
Shell Scripting

Alexander B. Pacheco

User Services Consultant
LSU HPC & LONI
sys-help@loni.org

HPC Training Spring 2013
Louisiana State University

Baton Rouge
September 25 & October 2, 2013

Shell Scripting Sep 25 & Oct 2, 2013 1/136

HPC Training: Fall 2013 1 / 136

Outline I

Day 1

1 Overview of Introduction to Linux

2 Shell Scripting Basics

3 Beyond Basic Shell Scripting

4 Advanced Topics Preview

5 Wrap Up

6 Hands-On Exercises: Day 1

Shell Scripting Sep 25 & Oct 2, 2013 2/136

HPC Training: Fall 2013 2 / 136

Outline II

Day 2

7 Regular Expressions

8 File Manipulation

9 grep

10 sed

11 awk

12 Wrap Up

Shell Scripting Sep 25 & Oct 2, 2013 3/136

HPC Training: Fall 2013 3 / 136

Tutorial Outline

Day 1: Basic Shell Scripting

On the first day, we will cover simple topics such as creating and
executing simple shell scripts, arithmetic operations, loops and
conditionals, command line arguments and functions. 6

Day 2: Advanced Shell Scripting

On the second day, we will cover advanced topics such as creating shell
scripts for data analysis which make use of tools such as regular
expressions, grep, sed and the awk programming language.

Shell Scripting Sep 25 & Oct 2, 2013 4/136

HPC Training: Fall 2013 4 / 136

Part I

Basic Shell Scripting

Shell Scripting Sep 25 & Oct 2, 2013 5/136

HPC Training: Fall 2013 5 / 136

Outline

1 Overview of Introduction to Linux
Types of Shell
File Editing
Variables
File Permissions
Input and Output

2 Shell Scripting Basics
Start Up Scripts
Getting Started with Writing Simple Scripts

3 Beyond Basic Shell Scripting
Arithmetic Operations
Arrays
Flow Control
Command Line Arguments
Functions

4 Advanced Topics Preview

5 Wrap Up

6 Hands-On Exercises: Day 1

Shell Scripting Sep 25 & Oct 2, 2013 6/136

HPC Training: Fall 2013 6 / 136

Overview: Introduction to Linux

What is a SHELL

The command line interface is the primary interface to Linux/Unix
operating systems.

Shells are how command-line interfaces are implemented in Linux/Unix.

Each shell has varying capabilities and features and the user should
choose the shell that best suits their needs.

The shell is simply an application running on top of the kernel and
provides a powerful interface to the system.

Shell Scripting Sep 25 & Oct 2, 2013 7/136

HPC Training: Fall 2013 7 / 136

Types of Shell

sh : Bourne Shell

� Developed by Stephen Bourne at AT&T Bell Labs

csh : C Shell

� Developed by Bill Joy at University of California, Berkeley

ksh : Korn Shell
� Developed by David Korn at AT&T Bell Labs
� backward-compatible with the Bourne shell and includes many features of

the C shell

bash : Bourne Again Shell
� Developed by Brian Fox for the GNU Project as a free software

replacement for the Bourne shell (sh).
� Default Shell on Linux and Mac OSX
� The name is also descriptive of what it did, bashing together the features

of sh, csh and ksh

tcsh : TENEX C Shell
� Developed by Ken Greer at Carnegie Mellon University
� It is essentially the C shell with programmable command line completion,

command-line editing, and a few other features.

Shell Scripting Sep 25 & Oct 2, 2013 8/136

HPC Training: Fall 2013 8 / 136

Shell Comparison

Software sh csh ksh bash tcsh

Programming Language 3 3 3 3 3

Shell Variables 3 3 3 3 3

Command alias 7 3 3 3 3

Command history 7 3 3 3 3

Filename completion 7 M M 3 3

Command line editing 7 7 M 3 3

Job control 7 3 3 3 3

3 : Yes

7 : No

M : Yes, not set by default

Ref : http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Shell Scripting Sep 25 & Oct 2, 2013 9/136

HPC Training: Fall 2013 9 / 136

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

File Editing

The two most commonly used editors on Linux/Unix systems are:

1 vi
2 emacs

vi is installed by default on Linux/Unix systems and has only a
command line interface (CLI).

emacs has both a CLI and a graphical user interface (GUI).

� If emacs GUI is installed then use emacs -nw to open file in console.

Other editors that you may come across on *nix systems

1 kate: default editor for KDE.
2 gedit: default text editor for GNOME desktop environment.
3 gvim: GUI version of vim
4 pico: console based plain text editor
5 nano: GNU.org clone of pico
6 kwrite: editor by KDE.

You are required to know how to create and edit files for this tutorial.

Shell Scripting Sep 25 & Oct 2, 2013 10/136

HPC Training: Fall 2013 10 / 136

Editor Cheatsheets I

Cursor Movement

move left

move down

move up

move right

jump to beginning of line

jump to end of line

goto line n

goto top of file

goto end of file

move one page up

move one page down

vi

h

j

k

l

ˆ

$

nG

1G

G

C-u

C-d

emacs

C-b

C-n

C-p

C-f

C-a

C-e

M-x goto-line [RET] n

M-<

M->

M-v

C-v

C : Control Key

M : Meta or ESCAPE (ESC) Key

[RET] : Enter Key

Shell Scripting Sep 25 & Oct 2, 2013 11/136

HPC Training: Fall 2013 11 / 136

Editor Cheatsheets II

Insert/Appending Text

insert at cursor

insert at beginning of line

append after cursor

append at end of line

newline after cursor in insert mode

newline before cursor in insert mode

append at end of line

exit insert mode

vi

i

I

a

A

o

O

ea

ESC

emacs has only one mode unlike vi which has insert and command mode

Shell Scripting Sep 25 & Oct 2, 2013 12/136

HPC Training: Fall 2013 12 / 136

Editor Cheatsheets III

File Editing

save file

save file and exit

quit

quit without saving

delete a line

delete n lines

paste deleted line after cursor

paste before cursor

undo edit

delete from cursor to end of line

search forward for patt

search backward for patt

search again forward (backward)

vi

:w

:wq, ZZ

:q

:q!

dd

ndd

p

P

u

D

\patt
?patt

n

emacs

C-x C-s

C-x C-c

C-a C-k

C-a M-n C-k

C-y

C-_

C-k

C-s patt

C-r patt

C-s(r)

Shell Scripting Sep 25 & Oct 2, 2013 13/136

HPC Training: Fall 2013 13 / 136

Editor Cheatsheets IV

File Editing (contd)

replace a character

join next line to current

change a line

change a word

change to end of line

delete a character

delete a word

edit/open file file

insert file file

split window horizontally

split window vertically

switch windows

vi

r

J

cc

cw

c$

x

dw

:e file

:r file

:split or C-ws

:vsplit or C-wv

C-ww

emacs

C-d

M-d

C-x C-f file

C-x i file

C-x 2

C-x 3

C-x o

To change a line or word in emacs, use C-spacebar and navigate to end of word or line to select text and

then delete using C-w

Shell Scripting Sep 25 & Oct 2, 2013 14/136

HPC Training: Fall 2013 14 / 136

Editor Cheatsheets V

Do a google search for more detailed cheatsheets

vi https://www.google.com/search?q=vi+cheatsheet

emacs https://www.google.com/search?q=emacs+cheatsheet

Shell Scripting Sep 25 & Oct 2, 2013 15/136

HPC Training: Fall 2013 15 / 136

https://www.google.com/search?q=vi+cheatsheet
https://www.google.com/search?q=emacs+cheatsheet

Variables I

*nix also permits the use of variables, similar to any programming
language such as C, C++, Fortran etc

A variable is a named object that contains data used by one or more
applications.

There are two types of variables, Environment and User Defined and
can contain a number, character or a string of characters.

Environment Variables provides a simple way to share configuration
settings between multiple applications and processes in Linux.

By Convention, enviromental variables are often named using all
uppercase letters

e.g. PATH, LD_LIBRARY_PATH, LD_INCLUDE_PATH, TEXINPUTS,
etc

To reference a variable (environment or user defined) prepend $ to the
name of the variable

e.g. $PATH, $LD_LIBRARY_PATH

Shell Scripting Sep 25 & Oct 2, 2013 16/136

HPC Training: Fall 2013 16 / 136

Variables II

You can edit the environment variables.

Command to do this depends on the shell

F To add your bin directory to the PATH variable

sh/ksh/bash: export PATH=${HOME}/bin:${PATH}

csh/tcsh: setenv PATH ${HOME}/bin:${PATH}

F Note the syntax for the above commands

F sh/ksh/bash: no spaces except between export and PATH

F csh,tcsh: no = sign, just a space between PATH and the
absolute path

F all shells: colon(:) to separate different paths and
the variable that is appended to

Yes, the order matters. If you have a customized version of a software
say perl in your home directory, if you append the perl path to $PATH at
the end, your program will use the system wide perl not your locally
installed version.

