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Overview

● Basic syntax and semantics
● Searching and replacing text
● Working with CSV files
● Accessing databases



  

For More Information

● perldoc perlintro & perlstyle – introduction & style
● perldoc perlsyn – syntax
● perldoc perldata & perlvar – data types & variables
● perldoc perlop & perlfunc – operators & functions
● perldoc perlopentut – files & I/O
● perldoc perlrequick – regular expressions
● perldoc perlsub – subroutines
● perldoc perlmod – modules



  

Syntax & Semantics

● Perl program header:

#!/usr/bin/perl

use strict;

use warnings;
● Statements end with a semicolon like C.
● Whitespace ignored except in quoted strings.
● Strings may be quoted with single or double quotes; 

single causes everything within to be printed as-is.



  

Syntax & Semantics

● Unlike C, parentheses are generally optional in 
functions: print(“Hello\n”); same as print “Hello\n”;

● “{” and “}” enclose blocks as in C.
● Arrays are zero-indexed as in C.
● Comments: begin with “#” as in Bash shell scripts.
● “\n” = newline, “\t” = tab
● =, +, -, *, /, ==, !=, <, >, <=, >= work as expected
● &&, ||, ! work as expected



  

String Comparisons

● Strings are compared differently:

“eq” (equal)

“ne” (not equal)

“lt” (less than)

“gt” (greater than)

“le” (less than or equal)

“ge” (greater than or equal)
● E.g.: if ($response eq “Y” || $response eq “y”) {...}



  

Data Types: Scalars

● Scalars = normal single-value variables OR strings
● Examples:

my $sum = 0;

my $a = 1;

$sum += $a;

my $prompt = “\$”;

print $prompt.“\n”;



  

Data Types: Arrays

● Arrays = lists of values, may be mixed
● my @animals = (“camel”, “llama”, “owl”);

my @numbers = (23, 42, 69);

my @mixed = (“camel”, 42, 1.23);

print $animals[1];

print $animals;

print @animals[1..$#animals];
● my @sorted = sort @animals;



  

Data Types: Hashes

● Key/value pairs
● my %fruit_color = (

    apple => “red”,

    banana => “yellow”);

print $fruit_color{“apple”};
● Array of just keys: keys %fruit_color

Just values: values %fruit_color  



  

Variable Scoping

my $var = “value”; #creates block-scoped variable

$v2 = “whatever”; #creates global variable

my $x = 2;

if ( true ) { 

    my $x = 1;

}

print $x;



  

Variable Scoping

my $var = “value”; #creates block-scoped variable

$v2 = “whatever”; #creates global variable

my $x = 2;

if ( true ) { 

    $x = 1;

}

print $x;



  

Conditionals

● if ( condition ) {

    ...

} elsif ( other condition ) {

    ...

} else {

    ...

}
● unless ( condition ) { ... } # if ( !condition ) { ... }



  

Looping

● while ( condition ) {

    ...

} 
● until ( condition ) { ... } # while ( !condition ) { ... }
● for ( initialize ; test ; increment ) { ... }# similar to C

for (my $i = 0; $i < 10; $i++) { print $i.“\n”; }
● foreach: see next slide



  

Looping: foreach

my @array = (“cherry”, “strawberry”, “pretzel”);

foreach (@array) {

    print “$_\n”;

}
● $_ is the current value or line
● my @array=(1,2,3);

foreach my $n (@array) { print $n."\n" }

 



  

foreach with Hashes

my %hash=(a=>1,b=>2,c=>3);

foreach my $key (keys %hash) {

    print $hash{$key}."\n"

}

● Hashes are not sorted in any particular order!



  

Files & I/O

● my $filename = “input.txt”;

open(my $filehandle, “<”, $filename) or die $!;
● my $filename = "iris.dat";

open(my $filehandle, "<", $filename) or die "$!: 
$filename";

No such file or directory: iris.dat at - line 2.
● my $line = <$filehandle>; #reads a line
● my @lines = <$filehandle>; #reads all lines into 

array



  

Typical Line-by-Line Reading

● my $lines = 0;

while (<$filehandle>) {

    $lines++;

    print $lines. “:” . $_ . “\n”;

}
● Close file when finished (best practice):

close $filehandle;



  

Output or Append to File

● open(my $filehandle, “>”, “out.txt”);

print $filehandle “This is a line.\n”;

print $filehandle “This is another line.\n”;

close $filehandle;
● open(my $filehandle, “>>”, “out.txt”); #append

print $filehandle “line 3\n”;

close $filehandle;



  

Regular Expressions

● Major part of learning Perl. See perlrequick for help.
● ...

while(<$in>) {

    if (/foo/) { ... } # true if $_ contains “foo”

    if ($_ =~ /foo/) { ... } # same (match operator)

    $new =~ s/foo/bar/; # replace 1st “foo” with “bar”

    $new =~ s/foo/bar/g; # replace all “foo” w/ “bar”

}



  

Special Characters in Regular 
Expressions

Character(s) Meaning

. any single character

\s a whitespace character

\S a non-whitespace character

\d or [0-9] a digit

\w or [a-zA-Z0-9_] a word character

\D or [^0-9] a non-digit

[-\(\)0-9] a hyphen, (, ), or digit

... and many others



  

Quantifiers in Regular Expressions

Quantifier Meaning

* zero or more of what's before *

+ at least one of what's before +

? at most one of what's before ?

