPC training series Summer 2011 38

Heterogeneous computing

• A heterogeneous system solves tasks using
different types of processing units
– CPUs
– GPUs
– DSPs
– Co-processors
– …

• As opposed to homogeneous systems, e.g. SMP
nodes with CPUs only

6/22/2011 HPC training series Summer 2011 39

The free (performance) lunch is over

6/22/2011 HPC training series Summer 2011 40

Source: Herb Sutter, The Free Lunch is Over, http://www.gotw.ca/publications/concurrency-
ddj.htm

Power efficiency is the key

• We have been able to make computer run faster by
adding more transistors
– Moore’s law

• Unfortunately, not any more
– Power consumption/heat generation limits packing density
– Power ~ speed2

• Solution
– Reduce each core’s speed and use more cores – increased

parallelism

6/22/2011 HPC training series Summer 2011 41

Graphic Processing Units (GPUs)
• Massively parallel many-core architecture

– Thousands of cores capable of running millions of threads
– Data parallelism

• GPUs are traditionally dedicated for graphic rendering, but
become more versatile thanks to
– Hardware: faster data transfer and more on-board memory
– Software: libraries that provide more general purposed

functions
• GPU vs CPU

– GPUs are very effectively for certain type of tasks, but we still
need the general purpose CPUs

6/22/2011 HPC training series Summer 2011 42

GPUs and HPC

• Latest trend in HPC
– SMP nodes with GPUs installed
– 3 of the top 5 machines in the top 500 list are accelerated

by GPUs
• Why people love them

– Tremendous performance gain – single to double digit
speedup compared to cpu-only versions

• Why people hate them (well, just a little bit)
– Still (relatively) hard to program, even harder to optimize

6/22/2011 HPC training series Summer 2011 43

GPU programming strategies

• GPUs need to copy data from main memory to its on-
board memory and copy them back
– Data transfer over PCIe is the bottleneck, so one needs to

• Avoid data transfer and reuse data
• Overlap data transfer and computation

• Massively parallel, so it is a crime to do anything anti-
parallel
– Need to launch enough threads in parallel to keep the

device busy
– Threads need to access contiguous data
– Thread divergence needs to be eliminated

6/22/2011 HPC training series Summer 2011 44

Fused processing unit
• CPU and GPU cores on

the same die
• GPU cores can access

main memory
– Hence no PCIe

bottleneck
• Much less GPU cores

than a discrete graphic
card can carry
– Less processing power

6/22/2011 HPC training series Summer 2011 45

AMD “Llano” Accelerated Processing Unit (APU)