Shell Scripting Sep 25 & Oct 2, 2013 17/136

HPC Training: Fall 2013 17 / 136

Variables III

Rules for Variable Names
1 Variable names must start with a letter or underscore
2 Number can be used anywhere else
3 DO NOT USE special characters such as @, #, %, $
4 Case sensitive
5 Examples

Allowed: VARIABLE, VAR1234able, var_name, _VAR
Not Allowed: 1VARIABLE, %NAME, $myvar, VAR@NAME

Assigning value to a variable

Type sh,ksh,bash csh,tcsh

Shell name=value set name = value
Environment export name=value setenv name value

sh,ksh,bash THERE IS NO SPACE ON EITHER SIDE OF =

csh,tcsh space on either side of = is allowed for the set command

csh,tcsh There is no = in the setenv command

Shell Scripting Sep 25 & Oct 2, 2013 18/136

HPC Training: Fall 2013 18 / 136

File Permissions I

In *NIX OS’s, you have three types of file permissions
1 read (r)
2 write (w)
3 execute (x)

for three types of users
1 user
2 group
3 world i.e. everyone else who has access to the system

drwxr-xr-x. 2 user user 4096 Jan 28 08:27 Public
-rw-rw-r- -. 1 user user 3047 Jan 28 09:34 README

The first character signifies the type of the file

d for directory

l for symbolic link

- for normal file

Shell Scripting Sep 25 & Oct 2, 2013 19/136

HPC Training: Fall 2013 19 / 136

File Permissions II

The next three characters of first triad signifies what the owner can do

The second triad signifies what group member can do

The third triad signifies what everyone else can do

Read carries a weight of 4

Write carries a weight of 2

Execute carries a weight of 1

The weights are added to give a value of 7 (rwx), 6(rw), 5(rx) or 3(wx)
permissions.

chmod is a *NIX command to change permissions on a file

To give user rwx, group rx and world x permission, the command is

chmod 751 filename

Shell Scripting Sep 25 & Oct 2, 2013 20/136

HPC Training: Fall 2013 20 / 136

File Permissions III

Instead of using numerical permissions you can also use symbolic
mode

u/g/o or a user/group/world or all i.e. ugo

+/- Add/remove permission

r/w/x read/write/execute

Give everyone execute permission:

chmod a+x hello.sh

chmod ugo+x hello.sh

Remove group and world read & write permission:

chmod go-rw hello.sh

Use the -R flag to change permissions recursively, all files and
directories and their contents.

chmod -R 755 ${HOME}/*

What is the permission on ${HOME}?

Shell Scripting Sep 25 & Oct 2, 2013 21/136

HPC Training: Fall 2013 21 / 136

Input/Output I

The command echo is used for displaying output to screen

For reading input from screen/keyboard/prompt

bash read

tcsh $<

The read statement takes all characters typed until the key is
pressed and stores them into a variable.

Syntax read <variable name>

Example read name

Alex Pacheco

$< can accept only one argument. If you have multiple arguments,
enclose the $< within quotes e.g. "$<"

Syntax: set <variable> = $<

Example: set name = "$<"

Alex Pacheco

Shell Scripting Sep 25 & Oct 2, 2013 22/136

HPC Training: Fall 2013 22 / 136

Input/Output II

In the above examples, the name that you enter in stored in the variable
name.

Use the echo command to print the variable name to the screen

echo $name

The echo statement can print multiple arguments.

By default, echo eliminates redundant whitespace (multiple spaces and
tabs) and replaces it with a single whitespace between arguments.

To include redundant whitespace, enclose the arguments within double
quotes

Example: echo Welcome to HPC Training (more than one space
between HPC and Training

echo "Welcome to HPC Training"

read name or set name = "$<"

Alex Pacheco

echo $name

echo "$name"

Shell Scripting Sep 25 & Oct 2, 2013 23/136

HPC Training: Fall 2013 23 / 136

Input/Output III

You can also use the printf command to display output

Usage: printf <format> <arguments>

Examples: printf "$name"

printf "%s\n" "$name"

Format Descriptors
%s print argument as a string
%d print argument as an integer
%f print argument as a floating point number
\n print new line

you can add a width for the argument between the % and {s,d,f} fields
%4s, %5d, %7.4f

The printf command is used in awk to print formatted data (more on
this later)

Shell Scripting Sep 25 & Oct 2, 2013 24/136

HPC Training: Fall 2013 24 / 136

I/O Redirection

There are three file descriptors for I/O streams
1 STDIN: Standard Input
2 STDOUT: Standard Output
3 STDERR: Standard Error

1 represents STDOUT and 2 represents STDOUT

I/O redirection allows users to connect applications
< : connects a file to STDIN of an application
> : connects STDOUT of an application to a file

> > : connects STDOUT of an application by appending to a file
| : connects the STDOUT of an application to STDIN of another

application.

Examples:
1 write STDOUT to file: ls -l > ls-l.out
2 write STDERR to file: ls -l 2> ls-l.err
3 write STDOUT to STDERR: ls -l 1>&2
4 write STDERR to STDOUT: ls -l 2>&1
5 send STDOUT as STDIN: ls -l | wc -l

Shell Scripting Sep 25 & Oct 2, 2013 25/136

HPC Training: Fall 2013 25 / 136

Outline

1 Overview of Introduction to Linux
Types of Shell
File Editing
Variables
File Permissions
Input and Output

2 Shell Scripting Basics
Start Up Scripts
Getting Started with Writing Simple Scripts

3 Beyond Basic Shell Scripting
Arithmetic Operations
Arrays
Flow Control
Command Line Arguments
Functions

4 Advanced Topics Preview

5 Wrap Up

6 Hands-On Exercises: Day 1

Shell Scripting Sep 25 & Oct 2, 2013 26/136

HPC Training: Fall 2013 26 / 136

Start Up Scripts

When you login to a *NIX computer, shell scripts are automatically loaded
depending on your default shell

sh,ksh
1 /etc/profile

2 $HOME/.profile

bash
1 /etc/profile, login terminal only
2 /etc/bashrc or /etc/bash/bashrc
3 $HOME/.bash_profile, login terminal only

4 $HOME/.bashrc

csh,tcsh
1 /etc/csh.cshrc
2 $HOME/.tcshrc

3 $HOME/.cshrc if .tcshrc is not present

The .bashrc, .tcshrc, .cshrc, .bash_profile are script files where
users can define their own aliases, environment variables, modify paths etc.

e.g. the alias rm="rm -i" command will modify all rm commands that you
type as rm -i

Shell Scripting Sep 25 & Oct 2, 2013 27/136

HPC Training: Fall 2013 27 / 136

Examples I

.bashrc

.bashrc

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

User specific aliases and functions
alias c="clear"
alias rm="/bin/rm -i"
alias psu="ps -u apacheco"
alias em="emacs -nw"
alias ll="ls -lF"
alias la="ls -al"
export PATH=/home/apacheco/bin:${PATH}
export g09root=/home/apacheco/Software/Gaussian09
export GAUSS_SCRDIR=/home/apacheco/Software/scratch
source $g09root/g09/bsd/g09.profile

export TEXINPUTS=.:/usr/share/texmf//:/home/apacheco/LaTeX//:${TEXINPUTS}
export BIBINPUTS=.:/home/apacheco/TeX//:${BIBINPUTS}

Shell Scripting Sep 25 & Oct 2, 2013 28/136

HPC Training: Fall 2013 28 / 136

Examples II

.tcshrc

.tcshrc

User specific aliases and functions
alias c clear
alias rm "/bin/rm -i"
alias psu "ps -u apacheco"
alias em "emacs -nw"
alias ll "ls -lF"
alias la "ls -al"
setenv PATH "/home/apacheco/bin:${PATH}"
setenv g09root "/home/apacheco/Software/Gaussian09"
setenv GAUSS_SCRDIR "/home/apacheco/Software/scratch"
source $g09root/g09/bsd/g09.login

setenv TEXINPUTS ".:/usr/share/texmf//:/home/apacheco/LaTeX//:${TEXINPUTS}"
setenv BIBINPUTS ".:/home/apacheco/TeX//:${BIBINPUTS}"

Shell Scripting Sep 25 & Oct 2, 2013 29/136

HPC Training: Fall 2013 29 / 136

What is a scripting Language?

A scripting language or script language is a programming language that
supports the writing of scripts.

Scripting Languages provide a higher level of abstraction than standard
programming languages.

Compared to programming languages, scripting languages do not distinguish
between data types: integers, real values, strings, etc.

Scripting Languages tend to be good for automating the execution of other
programs.

� analyzing data
� running daily backups

They are also good for writing a program that is going to be used only once and
then discarded.

A script is a program written for a software environment that automate the
execution of tasks which could alternatively be executed one-by-one by a human
operator.

The majority of script programs are “quick and dirty”, where the main goal is to
get the program written quickly.

Shell Scripting Sep 25 & Oct 2, 2013 30/136

HPC Training: Fall 2013 30 / 136

Writing your first script

Three things to do to write and execute a script

1 Write a script

A shell script is a file that contains ASCII text.
Create a file, hello.sh with the following lines

#!/bin/bash
My First Script
echo "Hello World!"

2 Set permissions

~/Tutorials/BASH/scripts> chmod 755 hello.sh

3 Execute the script

~/Tutorials/BASH/scripts> ./hello.sh
Hello World!

Shell Scripting Sep 25 & Oct 2, 2013 31/136

HPC Training: Fall 2013 31 / 136

Description of the script

My First Script

#!/bin/bash
My First Script
echo "Hello World!"

The first line is called the "ShaBang” line. It tells the OS which interpreter to use. In the
current example, bash

Other options are:

� sh : #!/bin/sh
� ksh : #!/bin/ksh
� csh : #!/bin/csh

� tcsh: #!/bin/tcsh

The second line is a comment. All comments begin with "#".

The third line tells the OS to print "Hello World!" to the screen.

Shell Scripting Sep 25 & Oct 2, 2013 32/136

HPC Training: Fall 2013 32 / 136

Special Characters I

#: starts a comment.

$: indicates the name of a variable.

\: escape character to display next character literally.

{ }: used to enclose name of variable.

; Command separator [semicolon]. Permits putting two or more commands on
the same line.

;; Terminator in a case option [double semicolon].

. "dot" command [period]. Equivalent to source. This is a bash builtin.

$? exit status variable.

$$ process ID variable.