{3} exactly three of what's before {

{3,6} three to six of what's before {

{3,} at least three of what's before {

Positional Specifier Meaning

^ match at start of string

$ match at end of string



  

Example

● Print non-blank lines read from STDIN:

while (<>) {

    next if /^$/; # continue to next iteration if blank

    print; # prints $_ by default

}



  

Simple Parsing with Regular 
Expressions

● Parentheses capture matching parts of regexp
● Use what's captured with $1, $2, etc.
● if ($email =~ /([^@]+)@(.+)/) {

    print “username = $1\n”;

    print “hostname = $2\n”;}
● $time =~ /(\d\d):(\d\d):(\d\d)/; # match hh:mm:ss

$hours = $1; $minutes = $2; $seconds = $3;
● ($hours, $minutes, $seconds) = 

    ($time =~ /(\d\d):(\d\d):(\d\d)/);



  

Subroutines

● Definition:

sub square { # args are in @_

    my $num = shift;

    my $result = $num * $num;

    return $result;

}
● Usage:

$sq = square(8);



  

Subroutines with Multiple Arguments

● Definition:

sub printmulti { # args are in @_

    my ($string, $times) = @_;

    for (my $i=0; $i<$times; $i++) {

        print $string;

    }

}
● Usage: printmulti “*”, 8; #or printmulti (“*”, 8);



  

Modules

● Add functionality to Perl
● Help on a module: perldoc Module::Name

Example: perldoc Text::CSV
● Installing a module:

perl -MCPAN -e 'install Module::Name'
● Another method:

First do this: cpan App::cpanminus

Thereafter: cpanm Module::Name



  

Using Modules

● In Perl script:

use Module::Name;
● Example:

use Text::CSV;



  

Searching and Replacing in Files

● perl -p -i -e 's/original text/replacement text/g' file
● Warning: replaces in the original file! (i means in-

place)
● perl -p -i.bak -e ... does same but saves backup as 

“file.bak”.
● perl -p -e ... > newfile.txt outputs to a new file 

without altering original.
● -p = while (<>) { ... # your script } continue { print 

or die "-p destination: $!\n";}
● Useful: www.softpanorama.org/Scripting/Perlorama/perl_in_command_line.shtml 



  

Working with CSV Files

● CSV files = Comma-Separated Value text file
● Commas delimit the values, w/ or w/o headers:

SKU, Description, Price

123, “Folding Chair with Cup Holder”, 10.00
● May be tab-delimited instead
● Common extensions: .csv and .txt

.csv generally for comma-separated files

.txt generally for tab-delimited files



  

Text::CSV in Perl

my $file = 'prospects.csv';

my $csv = Text::CSV->new();

open (my $fh, “<”, $file) or die $!;

while (<$fh>) {

    if($csv->parse($_)) {

        my @columns = $csv->fields();

        print join(“|”,@columns) . “\n”; } }

close $fh;
● Useful: http://perlmeme.org/tutorials/parsing_csv.html



  

Accessing Databases in Perl

● Useful: http://perlmeme.org/tutorials/connect_to_db.html

● Also: perldoc DBI

● At beginning of script: use DBI;

● Connect (for example):

my $user = ""; 

my $password = "";

my $dbh = DBI->connect("DBI:$driver:$database", $user, 
$password, ) or die $DBI::errstr;

http://perlmeme.org/tutorials/connect_to_db.html


  

Simple SQL Statement Execution

● $dbh -> do(“

INSERT INTO people_i_know(name, age, pet) 

         VALUES ('Carolyn',25,null),

                          ('Steve',23,'cat'),

                          ('Melissa',24,'dog'),

                          ('Ritchie',24,'rabbit');

”) or die $dbh->errstr;



  

Better SQL Statement Execution
Using Prepared Statement

● $sth = $dbh -> prepare(“

INSERT INTO people_i_know(name, age, pet) 

         VALUES (?, ?, ?)

”) or die $dbh->errstr;

$sth->execute('Carolyn',25,null) or die $dbh->errstr;

$sth->execute('Steve',23,'cat') or die $dbh->errstr;

$sth->execute('Melissa',24,'dog') or die $dbh->errstr;

$sth->execute('Ritchie',24,'rabbit') or die $dbh->errstr;



  

SQL SELECT Statement
Using Prepared Statement

● my $sth = $dbh->prepare("

        SELECT name, age, pet

          FROM people_i_know

         WHERE age > ?

") or die $dbh->errstr;

● How to fetch values? Read on...



  

Fetching Values (Preferred Method)

● $sth->execute(23) or die $dbh->errstr;

while (my $hash_ref = $sth->fetchrow_hashref) {

    print $hash_ref->{name}, " is ", $hash_ref->{age}, 

          " years old, and has a " , $hash_ref->{pet}, "\n";

}



  

Conclusion

● Perl is a “Swiss Army Knife” of programming 
languages.

● Perl is highly convenient for munging large files.
● Perl has many modules in CPAN (www.cpan.org).
● Perl maxims:

– "There's more than one way to do it" (TMTOWTDI)

– "Perl makes easy things easy and hard things 
possible."



  

Exercise

● Using skeleton file exercise.pl and text file 
phone.csv:

– Count the number of phones manufactured by Apple

– Change all instances of “iOS” to “iPhoneOS”

– Sort list by manufacturer and print list of manufs.

– Challenge: count number of different manufacturers
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