

Perl Tutorial

Dr. Charles Cavanaugh

3-14-2012

https://tigerbytes2.lsu.edu/users/ccav/perltut/

Overview

● Basic syntax and semantics
● Searching and replacing text
● Working with CSV files
● Accessing databases

For More Information

● perldoc perlintro & perlstyle – introduction & style
● perldoc perlsyn – syntax
● perldoc perldata & perlvar – data types & variables
● perldoc perlop & perlfunc – operators & functions
● perldoc perlopentut – files & I/O
● perldoc perlrequick – regular expressions
● perldoc perlsub – subroutines
● perldoc perlmod – modules

Syntax & Semantics

● Perl program header:

#!/usr/bin/perl

use strict;

use warnings;
● Statements end with a semicolon like C.
● Whitespace ignored except in quoted strings.
● Strings may be quoted with single or double quotes;

single causes everything within to be printed as-is.

Syntax & Semantics

● Unlike C, parentheses are generally optional in
functions: print(“Hello\n”); same as print “Hello\n”;

● “{” and “}” enclose blocks as in C.
● Arrays are zero-indexed as in C.
● Comments: begin with “#” as in Bash shell scripts.
● “\n” = newline, “\t” = tab
● =, +, -, *, /, ==, !=, <, >, <=, >= work as expected
● &&, ||, ! work as expected

String Comparisons

● Strings are compared differently:

“eq” (equal)

“ne” (not equal)

“lt” (less than)

“gt” (greater than)

“le” (less than or equal)

“ge” (greater than or equal)
● E.g.: if ($response eq “Y” || $response eq “y”) {...}

Data Types: Scalars

● Scalars = normal single-value variables OR strings
● Examples:

my $sum = 0;

my $a = 1;

$sum += $a;

my $prompt = “\$”;

print $prompt.“\n”;

Data Types: Arrays

● Arrays = lists of values, may be mixed
● my @animals = (“camel”, “llama”, “owl”);

my @numbers = (23, 42, 69);

my @mixed = (“camel”, 42, 1.23);

print $animals[1];

print $animals;

print @animals[1..$#animals];
● my @sorted = sort @animals;

Data Types: Hashes

● Key/value pairs
● my %fruit_color = (

 apple => “red”,

 banana => “yellow”);

print $fruit_color{“apple”};
● Array of just keys: keys %fruit_color

Just values: values %fruit_color

Variable Scoping

my $var = “value”; #creates block-scoped variable

$v2 = “whatever”; #creates global variable

my $x = 2;

if (true) {

 my $x = 1;

}

print $x;

Variable Scoping

my $var = “value”; #creates block-scoped variable

$v2 = “whatever”; #creates global variable

my $x = 2;

if (true) {

 $x = 1;

}

print $x;

Conditionals

● if (condition) {

 ...

} elsif (other condition) {

 ...

} else {

 ...

}
● unless (condition) { ... } # if (!condition) { ... }

Looping

● while (condition) {

 ...

}
● until (condition) { ... } # while (!condition) { ... }
● for (initialize ; test ; increment) { ... }# similar to C

for (my $i = 0; $i < 10; $i++) { print $i.“\n”; }
● foreach: see next slide

Looping: foreach

my @array = (“cherry”, “strawberry”, “pretzel”);

foreach (@array) {

 print “$_\n”;

}
● $_ is the current value or line
● my @array=(1,2,3);

foreach my $n (@array) { print $n."\n" }

foreach with Hashes

my %hash=(a=>1,b=>2,c=>3);

foreach my $key (keys %hash) {

 print $hash{$key}."\n"

}

● Hashes are not sorted in any particular order!

Files & I/O

● my $filename = “input.txt”;

open(my $filehandle, “<”, $filename) or die $!;
● my $filename = "iris.dat";

open(my $filehandle, "<", $filename) or die "$!:
$filename";

No such file or directory: iris.dat at - line 2.
● my $line = <$filehandle>; #reads a line
● my @lines = <$filehandle>; #reads all lines into

array

Typical Line-by-Line Reading

● my $lines = 0;

while (<$filehandle>) {

 $lines++;

 print $lines. “:” . $_ . “\n”;

}
● Close file when finished (best practice):

close $filehandle;

Output or Append to File

● open(my $filehandle, “>”, “out.txt”);

print $filehandle “This is a line.\n”;

print $filehandle “This is another line.\n”;

close $filehandle;
● open(my $filehandle, “>>”, “out.txt”); #append

print $filehandle “line 3\n”;

close $filehandle;

Regular Expressions

● Major part of learning Perl. See perlrequick for help.
● ...

while(<$in>) {

 if (/foo/) { ... } # true if $_ contains “foo”

 if ($_ =~ /foo/) { ... } # same (match operator)

 $new =~ s/foo/bar/; # replace 1st “foo” with “bar”

 $new =~ s/foo/bar/g; # replace all “foo” w/ “bar”

}

Special Characters in Regular
Expressions

Character(s) Meaning

. any single character

\s a whitespace character

\S a non-whitespace character

\d or [0-9] a digit

\w or [a-zA-Z0-9_] a word character

\D or [^0-9] a non-digit

[-\(\)0-9] a hyphen, (,), or digit

... and many others

Quantifiers in Regular Expressions

Quantifier Meaning

* zero or more of what's before *

+ at least one of what's before +

? at most one of what's before ?