[] test expression

[[]] test expression, more flexible than []

$[], (()) integer expansion

||, &&, ! Logical OR, AND and NOT

Shell Scripting Sep 25 & Oct 2, 2013 33/136

HPC Training: Fall 2013 33 / 136

Quotation I

Double Quotation " "

Enclosed string is expanded ("$", "/" and "‘")
Example: echo "$myvar" prints the value of myvar

Single Quotation ’ ’

Enclosed string is read literally
Example: echo ’$myvar’ prints $myvar

Back Quotation ‘ ‘

Used for command substitution
Enclosed string is executed as a command
Example: echo ‘pwd‘ prints the output of the pwd command i.e. print
working directory
In bash, you can also use $(· · ·) instead of ‘· · ·‘
e.g. $(pwd) and ‘pwd‘ are the same

Shell Scripting Sep 25 & Oct 2, 2013 34/136

HPC Training: Fall 2013 34 / 136

Quotation II

#!/bin/bash

HI=Hello

echo HI # displays HI
echo $HI # displays Hello
echo \$HI # displays $HI
echo "$HI" # displays Hello
echo ’$HI’ # displays $HI
echo "$HIAlex" # displays nothing
echo "${HI}Alex" # displays HelloAlex
echo ‘pwd‘ # displays working directory
echo $(pwd) # displays working directory

~/Tutorials/BASH/scripts/day1/examples> ./quotes.sh
HI
Hello
$HI
Hello
$HI

HelloAlex
/home/apacheco/Tutorials/BASH/scripts/day1/examples
/home/apacheco/Tutorials/BASH/scripts/day1/examples
~/Tutorials/BASH/scripts/day1/examples>

Shell Scripting Sep 25 & Oct 2, 2013 35/136

HPC Training: Fall 2013 35 / 136

Outline

1 Overview of Introduction to Linux
Types of Shell
File Editing
Variables
File Permissions
Input and Output

2 Shell Scripting Basics
Start Up Scripts
Getting Started with Writing Simple Scripts

3 Beyond Basic Shell Scripting
Arithmetic Operations
Arrays
Flow Control
Command Line Arguments
Functions

4 Advanced Topics Preview

5 Wrap Up

6 Hands-On Exercises: Day 1

Shell Scripting Sep 25 & Oct 2, 2013 36/136

HPC Training: Fall 2013 36 / 136

Arithmetic Operations I

You can carry out numeric operations on integer variables

Operation Operator

Addition +
Subtraction -

Multiplication *
Division /

Exponentiation ** (bash only)
Modulo %

Arithmetic operations in bash can be done within the $((· · ·)) or
$[· · ·] commands
F Add two numbers: $((1+2))
F Multiply two numbers: $[$a*$b]
F You can also use the let command: let c=$a-$b

F or use the expr command: c=‘expr $a - $b‘

Shell Scripting Sep 25 & Oct 2, 2013 37/136

HPC Training: Fall 2013 37 / 136

Arithmetic Operations II

In tcsh,
F Add two numbers: @ x = 1 + 2
F Divide two numbers: @ x = $a / $b

F You can also use the expr command: set c = ‘expr $a % $b‘

Note the use of space

bash space required around operator in the expr command

tcsh space required between @ and variable, around = and numeric
operators.

You can also use C-style increment operators

bash let c+=1 or let c--

tcsh @ x -= 1 or @ x++

/=, *= and %= are also allowed.

bash

The above examples only work for integers.

What about floating point number?

Shell Scripting Sep 25 & Oct 2, 2013 38/136

HPC Training: Fall 2013 38 / 136

Arithmetic Operations III

Using floating point in bash or tcsh scripts requires an external
calculator like GNU bc.
F Add two numbers:

echo "3.8 + 4.2" | bc
F Divide two numbers and print result with a precision of 5 digits:

echo "scale=5; 2/5" | bc
F Call bc directly:

bc <<< "scale=5; 2/5"
F Use bc -l to see result in floating point at max scale:

bc -l <<< "2/5"

Shell Scripting Sep 25 & Oct 2, 2013 39/136

HPC Training: Fall 2013 39 / 136

Arrays I

bash and tcsh supports one-dimensional arrays.

Array elements may be initialized with the variable[xx] notation

variable[xx]=1

Initialize an array during declaration

bash name=(firstname ’last name’)

tcsh set name = (firstname ’last name’)

reference an element i of an array name

${name[i]}

print the whole array

bash ${name[@]}

tcsh ${name}

print length of array

bash ${#name[@]}

tcsh ${#name}

Shell Scripting Sep 25 & Oct 2, 2013 40/136

HPC Training: Fall 2013 40 / 136

Arrays II

print length of element i of array name

${#name[i]}

Note: In bash ${#name} prints the length of the first element of the
array

Add an element to an existing array

bash name=(title ${name[@]})

tcsh set name = (title "${name}")

In tcsh everything within "..." is one variable.

In the above tcsh example, title is first element of new array while
the second element is the old array name

copy an array name to an array user

bash user=(${name[@]})

tcsh set user = (${name})

Shell Scripting Sep 25 & Oct 2, 2013 41/136

HPC Training: Fall 2013 41 / 136

Arrays III

concatenate two arrays

bash nameuser=(${name[@]} ${user[@]})

tcsh set nameuser=(${name} ${user})

delete an entire array

unset name

remove an element i from an array

bash unset name[i]

tcsh @ j = $i - 1

@ k =$i + 1

set name = (${name[1-$j]} ${name[$k-]})

bash the first array index is zero (0)

tcsh the first array index is one (1)

Shell Scripting Sep 25 & Oct 2, 2013 42/136

HPC Training: Fall 2013 42 / 136

Arrays IV

name.sh

#!/bin/bash

echo "Print your first and last name"
read firstname lastname

name=($firstname $lastname)

echo "Hello " ${name[@]}

echo "Enter your salutation"
read title

echo "Enter your suffix"
read suffix

name=($title "${name[@]}" $suffix)
echo "Hello " ${name[@]}

unset name[2]
echo "Hello " ${name[@]}

name.csh

#!/bin/tcsh

echo "Print your first name"
set firstname = $<
echo "Print your last name"
set lastname = $<

set name = ($firstname $lastname)
echo "Hello " ${name}

echo "Enter your salutation"
set title = $<

echo "Enter your suffix"
set suffix = "$<"

set name = ($title $name $suffix)
echo "Hello " ${name}

@ i = $#name
set name = ($name[1-2] $name[4-$i])
echo "Hello " ${name}

~/Tutorials/BASH/scripts/day1/examples> ./name.sh
Print your first and last name
Alex Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

~/Tutorials/BASH/scripts/day1/examples> ./name.csh
Print your first name
Alex
Print your last name
Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

Shell Scripting Sep 25 & Oct 2, 2013 43/136

HPC Training: Fall 2013 43 / 136

Flow Control

Shell Scripting Languages execute commands in sequence similar to
programming languages such as C, Fortran, etc.

Control constructs can change the sequential order of commands.

Control constructs available in bash and tcsh are

1 Conditionals: if
2 Loops: for, while, until
3 Switches: case, switch

Shell Scripting Sep 25 & Oct 2, 2013 44/136

HPC Training: Fall 2013 44 / 136

if statement

An if/then construct tests whether the exit status of a list of
commands is 0, and if so, executes one or more commands.

bash

if [condition1]; then
some commands

elif [condition2]; then
some commands

else
some commands

fi

tcsh

if (condition1) then
some commands

else if (condition2) then
some commands

else
some commands

endif

Note the space between condition and "[" "]"

bash is very strict about spaces.

tcsh commands are not so strict about spaces.

tcsh uses the if-then-else if-else-endif similar to Fortran.

Shell Scripting Sep 25 & Oct 2, 2013 45/136

HPC Training: Fall 2013 45 / 136

File Test & Logical Operators

File Test Operators

Operation bash tcsh
file exists if [-e .bashrc] if (-e .tcshrc)
file is a regular file if [-f .bashrc]
file is a directory if [-d /home] if (-d /home)
file is not zero size if [-s .bashrc] if (! -z .tcshrc)
file has read permission if [-r .bashrc] if (-r .tcshrc)
file has write permission if [-w .bashrc] if (-w .tcshrc)
file has execute permission if [-x .bashrc] if (-x .tcshrc)

Logical Operators

! : NOT

&& : AND

|| : OR

if [! -e .bashrc]

if [-f .bashrc] && [-s .bashrc]

if [[-f .bashrc || -f .bash_profile]]

if (-e /.tcshrc && ! -z /.tcshrc)

Shell Scripting Sep 25 & Oct 2, 2013 46/136

HPC Training: Fall 2013 46 / 136

Integer & String Comparison Operators

Integer Comparison

Operation bash tcsh
equal to if [1 -eq 2] if (1 == 2)
not equal to if [$a -ne $b] if ($a != $b)
greater than if [$a -gt $b] if ($a > $b)
greater than or equal to if [1 -ge $b] if (1 >= $b)
less than if [$a -lt 2] if ($a < 2)
less than or equal to if [[$a -le $b]] if ($a <= $b)

String Comparison

Operation bash tcsh
equal to if [$a == $b] if ($a == $b)
not equal to if [$a != $b] if ($a != $b)
zero length or null if [-z $a] if ($%a == 0)
non zero length if [-n $a] if ($%a > 0)

Shell Scripting Sep 25 & Oct 2, 2013 47/136

HPC Training: Fall 2013 47 / 136

Examples

Condition tests using the if/then may be nested

read a
if ["$a" -gt 0]; then
if ["$a" -lt 5]; then

echo "The value of \"a\" lies somewhere between 0 and 5"
fi

fi

set a = $<
if ($a > 0) then

if ($a < 5) then
echo "The value of $a lies somewhere between 0 and 5

"
endif

endif

This is same as

read a
if [["$a" -gt 0 && "$a" -lt 5]]; then
echo "The value of $a lies somewhere between 0 and 5"

fi
OR
if ["$a" -gt 0] && ["$a" -lt 5]; then
echo "The value of $a lies somewhere between 0 and 5"

fi

set a = $<
if ("$a" > 0 && "$a" < 5) then

echo "The value of $a lies somewhere between 0 and 5"
endif

Shell Scripting Sep 25 & Oct 2, 2013 48/136

HPC Training: Fall 2013 48 / 136

Loop Constructs I

A loop is a block of code that iterates a list of commands as long as the
loop control condition is true.

Loop constructs available in

bash: for, while and until

tcsh: foreach and while

Shell Scripting Sep 25 & Oct 2, 2013 49/136

HPC Training: Fall 2013 49 / 136

Loop Constructs II

bash

The for loop is the basic looping construct in bash
for arg in list
do

some commands
done

the for and do lines can be written on the same line: for arg in list ; do

for loops can also use C style syntax
for ((EXP1; EXP2; EXP3)); do

some commands
done

for i in $(seq 1 10)
do

touch file${i}.dat
done

for i in $(seq 1 10); do
touch file${i}.dat

done

for ((i=1;i<=10;i++))
do

touch file${i}.dat
done

Shell Scripting Sep 25 & Oct 2, 2013 50/136

HPC Training: Fall 2013 50 / 136

Loop Constructs III

tcsh

The foreach loop is the basic looping construct in tcsh
foreach arg (list)

some commands
end

foreach i (‘seq 1 10‘)
touch file$i.dat

end

Shell Scripting Sep 25 & Oct 2, 2013 51/136

HPC Training: Fall 2013 51 / 136

Loop Constructs IV

while loop

The while construct tests for a condition at the top of a loop, and
keeps looping as long as that condition is true (returns a 0 exit status).

In contrast to a for loop, a while loop finds use in situations where
the number of loop repetitions is not known beforehand.

bash
while [condition]
do
some commands

done

tcsh
while (condition)

some commands
end

factorial.sh

#!/bin/bash

read counter
factorial=1
while [$counter -gt 0]
do

factorial=$(($factorial * $counter))
counter=$(($counter - 1))

done
echo $factorial

factorial.csh

#!/bin/tcsh

set counter = $<
set factorial = 1
while ($counter > 0)

@ factorial = $factorial * $counter
@ counter -= 1

end
echo $factorial

Shell Scripting Sep 25 & Oct 2, 2013 52/136

HPC Training: Fall 2013 52 / 136

Loop Constructs V

until loop

The until construct tests for a condition at the top of a loop, and keeps
looping as long as that condition is false (opposite of while loop).
until [condition is true]
do

some commands
done

factorial2.sh

#!/bin/bash

read counter
factorial=1
until [$counter -le 1]; do
factorial=$[$factorial * $counter]
if [$counter -eq 2]; then

break
else
let counter-=2

fi
done
echo $factorial

Shell Scripting Sep 25 & Oct 2, 2013 53/136

HPC Training: Fall 2013 53 / 136

Loop Constructs VI

for, while & until loops can nested. To exit from the loop use the
break command

nestedloops.sh

#!/bin/bash

Example of Nested loops

echo "Nested for loops"
for a in $(seq 1 5) ; do

echo "Value of a in outer loop:" $a
for b in ‘seq 1 2 5‘ ; do

c=$(($a*$b))
if [$c -lt 10]; then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 10"
break

fi
done

done
echo "========================"
echo
echo "Nested for and while loops"
for ((a=1;a<=5;a++)); do
echo "Value of a in outer loop:" $a
b=1
while [$b -le 5]; do

c=$(($a*$b))
if [$c -lt 5]; then
echo "a * b = $a * $b = $c"

else
echo "$a * $b > 5"
break

fi
let b+=2

done
done
echo "========================"

nestedloops.csh

#!/bin/tcsh

Example of Nested loops

echo "Nested for loops"
foreach a (‘seq 1 5‘)

echo "Value of a in outer loop:" $a
foreach b (‘seq 1 2 5‘)

@ c = $a * $b
if ($c < 10) then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 10"
break

endif
end

end
echo "========================"
echo
echo "Nested for and while loops"
foreach a (‘seq 1 5‘)

echo "Value of a in outer loop:" $a
set b = 1
while ($b <= 5)

@ c = $a * $b
if ($c < 5) then

echo "a * b = $a * $b = $c"
else

echo "$a * $b > 5"
break

endif
@ b = $b + 2

end
end
echo "========================"

Shell Scripting Sep 25 & Oct 2, 2013 54/136

HPC Training: Fall 2013 54 / 136

Loop Constructs VII

~/Tutorials/BASH/scripts/day1/examples> ./nestedloops.sh
Nested for loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
a * b = 1 * 5 = 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
a * b = 2 * 3 = 6
2 * 5 > 10
Value of a in outer loop: 3
a * b = 3 * 1 = 3
a * b = 3 * 3 = 9
3 * 5 > 10
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 10
Value of a in outer loop: 5
a * b = 5 * 1 = 5
5 * 3 > 10
========================

Nested for and while loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
1 * 5 > 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
2 * 3 > 5
Value of a in outer loop: 3
a * b = 3 * 1 = 3
3 * 3 > 5
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 5
Value of a in outer loop: 5
5 * 1 > 5
========================

~/Tutorials/BASH/scripts> ./day1/examples/nestedloops.csh
Nested for loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
a * b = 1 * 5 = 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
a * b = 2 * 3 = 6
2 * 5 > 10
Value of a in outer loop: 3
a * b = 3 * 1 = 3
a * b = 3 * 3 = 9
3 * 5 > 10
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 10
Value of a in outer loop: 5
a * b = 5 * 1 = 5
5 * 3 > 10
========================

Nested for and while loops
Value of a in outer loop: 1
a * b = 1 * 1 = 1
a * b = 1 * 3 = 3
1 * 5 > 5
Value of a in outer loop: 2
a * b = 2 * 1 = 2
2 * 3 > 5
Value of a in outer loop: 3
a * b = 3 * 1 = 3
3 * 3 > 5
Value of a in outer loop: 4
a * b = 4 * 1 = 4
4 * 3 > 5
Value of a in outer loop: 5
5 * 1 > 5
========================

Shell Scripting Sep 25 & Oct 2, 2013 55/136

HPC Training: Fall 2013 55 / 136

Switching or Branching Constructs I

The case and select constructs are technically not loops, since they do not iterate the
execution of a code block.

Like loops, however, they direct program flow according to conditions at the top or bottom of
the block.

case construct

case variable in
"condition1")

some command
;;

"condition2")
some other command
;;

esac

select construct

select variable [list]
do

command
break

done

Shell Scripting Sep 25 & Oct 2, 2013 56/136

HPC Training: Fall 2013 56 / 136

Switching or Branching Constructs II

tcsh has the switch construct

switch construct

switch (arg list)
case "variable"
some command
breaksw

endsw

Shell Scripting Sep 25 & Oct 2, 2013 57/136

HPC Training: Fall 2013 57 / 136

Switching or Branching Constructs III

dooper.sh

#!/bin/bash

echo "Print two numbers"
read num1 num2
echo "What operation do you want to do?"

operations=’add subtract multiply divide
exponentiate modulo all quit’

select oper in $operations ; do
case $oper in

"add")
echo "$num1 + $num2 =" $[$num1 + $num2]
;;

"subtract")
echo "$num1 - $num2 =" $[$num1 - $num2]
;;

"multiply")
echo "$num1 * $num2 =" $[$num1 * $num2]
;;

"exponentiate")
echo "$num1 ** $num2 =" $[$num1 ** $num2]
;;

"divide")
echo "$num1 / $num2 =" $[$num1 / $num2]
;;

"modulo")
echo "$num1 % $num2 =" $[$num1 % $num2]
;;

"all")
echo "$num1 + $num2 =" $[$num1 + $num2]
echo "$num1 - $num2 =" $[$num1 - $num2]
echo "$num1 * $num2 =" $[$num1 * $num2]
echo "$num1 ** $num2 =" $[$num1 ** $num2]
echo "$num1 / $num2 =" $[$num1 / $num2]
echo "$num1 % $num2 =" $[$num1 % $num2]

;;
*)

exit
;;

esac
done

dooper.csh

#!/bin/tcsh

echo "Print two numbers one at a time"
set num1 = $<
set num2 = $<
echo "What operation do you want to do?"
echo "Enter +, -, x, /, % or all"
set oper = $<

switch ($oper)
case "x"

@ prod = $num1 * $num2
echo "$num1 * $num2 = $prod"
breaksw

case "all"
@ sum = $num1 + $num2
echo "$num1 + $num2 = $sum"
@ diff = $num1 - $num2
echo "$num1 - $num2 = $diff"
@ prod = $num1 * $num2
echo "$num1 * $num2 = $prod"
@ ratio = $num1 / $num2
echo "$num1 / $num2 = $ratio"
@ remain = $num1 % $num2
echo "$num1 % $num2 = $remain"
breaksw

case "*"
@ result = $num1 $oper $num2
echo "$num1 $oper $num2 = $result"
breaksw

endsw

Shell Scripting Sep 25 & Oct 2, 2013 58/136

HPC Training: Fall 2013 58 / 136

Switching or Branching Constructs IV

~/Tutorials/BASH/scripts> ./day1/examples/dooper.sh
Print two numbers
1 4
What operation do you want to do?
1) add 3) multiply 5) exponentiate 7) all
2) subtract 4) divide 6) modulo 8) quit
#? 7
1 + 4 = 5
1 - 4 = -3
1 * 4 = 4
1 ** 4 = 1
1 / 4 = 0
1 % 4 = 1
#? 8

~/Tutorials/BASH/scripts> ./day1/examples/dooper.csh
Print two numbers one at a time
1
5
What operation do you want to do?
Enter +, -, x, /, % or all
all
1 + 5 = 6
1 - 5 = -4
1 * 5 = 5
1 / 5 = 0
1 % 5 = 1

Shell Scripting Sep 25 & Oct 2, 2013 59/136

HPC Training: Fall 2013 59 / 136

Command Line Arguments I

Similar to programming languages, bash (and other shell scripting languages)
can also take command line arguments

� ./scriptname arg1 arg2 arg3 arg4 ...

� $0,$1,$2,$3, etc: positional parameters corresponding to
./scriptname,arg1,arg2,arg3,arg4,... respectively

� $#: number of command line arguments
� $*: all of the positional parameters, seen as a single word
� $@: same as $* but each parameter is a quoted string.
� shift N: shift positional parameters from N+1 to $# are renamed to variable names from $1 to

$# - N + 1

In csh,tcsh

F an array argv contains the list of arguments with argv[0] set to name of script.
F #argv is the number of arguments i.e. length of argv array.