{3} exactly three of what's before {

{3,6} three to six of what's before {

{3,} at least three of what's before {

Positional Specifier Meaning

^ match at start of string

$ match at end of string

Example

● Print non-blank lines read from STDIN:

while (<>) {

 next if /^$/; # continue to next iteration if blank

 print; # prints $_ by default

}

Simple Parsing with Regular
Expressions

● Parentheses capture matching parts of regexp
● Use what's captured with $1, $2, etc.
● if ($email =~ /([^@]+)@(.+)/) {

 print “username = $1\n”;

 print “hostname = $2\n”;}
● $time =~ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss

$hours = $1; $minutes = $2; $seconds = $3;
● ($hours, $minutes, $seconds) =

 ($time =~ /(\d\d):(\d\d):(\d\d)/);

Subroutines

● Definition:

sub square { # args are in @_

 my $num = shift;

 my $result = $num * $num;

 return $result;

}
● Usage:

$sq = square(8);

Subroutines with Multiple Arguments

● Definition:

sub printmulti { # args are in @_

 my ($string, $times) = @_;

 for (my $i=0; $i<$times; $i++) {

 print $string;

 }

}
● Usage: printmulti “*”, 8; #or printmulti (“*”, 8);

Modules

● Add functionality to Perl
● Help on a module: perldoc Module::Name

Example: perldoc Text::CSV
● Installing a module:

perl -MCPAN -e 'install Module::Name'
● Another method:

First do this: cpan App::cpanminus

Thereafter: cpanm Module::Name

Using Modules

● In Perl script:

use Module::Name;
● Example:

use Text::CSV;

Searching and Replacing in Files

● perl -p -i -e 's/original text/replacement text/g' file
● Warning: replaces in the original file! (i means in-

place)
● perl -p -i.bak -e ... does same but saves backup as

“file.bak”.
● perl -p -e ... > newfile.txt outputs to a new file

without altering original.
● -p = while (<>) { ... # your script } continue { print

or die "-p destination: $!\n";}
● Useful: www.softpanorama.org/Scripting/Perlorama/perl_in_command_line.shtml

Working with CSV Files

● CSV files = Comma-Separated Value text file
● Commas delimit the values, w/ or w/o headers:

SKU, Description, Price

123, “Folding Chair with Cup Holder”, 10.00
● May be tab-delimited instead
● Common extensions: .csv and .txt

.csv generally for comma-separated files

.txt generally for tab-delimited files

Text::CSV in Perl

my $file = 'prospects.csv';

my $csv = Text::CSV->new();

open (my $fh, “<”, $file) or die $!;

while (<$fh>) {

 if($csv->parse($_)) {

 my @columns = $csv->fields();

 print join(“|”,@columns) . “\n”; } }

close $fh;
● Useful: http://perlmeme.org/tutorials/parsing_csv.html

Accessing Databases in Perl

● Useful: http://perlmeme.org/tutorials/connect_to_db.html

● Also: perldoc DBI

● At beginning of script: use DBI;

● Connect (for example):

my $user = "";

my $password = "";

my $dbh = DBI->connect("DBI:$driver:$database", $user,
$password,) or die $DBI::errstr;

http://perlmeme.org/tutorials/connect_to_db.html

Simple SQL Statement Execution

● $dbh -> do(“

INSERT INTO people_i_know(name, age, pet)

 VALUES ('Carolyn',25,null),

 ('Steve',23,'cat'),

 ('Melissa',24,'dog'),

 ('Ritchie',24,'rabbit');

”) or die $dbh->errstr;

Better SQL Statement Execution
Using Prepared Statement

● $sth = $dbh -> prepare(“

INSERT INTO people_i_know(name, age, pet)

 VALUES (?, ?, ?)

”) or die $dbh->errstr;

$sth->execute('Carolyn',25,null) or die $dbh->errstr;

$sth->execute('Steve',23,'cat') or die $dbh->errstr;

$sth->execute('Melissa',24,'dog') or die $dbh->errstr;

$sth->execute('Ritchie',24,'rabbit') or die $dbh->errstr;

SQL SELECT Statement
Using Prepared Statement

● my $sth = $dbh->prepare("

 SELECT name, age, pet

 FROM people_i_know

 WHERE age > ?

") or die $dbh->errstr;

● How to fetch values? Read on...

Fetching Values (Preferred Method)

● $sth->execute(23) or die $dbh->errstr;

while (my $hash_ref = $sth->fetchrow_hashref) {

 print $hash_ref->{name}, " is ", $hash_ref->{age},

 " years old, and has a " , $hash_ref->{pet}, "\n";

}

Conclusion

● Perl is a “Swiss Army Knife” of programming
languages.

● Perl is highly convenient for munging large files.
● Perl has many modules in CPAN (www.cpan.org).
● Perl maxims:

– "There's more than one way to do it" (TMTOWTDI)

– "Perl makes easy things easy and hard things
possible."

Exercise

● Using skeleton file exercise.pl and text file
phone.csv:

– Count the number of phones manufactured by Apple

– Change all instances of “iOS” to “iPhoneOS”

– Sort list by manufacturer and print list of manufs.

– Challenge: count number of different manufacturers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