Shell Scripting Sep 25 & Oct 2, 2013 60/136

HPC Training: Fall 2013 60 / 136

Command Line Arguments II

shift.sh

#!/bin/bash

USAGE="USAGE: $0 <at least 1 argument>"

if [["$#" -lt 1]]; then
echo $USAGE
exit

fi

echo "Number of Arguments: " $#
echo "List of Arguments: " $@
echo "Name of script that you are running: " $0
echo "Command You Entered:" $0 $*

while ["$#" -gt 0]; do
echo "Argument List is: " $@
echo "Number of Arguments: " $#
shift

done

shift.csh

#!/bin/tcsh

set USAGE="USAGE: $0 <at least 1 argument>"

if ("$#argv" < 1) then
echo $USAGE
exit

endif

echo "Number of Arguments: " $#argv
echo "List of Arguments: " ${argv}
echo "Name of script that you are running: " $0
echo "Command You Entered:" $0 ${argv}

while ("$#argv" > 0)
echo "Argument List is: " $*
echo "Number of Arguments: " $#argv
shift

end

~/Tutorials/BASH/scripts/day1/examples> ./shift.sh $(seq 1 5)
Number of Arguments: 5
List of Arguments: 1 2 3 4 5
Name of script that you are running: ./shift.sh
Command You Entered: ./shift.sh 1 2 3 4 5
Argument List is: 1 2 3 4 5
Number of Arguments: 5
Argument List is: 2 3 4 5
Number of Arguments: 4
Argument List is: 3 4 5
Number of Arguments: 3
Argument List is: 4 5
Number of Arguments: 2
Argument List is: 5
Number of Arguments: 1

~/Tutorials/BASH/scripts/day1/examples> ./shift.csh $(seq 1 5)
Number of Arguments: 5
List of Arguments: 1 2 3 4 5
Name of script that you are running: ./shift.csh
Command You Entered: ./shift.csh 1 2 3 4 5
Argument List is: 1 2 3 4 5
Number of Arguments: 5
Argument List is: 2 3 4 5
Number of Arguments: 4
Argument List is: 3 4 5
Number of Arguments: 3
Argument List is: 4 5
Number of Arguments: 2
Argument List is: 5
Number of Arguments: 1

Shell Scripting Sep 25 & Oct 2, 2013 61/136

HPC Training: Fall 2013 61 / 136

Declare command

Use the declare command to set variable and functions attributes.

Create a constant variable i.e. read only variable

Syntax: declare -r var

declare -r varName=value

Create an integer variable

Syntax: declare -i var

declare -i varName=value

You can carry out arithmetic operations on variables declared as
integers

~/Tutorials/BASH> j=10/5 ; echo $j
10/5
~/Tutorials/BASH> declare -i j; j=10/5 ; echo $j
2

Shell Scripting Sep 25 & Oct 2, 2013 62/136

HPC Training: Fall 2013 62 / 136

Functions I

Like "real" programming languages, bash has functions.

A function is a subroutine, a code block that implements a set of
operations, a "black box" that performs a specified task.

Wherever there is repetitive code, when a task repeats with only slight
variations in procedure, then consider using a function.

function function_name {
command

}
OR
function_name () {
command

}

Shell Scripting Sep 25 & Oct 2, 2013 63/136

HPC Training: Fall 2013 63 / 136

Functions II

shift10.sh

#!/bin/bash

usage () {
echo "USAGE: $0 [atleast 11 arguments]"
exit

}

[["$#" -lt 11]] && usage

echo "Number of Arguments: " $#
echo "List of Arguments: " $@
echo "Name of script that you are running: " $0
echo "Command You Entered:" $0 $*
echo "First Argument" $1
echo "Tenth and Eleventh argument" $10 $11 ${10} ${11}

echo "Argument List is: " $@
echo "Number of Arguments: " $#
shift 9
echo "Argument List is: " $@
echo "Number of Arguments: " $#

~/Tutorials/BASH/scripts/day1/examples> ./shift10.sh ‘seq 1 2 22‘
Number of Arguments: 11
List of Arguments: 1 3 5 7 9 11 13 15 17 19 21
Name of script that you are running: ./shift10.sh
Command You Entered: ./shift10.sh 1 3 5 7 9 11 13 15 17 19 21
First Argument 1
Tenth and Eleventh argument 10 11 19 21
Argument List is: 1 3 5 7 9 11 13 15 17 19 21
Number of Arguments: 11
Argument List is: 19 21
Number of Arguments: 2

Shell Scripting Sep 25 & Oct 2, 2013 64/136

HPC Training: Fall 2013 64 / 136

Functions III

You can also pass arguments to a function.

All function parameters or arguments can be accessed via $1, $2, $3,..., $N.

$0 always point to the shell script name.

$* or $@ holds all parameters or arguments passed to the function.

$# holds the number of positional parameters passed to the function.

Array variable called FUNCNAME contains the names of all shell functions currently in the
execution call stack.

By default all variables are global.

Modifying a variable in a function changes it in the whole script.

You can create a local variables using the local command

Syntax: local var=value

local varName

Shell Scripting Sep 25 & Oct 2, 2013 65/136

HPC Training: Fall 2013 65 / 136

Functions IV

A function may recursively call itself even without use of local variables.

factorial3.sh

#!/bin/bash

usage () {
echo "USAGE: $0 <integer>"
exit

}

factorial() {
local i=$1
local f

declare -i i
declare -i f

if [["$i" -le 2 && "$i" -ne 0]]; then
echo $i

elif [["$i" -eq 0]]; then
echo 1

else
f=$(($i - 1))
f=$(factorial $f)
f=$(($f * $i))
echo $f

fi
}

if [["$#" -eq 0]]; then
usage

else
for i in $@ ; do
x=$(factorial $i)
echo "Factorial of $i is $x"

done
fi

~/Tutorials/BASH/scripts/day1/examples>./factorial3.sh 1 3 5 7 9 15
Factorial of 1 is 1
Factorial of 3 is 6
Factorial of 5 is 120
Factorial of 7 is 5040
Factorial of 9 is 362880
Factorial of 15 is 1307674368000

Shell Scripting Sep 25 & Oct 2, 2013 66/136

HPC Training: Fall 2013 66 / 136

Outline

1 Overview of Introduction to Linux
Types of Shell
File Editing
Variables
File Permissions
Input and Output

2 Shell Scripting Basics
Start Up Scripts
Getting Started with Writing Simple Scripts

3 Beyond Basic Shell Scripting
Arithmetic Operations
Arrays
Flow Control
Command Line Arguments
Functions

4 Advanced Topics Preview

5 Wrap Up

6 Hands-On Exercises: Day 1

Shell Scripting Sep 25 & Oct 2, 2013 67/136

HPC Training: Fall 2013 67 / 136

grep & egrep

grep is a Unix utility that searches through either information piped to it
or files in the current directory.

egrep is extended grep, same as grep -E

Use zgrep for compressed files.

Usage: grep <options> <search pattern> <files>

Commonly used options
-i : ignore case during search
-r : search recursively
-v : invert match i.e. match everything except pattern
-l : list files that match pattern

-L : list files that do not match pattern
-n : prefix each line of output with the line number within its input file.

Shell Scripting Sep 25 & Oct 2, 2013 68/136

HPC Training: Fall 2013 68 / 136

sed

sed ("stream editor") is Unix utility for parsing and transforming text files.

sed is line-oriented, it operates one line at a time and allows regular expression matching
and substitution.

The most commonly used feature of sed is the ’s’ (substitution command)

� echo Auburn Tigers | sed ’s/Auburn/LSU/g’
F Add the -e to carry out multiple matches.
� echo LSU Tigers | sed -e ’s/LSU/LaTech/g’ -e ’s/Tigers/Bulldogs/g’
F insert a blank line above and below the lines that match regex:

sed ’/regex/{x;p;x;G;}’
F delete all blank lines in a file: sed ’/ˆ$/d’
F delete lines n through m in file: sed ’n,md’
F delete lines matching pattern regex: sed ’/regex/d’
F print only lines which match regular expression: sed -n ’/regex/p’
F print section of file between two regex: sed -n ’/regex1/,/regex2/p’
F print section of file from regex to enf of file: sed -n ’/regex1/,$p’

sed one-liners: http://sed.sourceforge.net/sed1line.txt

Shell Scripting Sep 25 & Oct 2, 2013 69/136

HPC Training: Fall 2013 69 / 136

http://sed.sourceforge.net/sed1line.txt

awk

The Awk text-processing language is useful for such tasks as:
F Tallying information from text files and creating reports from the results.
F Adding additional functions to text editors like "vi".
F Translating files from one format to another.
F Creating small databases.
F Performing mathematical operations on files of numeric data.

Awk has two faces:
F it is a utility for performing simple text-processing tasks, and
F it is a programming language for performing complex text-processing tasks.

Simplest form of using awk
� awk search pattern {program actions}
� Most command action: print
� Print file dosum.sh: awk ’{print $0}’ dosum.sh
� Print line matching bash in all files in current directory:

awk ’/bash/{print $0}’ *.sh

awk supports the if conditional and for loops

awk ’{ if (NR > 0){print "File not empty"}}’ hello.sh

awk ’{for (i=1;i<=NF;i++){print $i}}’ name.sh

ls *.sh | awk -F. ’{print $1}’

NR≡Number of records; NF≡Number of fields (or columns)

awk one-liners: http://www.pement.org/awk/awk1line.txt

Shell Scripting Sep 25 & Oct 2, 2013 70/136

HPC Training: Fall 2013 70 / 136

http://www.pement.org/awk/awk1line.txt

Scripting for Job Submission I

Problem Description

I have to run more than one serial job.

I don’t want to submit multiple job using the serial queue

How do I submit one job which can run multiple serial jobs?

One Solution of many

Write a script which will log into all unique nodes and run your serial
jobs in background.

Easy said than done

What do you need to know?
1 Shell Scripting
2 How to run a job in background
3 Know what the wait command does

Shell Scripting Sep 25 & Oct 2, 2013 71/136

HPC Training: Fall 2013 71 / 136

Scripting for Job Submission II

[apacheco@eric2 traininglab]$ cat checknodes.sh
#!/bin/bash
#
#PBS -q checkpt
#PBS -l nodes=4:ppn=4
#PBS -l walltime=00:10:00
#PBS -V
#PBS -o nodetest.out
#PBS -e nodetest.err
#PBS -N testing
#

export WORK_DIR=$PBS_O_WORKDIR
export NPROCS=‘wc -l $PBS_NODEFILE |gawk ’//{print $1}’‘
NODES=(‘cat "$PBS_NODEFILE"‘)
UNODES=(‘uniq "$PBS_NODEFILE"‘)

echo "Nodes Available: " ${NODES[@]}
echo "Unique Nodes Available: " ${UNODES[@]}

echo "Get Hostnames for all processes"
i=0
for nodes in "${NODES[@]}"; do

ssh -n $nodes ’echo $HOSTNAME ’$i’ ’ &
let i=i+1

done
wait

echo "Get Hostnames for all unique nodes"
i=0
NPROCS=‘uniq $PBS_NODEFILE | wc -l |gawk ’//{print $1}’‘
let NPROCS-=1
while [$i -le $NPROCS] ; do

ssh -n ${UNODES[$i]} ’echo $HOSTNAME ’$i’ ’
let i=i+1

done

Shell Scripting Sep 25 & Oct 2, 2013 72/136

HPC Training: Fall 2013 72 / 136

Scripting for Job Submission III

[apacheco@eric2 traininglab]$ qsub checknodes.sh
[apacheco@eric2 traininglab]$ cat nodetest.out

Running PBS prologue script

User and Job Data:

Job ID: 422409.eric2
Username: apacheco
Group: loniadmin
Date: 25-Sep-2012 11:01
Node: eric010 (3053)

PBS has allocated the following nodes:

eric010
eric012
eric013
eric026

A total of 16 processors on 4 nodes allocated

Check nodes and clean them of stray processes

Checking node eric010 11:01:52
Checking node eric012 11:01:54
Checking node eric013 11:01:56
Checking node eric026 11:01:57
Done clearing all the allocated nodes
--
Concluding PBS prologue script - 25-Sep-2012 11:01:57
--
Nodes Available: eric010 eric010 eric010 eric010 eric012 eric012 eric012 eric012 eric013 eric013 eric013 eric013

eric026 eric026
eric026 eric026
Unique Nodes Available: eric010 eric012 eric013 eric026

Shell Scripting Sep 25 & Oct 2, 2013 73/136

HPC Training: Fall 2013 73 / 136

Scripting for Job Submission IV

Get Hostnames for all processes
eric010 3
eric012 5
eric010 1
eric012 6
eric012 4
eric013 10
eric010 2
eric012 7
eric013 8
eric013 9
eric026 15
eric013 11
eric010 0
eric026 13
eric026 12
eric026 14
Get Hostnames for all unique nodes
eric010 0
eric012 1
eric013 2
eric026 3
--
Running PBS epilogue script - 25-Sep-2012 11:02:00
--
Checking node eric010 (MS)
Checking node eric026 ok
Checking node eric013 ok
Checking node eric012 ok
Checking node eric010 ok
--
Concluding PBS epilogue script - 25-Sep-2012 11:02:06
--
Exit Status:
Job ID: 422409.eric2
Username: apacheco

Shell Scripting Sep 25 & Oct 2, 2013 74/136

HPC Training: Fall 2013 74 / 136

Scripting for Job Submission V

Group: loniadmin
Job Name: testing
Session Id: 3052
Resource Limits: ncpus=1,nodes=4:ppn=4,walltime=00:10:00
Resources Used: cput=00:00:00,mem=5260kb,vmem=129028kb,walltime=00:00:01
Queue Used: checkpt
Account String: loni_loniadmin1
Node: eric010
Process id: 4101
--

Shell Scripting Sep 25 & Oct 2, 2013 75/136

HPC Training: Fall 2013 75 / 136

Outline

1 Overview of Introduction to Linux
Types of Shell
File Editing
Variables
File Permissions
Input and Output

2 Shell Scripting Basics
Start Up Scripts
Getting Started with Writing Simple Scripts

3 Beyond Basic Shell Scripting
Arithmetic Operations
Arrays
Flow Control
Command Line Arguments
Functions

4 Advanced Topics Preview

5 Wrap Up

6 Hands-On Exercises: Day 1

Shell Scripting Sep 25 & Oct 2, 2013 76/136

HPC Training: Fall 2013 76 / 136

References & Further Reading

BASH Programming http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

CSH Programming http://www.grymoire.com/Unix/Csh.html

csh Programming Considered Harmful
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Wiki Books http://en.wikibooks.org/wiki/Subject:Computing

Shell Scripting Sep 25 & Oct 2, 2013 77/136

HPC Training: Fall 2013 77 / 136

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://www.grymoire.com/Unix/Csh.html
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://en.wikibooks.org/wiki/Subject:Computing

Additional Help

Online Courses: https://docs.loni.org/moodle

Contact us
� Email ticket system: sys-help@loni.org
� Telephone Help Desk: 225-578-0900
� Instant Messenger (AIM, Yahoo Messenger, Google Talk)

F Add "lsuhpchelp"

Shell Scripting Sep 25 & Oct 2, 2013 78/136

HPC Training: Fall 2013 78 / 136

https://docs.loni.org/moodle

The End
Any Questions?

Next Week

Advanced Shell Scripting (awk, sed, grep, regex)

Survey:
http://www.hpc.lsu.edu/survey

Shell Scripting Sep 25 & Oct 2, 2013 79/136

HPC Training: Fall 2013 79 / 136

http://www.hpc.lsu.edu/survey

Outline

1 Overview of Introduction to Linux
Types of Shell
File Editing
Variables
File Permissions
Input and Output

2 Shell Scripting Basics
Start Up Scripts
Getting Started with Writing Simple Scripts

3 Beyond Basic Shell Scripting
Arithmetic Operations
Arrays
Flow Control
Command Line Arguments
Functions

4 Advanced Topics Preview

5 Wrap Up

6 Hands-On Exercises: Day 1

Shell Scripting Sep 25 & Oct 2, 2013 80/136

HPC Training: Fall 2013 80 / 136

Exercises

1 Create shell scripts to do the following

Write a simple hello world script
Modify the above script to use a variable
Modify the above script to prompt you for your name and then
display your name with a greeting.

2 Write a script to add/subtract/multiply/divide two numbers.

3 Write a script to read your first and last name to an array.

Add your salutation and suffix to the array.
Drop either the salutation or suffix.
Print the array after each of the three steps above.

4 Write a script to calculate the factorial and double factorial of an integer
or list of integers.

Shell Scripting Sep 25 & Oct 2, 2013 81/136

HPC Training: Fall 2013 81 / 136

Solution 1

hellovariable.sh

#!/bin/bash

Hello World script using a variable
STR="Hello World!"
echo $STR

helloname.sh

#!/bin/bash

My Second Script

echo Please Enter your name:
read name1 name2
Greet="Welcome to HPC Training"
echo "Hello $name1 $name2, $Greet"

~/Tutorials/BASH/scripts/day1/solution> ./hellovariable.sh
Hello World!

~/Tutorials/BASH/scripts/day1/solution> ./helloname.sh
Please Enter your name:
Alex Pacheco
Hello Alex Pacheco, Welcome to HPC Training

Shell Scripting Sep 25 & Oct 2, 2013 82/136

HPC Training: Fall 2013 82 / 136

Solution 2

dosum.sh

#!/bin/bash

echo "Enter two integers"
read num1 num2

echo "$num1 + $num2 = " $num1 + $num2
echo "$num1 + $num2 = " $(($num1 + $num2))

let SUM=$num1+$num2
echo "sum of $num1 & $num2 is " $SUM

echo "$num1/$num2 = " $(echo "scale=5;$num1/$num2" | bc)
echo "$num2/$num1 = " $(bc -l <<< $num2/$num1)

exit

doratio.csh

#!/bin/tcsh

echo "Enter first integer"
set num1 = $<
set num2 = $<

echo "$num1 / $num2 = " $num1 / $num2

@ RATIO = $num1 / $num2
echo "ratio of $num1 & $num2 is " $RATIO

set ratio=‘echo "scale=5 ; $num1/$num2" | bc‘
echo "ratio of $num1 & $num2 is " $ratio

exit

~/Tutorials/BASH/scripts/day1/solution> ./dosum.sh
Enter two integers
5 7
5 + 7 = 5 + 7
5 + 7 = 12
sum of 5 & 7 is 12
5/7 = .71428
7/5 = 1.40000000000000000000

~/Tutorials/BASH/scripts/day1/solution> ./doratio.csh
Enter first integer
5
7
5 / 7 = 5 / 7
ratio of 5 & 7 is 0
ratio of 5 & 7 is .71428

Shell Scripting Sep 25 & Oct 2, 2013 83/136

HPC Training: Fall 2013 83 / 136

Alternate Solution 2

dooper.sh

#!/bin/bash

echo "Print two numbers"
read num1 num2
echo "What operation do you want to do?"

operations=’add subtract multiply divide
exponentiate modulo all quit’

select oper in $operations ; do
case $oper in

"add")
echo "$num1 + $num2 =" $[$num1 + $num2]
;;

"subtract")
echo "$num1 - $num2 =" $[$num1 - $num2]
;;

"multiply")
echo "$num1 * $num2 =" $[$num1 * $num2]
;;

"exponentiate")
echo "$num1 ** $num2 =" $[$num1 ** $num2]
;;

"divide")
echo "$num1 / $num2 =" $[$num1 / $num2]
;;

"modulo")
echo "$num1 % $num2 =" $[$num1 % $num2]
;;

"all")
echo "$num1 + $num2 =" $[$num1 + $num2]
echo "$num1 - $num2 =" $[$num1 - $num2]
echo "$num1 * $num2 =" $[$num1 * $num2]
echo "$num1 ** $num2 =" $[$num1 ** $num2]
echo "$num1 / $num2 =" $[$num1 / $num2]
echo "$num1 % $num2 =" $[$num1 % $num2]

;;
*)

exit
;;

esac
done

dooper.csh

#!/bin/tcsh

echo "Print two numbers one at a time"
set num1 = $<
set num2 = $<
echo "What operation do you want to do?"
echo "Enter +, -, x, /, % or all"
set oper = $<

switch ($oper)
case "x"

@ prod = $num1 * $num2
echo "$num1 * $num2 = $prod"
breaksw

case "all"
@ sum = $num1 + $num2
echo "$num1 + $num2 = $sum"
@ diff = $num1 - $num2
echo "$num1 - $num2 = $diff"
@ prod = $num1 * $num2
echo "$num1 * $num2 = $prod"
@ ratio = $num1 / $num2
echo "$num1 / $num2 = $ratio"
@ remain = $num1 % $num2
echo "$num1 % $num2 = $remain"
breaksw

case "*"
@ result = $num1 $oper $num2
echo "$num1 $oper $num2 = $result"
breaksw

endsw

Shell Scripting Sep 25 & Oct 2, 2013 84/136

HPC Training: Fall 2013 84 / 136

Solution 3

name.sh

#!/bin/bash

echo "Print your first and last name"
read firstname lastname

name=($firstname $lastname)

echo "Hello " ${name[@]}

echo "Enter your salutation"
read title

echo "Enter your suffix"
read suffix

name=($title "${name[@]}" $suffix)
echo "Hello " ${name[@]}

unset name[2]
echo "Hello " ${name[@]}

name.csh

#!/bin/tcsh

echo "Print your first name"
set firstname = $<
echo "Print your last name"
set lastname = $<

set name = ($firstname $lastname)
echo "Hello " ${name}

echo "Enter your salutation"
set title = $<

echo "Enter your suffix"
set suffix = "$<"

set name = ($title $name $suffix)
echo "Hello " ${name}

@ i = $#name
set name = ($name[1-2] $name[4-$i])
echo "Hello " ${name}

~/Tutorials/BASH/scripts/day1/solution> ./name.sh
Print your first and last name
Alex Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

~/Tutorials/BASH/scripts/day1/solution> ./name.csh
Print your first name
Alex
Print your last name
Pacheco
Hello Alex Pacheco
Enter your salutation
Dr.
Enter your suffix
the first
Hello Dr. Alex Pacheco the first
Hello Dr. Alex the first

Shell Scripting Sep 25 & Oct 2, 2013 85/136

HPC Training: Fall 2013 85 / 136

Solution 4
fac2.sh

#!/bin/bash

echo "Enter the integer whose factorial and double factorial you
want to calculate"

read counter
factorial=1
i=$counter
while [$i -gt 1]; do

factorial=$[$factorial * $i]
let i-=1

done

i=$counter
dfactorial=1
until [$i -le 2]; do
dfactorial=$[$dfactorial * $i]
let i-=2

done

echo "$counter! = $factorial & $counter!! = $dfactorial"

fac2.csh

#!/bin/tcsh

echo "Enter the integer whose factorial and double factorial you
want to calculate"

set counter = $<
@ factorial = 1
@ i = $counter
while ($i > 1)

@ factorial = $factorial * $i
@ i--

end

@ i = $counter
@ dfactorial = 1
while ($i >= 1)
@ dfactorial = $dfactorial * $i
@ i = $i - 2

end

echo "$counter\! = $factorial & $counter\!\! = $dfactorial"

fac3.sh

#!/bin/bash

usage () {
echo "USAGE: $0 <integer>"
exit

}

factorial() {
local i=$1
local f
local type=$2

declare -i i
declare -i f

if [["$i" -le 2 && "$i" -ne 0]]; then
echo $i

elif [["$i" -eq 0]]; then
echo 1

else
case $type in
"single")
f=$(($i - 1))
;;

"double")
f=$(($i - 2))
;;

esac
f=$(factorial $f $type)
f=$(($f * $i))
echo $f

fi
}

if [["$#" -eq 0]]; then
usage

else
for i in $@ ; do
x=$(factorial $i single)
y=$(factorial $i double)
echo "$i! = $x & $i!! = $y"

done
fi

Shell Scripting Sep 25 & Oct 2, 2013 86/136

HPC Training: Fall 2013 86 / 136

Part II

Advanced Shell Scripting

Shell Scripting Sep 25 & Oct 2, 2013 87/136

HPC Training: Fall 2013 87 / 136

Outline

7 Regular Expressions

8 File Manipulation
cut
paste & join
split & csplit

9 grep

10 sed

11 awk

12 Wrap Up

Shell Scripting Sep 25 & Oct 2, 2013 88/136

HPC Training: Fall 2013 88 / 136

Regular Expressions

A regular expression (regex) is a method of representing a string matching
pattern.

Regular expressions enable strings that match a particular pattern within textual
data records to be located and modified and they are often used within utility
programs and programming languages that manipulate textual data.

Regular expressions are extremely powerful.

Supporting Software and Tools

1 Command Line Tools: grep, egrep, sed
2 Editors: ed, vi, emacs
3 Languages: awk, perl, python, php, ruby, tcl, java, javascript, .NET

Shell Scripting Sep 25 & Oct 2, 2013 89/136

HPC Training: Fall 2013 89 / 136

Shell Regular Expressions

The Unix shell recognises a limited form of regular expressions used
with filename substitution

? : match any single character.

∗ : match zero or more characters.

[] : match list of characters in the list specified

[!] : match characters not in the list specified

Examples:

1 ls *
2 cp [a-z]* lower/
3 cp [!a-z]* upper_digit/

Shell Scripting Sep 25 & Oct 2, 2013 90/136

HPC Training: Fall 2013 90 / 136

POSIX Regular Expressions I

. : Matches any single character. For example, a.c matches "abc", etc.

[] : A bracket expression. Matches a single character that is contained within the brackets. For
example, [abc] matches "a", "b", or "c". [a-z] specifies a range which matches any lowercase
letter from "a" to "z". These forms can be mixed: [abcx-z] matches "a", "b", "c", "x", "y", or
"z", as does [a-cx-z].

[^] : Matches a single character that is not contained within the brackets. For example, [^abc]
matches any character other than "a", "b", or "c". [^a-z] matches any single character that is
not a lowercase letter from "a" to "z".

() : Defines a marked subexpression. The string matched within the parentheses can be
recalled later. A marked subexpression is also called a block or capturing group

^ : Matches the starting position within the string. In line-based tools, it matches the starting
position of any line.

$: Matches the ending position of the string or the position just before a string-ending newline.
In line-based tools, it matches the ending position of any line.

∗ : Matches the preceding element zero or more times. For example, ab*c matches "ac",
"abc", "abbbc", etc. [xyz]* matches ", "x", "y", "z", "zx", "zyx", "xyzzy", and so on. (ab)*
matches "", "ab", "abab", "ababab", and so on.

{m,n} : Matches the preceding element at least m and not more than n times. For example, a{3,5}
matches only "aaa", "aaaa", and "aaaaa".

Shell Scripting Sep 25 & Oct 2, 2013 91/136

HPC Training: Fall 2013 91 / 136

POSIX Regular Expressions II

+ : Match the last "block" one or more times - "ba+" matches "ba", "baa", "baaa" and so on

? : Match the last "block" zero or one times - "ba?" matches "b" or "ba"

| : The choice (or set union) operator: match either the expression before or the expression
after the operator - "abc|def" matches "abc" or "def".

These regular expressions can be used in most unix utilities such as awk, sed, grep, vim,
etc. as will seen in the next few slides.

Shell Scripting Sep 25 & Oct 2, 2013 92/136

HPC Training: Fall 2013 92 / 136

Outline

7 Regular Expressions

8 File Manipulation
cut
paste & join
split & csplit

9 grep

10 sed

11 awk

12 Wrap Up

Shell Scripting Sep 25 & Oct 2, 2013 93/136

HPC Training: Fall 2013 93 / 136

Linux cut command

Linux command cut is used for text processing to extract portion of text
from a file by selecting columns.

Usage: cut <options> <filename>

Common Options:
-c list : The list specifies character positions.
-b list : The list specifies byte positions.
-f list : select only these fields.

-d delim : Use delim as the field delimiter character instead of the tab character.

list is made up of one range, or many ranges separated by commas
N : Nth byte, character or field. count begins from 1

N- : Nth byte, character or field to end of line
N-M : Nth to Mth (included) byte, character or field

-M : from first to Mth (included) byte, character or field

~/Tutorials/BASH/scripts/day1/examples> uptime
14:17pm up 14 days 3:39, 5 users, load average: 0.51, 0.22, 0.20

~/Tutorials/BASH/scripts/day1/examples> uptime | cut -c-8
14:17pm

~/Tutorials/BASH/scripts/day1/examples> uptime | cut -c14-20
14 days
~/Tutorials/BASH/scripts/day1/examples> uptime | cut -d’’:’’ -f4
0.41, 0.22, 0.20

Shell Scripting Sep 25 & Oct 2, 2013 94/136

HPC Training: Fall 2013 94 / 136

paste

The paste utility concatenates the corresponding lines of the given input
files, replacing all but the last file’s newline characters with a single tab
character, and writes the resulting lines to standard output.

If end-of-file is reached on an input file while other input files still contain
data, the file is treated as if it were an endless source of empty lines.

Usage: paste <option> <files>

Common Options
-d delimiters specifies a list of delimiters to be used instead of tabs for separating

consecutive values on a single line. Each delimiter is used in turn; when
the list has been exhausted, paste begins again at the first delimiter.

-s causes paste to append the data in serial rather than in parallel; that is, in
a horizontal rather than vertical fashion.

Example

> cat names.txt
Mark Smith
Bobby Brown
Sue Miller
Jenny Igotit

> cat numbers.txt
555-1234
555-9876
555-6743
867-5309

> paste names.txt numbers.txt
Mark Smith 555-1234
Bobby Brown 555-9876
Sue Miller 555-6743
Jenny Igotit 867-5309

Shell Scripting Sep 25 & Oct 2, 2013 95/136

HPC Training: Fall 2013 95 / 136

join I

join is a command in Unix-like operating systems that merges the lines
of two sorted text files based on the presence of a common field.

The join command takes as input two text files and a number of options.

If no command-line argument is given, this command looks for a pair of
lines from the two files having the same first field (a sequence of
characters that are different from space), and outputs a line composed
of the first field followed by the rest of the two lines.

The program arguments specify which character to be used in place of
space to separate the fields of the line, which field to use when looking
for matching lines, and whether to output lines that do not match. The
output can be stored to another file rather than printing using
redirection.

Usage: join <options> <FILE1> <FILE2>

Shell Scripting Sep 25 & Oct 2, 2013 96/136

HPC Training: Fall 2013 96 / 136

join II

Common options:
-a FILENUM : also print unpairable lines from file FILENUM, where FILENUM is 1 or 2,

corresponding to FILE1 or FILE2
-e EMPTY : replace missing input fields with EMPTY

-i : ignore differences in case when comparing fields
-1 FIELD : join on this FIELD of file 1
-2 FIELD : join on this FIELD of file 2
-j FIELD : equivalent to ’-1 FIELD -2 FIELD’
-t CHAR : use CHAR as input and output field separator

~/Tutorials/BASH/scripts/day2/examples> cat file1
george jim
mary john
~/Tutorials/BASH/scripts/day2/examples> cat file2
albert martha
george sophie
~/Tutorials/BASH/scripts/day2/examples> join file1 file2
george jim sophie

Shell Scripting Sep 25 & Oct 2, 2013 97/136

HPC Training: Fall 2013 97 / 136

split

split is a Unix utility most commonly used to split a file into two or more
smaller files.

Usage: split <options> <file to be split> <name>

Common Options:
-a suffix_length : Use suffix_length letters to form the suffix of the file name.

-b byte_count[k|m] : Create smaller files byte_count bytes in length. If "k" is appended to the
number, the file is split into byte_count kilobyte pieces. If "m" is appended
to the number, the file is split into byte_count megabyte pieces.

-l n : (Lowercase L not uppercase i) Create smaller files n lines in length.

The default behavior of split is to generate output files of a fixed size,
default 1000 lines.

The files are named by appending aa, ab, ac, etc. to output filename.

If output filename (<name>) is not given, the default filename of x is
used, for example, xaa, xab, etc

Shell Scripting Sep 25 & Oct 2, 2013 98/136

HPC Training: Fall 2013 98 / 136

csplit

The csplit command in Unix is a utility that is used to split a file into two or more
smaller files determined by context lines.

Usage: csplit <options> <file> <args>

Common Options:

-f prefix : Give created files names beginning with prefix. The default is "xx".
-k : Do not remove output files if an error occurs or a HUP, INT or TERM

signal is received.
-s : Do not write the size of each output file to standard output as it is created.

-n number : Use number of decimal digits after the prefix to form the file name. The
default is 2.

The args operands may be a combination of the following patterns:
/regexp/[[+|-]offset] : Create a file containing the input from the current line to (but not including) the next

line matching the given basic regular expression. An optional offset from the line that
matched may be specified.

%regexp%[[+|-]offset] : Same as above but a file is not created for the output.
line_no : Create containing the input from the current line to (but not including) the specified

line number.
{num} : Repeat the previous pattern the specified number of times. If it follows a line

number pattern, a new file will be created for each line_no lines, num times. The first
line of the file is line number 1 for historic reasons.

Shell Scripting Sep 25 & Oct 2, 2013 99/136

HPC Training: Fall 2013 99 / 136

split & csplit examples

Example: Run a multi-step job using Gaussian 09, for example
geometry optimization followed by frequency analysis of water
molecule.

Problem: Some visualization packages like molden cannot visualize
such multi-step jobs. Each job needs to visualized separetly.

Solution: Split the single output file into two files, one for the
optimization calculation and the other for frequency calculation.

Source Files see
/home/apacheco/CompChem/ElecStr/OptFreq/GAUSSIAN/h2o/h2o-
opt-freq.log on Tezpur and LONI
clusters.

Example: split -l 1442 h2o-opt-freq.log

Example: csplit h2o-opt-freq.log "/Normal termination
of Gaussian 09/+1"

Shell Scripting Sep 25 & Oct 2, 2013 100/136

HPC Training: Fall 2013 100 / 136

Outline

7 Regular Expressions

8 File Manipulation
cut
paste & join
split & csplit

9 grep

10 sed

11 awk

12 Wrap Up

Shell Scripting Sep 25 & Oct 2, 2013 101/136

HPC Training: Fall 2013 101 / 136

grep & egrep I

grep is a Unix utility that searches through either information piped to it
or files in the current directory.

egrep is extended grep, same as grep -E

Use zgrep for compressed files.

Usage: grep <options> <search pattern> <files>

Commonly used options
-i : ignore case during search
-r : search recursively
-v : invert match i.e. match everything except pattern
-l : list files that match pattern

-L : list files that do not match pattern
-n : prefix each line of output with the line number within its input file.

-A num : print num lines of trailing context after matching lines.
-B num : print num lines of leading context before matching lines.

Shell Scripting Sep 25 & Oct 2, 2013 102/136

HPC Training: Fall 2013 102 / 136

grep & egrep II

Search files that contain the word node in the examples directory
~/Tutorials/BASH/scripts/day1/examples> egrep node *
checknodes.pbs:#PBS -l nodes=4:ppn=4
checknodes.pbs:#PBS -o nodetest.out
checknodes.pbs:#PBS -e nodetest.err
checknodes.pbs:for nodes in ‘‘${NODES[@]}’’; do
checknodes.pbs: ssh -n $nodes ’echo $HOSTNAME ’$i’ ’ &
checknodes.pbs:echo ‘‘Get Hostnames for all unique nodes’’

Repeat above search using a case insensitive pattern match and print
line number that matches the search pattern
~/Tutorials/BASH/scripts/day1/examples> egrep -in nodes *
checknodes.pbs:5:#PBS -l nodes=4:ppn=4
checknodes.pbs:20:NODES=(‘cat ‘‘$PBS_NODEFILE’’‘)
checknodes.pbs:21:UNODES=(‘uniq ‘‘$PBS_NODEFILE’’‘)
checknodes.pbs:23:echo ‘‘Nodes Available: ‘‘ ${NODES[@]}
checknodes.pbs:24:echo ‘‘Unique Nodes Available: ‘‘ ${UNODES[@]}
checknodes.pbs:28:for nodes in ‘‘${NODES[@]}’’; do
checknodes.pbs:29: ssh -n $nodes ’echo $HOSTNAME ’$i’ ’ &
checknodes.pbs:34:echo ‘‘Get Hostnames for all unique nodes’’
checknodes.pbs:39: ssh -n ${UNODES[$i]} ’echo $HOSTNAME ’$i’ ’

Print files that contain the word "counter"
~/Tutorials/BASH/scripts/day1/examples> grep -l counter *
factorial2.sh
factorial.csh
factorial.sh

Shell Scripting Sep 25 & Oct 2, 2013 103/136

HPC Training: Fall 2013 103 / 136

grep & egrep III

List all files that contain a comment line i.e. lines that begin with "#"
~/Tutorials/BASH/scripts/day1/examples> egrep -l ‘‘^#’’ *
backups.sh
checknodes.pbs
dooper1.sh
dooper.csh
dooper.sh
factorial2.sh
factorial3.sh
factorial.csh
factorial.sh
hello.sh
name.csh
name.sh
nestedloops.csh
nestedloops.sh
quotes.csh
quotes.sh
shift10.sh
shift.csh
shift.sh

List all files that are bash or csh scripts i.e. contain a line that end in
bash or csh

Shell Scripting Sep 25 & Oct 2, 2013 104/136

HPC Training: Fall 2013 104 / 136

grep & egrep IV

~/Tutorials/BASH/scripts/day1/examples> egrep -l ‘‘bash$|csh$’’ *
backups.sh
checknodes.pbs
dooper1.sh
dooper.csh
dooper.sh
factorial2.sh
factorial3.sh
factorial.csh
factorial.sh
hello.sh
name.csh
name.sh
nestedloops.csh
nestedloops.sh
quotes.csh
quotes.sh
shift10.sh
shift.csh
shift.sh

Shell Scripting Sep 25 & Oct 2, 2013 105/136

HPC Training: Fall 2013 105 / 136

Outline

7 Regular Expressions

8 File Manipulation
cut
paste & join
split & csplit

9 grep

10 sed

11 awk

12 Wrap Up

Shell Scripting Sep 25 & Oct 2, 2013 106/136

HPC Training: Fall 2013 106 / 136

sed I

sed ("stream editor") is Unix utility for parsing and transforming text files.
sed is line-oriented, it operates one line at a time and allows regular expression
matching and substitution.
sed has several commands, the most commonly used command and sometime
the only one learned is the substituion command, s
~/Tutorials/BASH/scripts/day1/examples> cat hello.sh | sed ’s/bash/tcsh/g’
#!/bin/tcsh

My First Script

echo ‘‘Hello World!’’

List of sed pattern flags and commands line options

Pattern Operation

s substitution
g global replacement
p print
I ignore case
d delete
G add newline
w write to file
x exchange pattern with hold buffer
h copy pattern to hold buffer

Command Operation

-e combine multiple commands
-f read commands from file
-h print help info
-n disable print
-V print version info

Shell Scripting Sep 25 & Oct 2, 2013 107/136

HPC Training: Fall 2013 107 / 136

sed II

Add the -e to carry out multiple matches.

~/Tutorials/BASH/scripts/day1/examples> cat hello.sh | sed -e ’s/bash/tcsh/g’ -e ’s/First/First tcsh/g’
#!/bin/tcsh

My First tcsh Script

echo ‘‘Hello World!’’

Alternate form
~/Tutorials/BASH/scripts/day1/examples> sed ’s/bash/tcsh/g; s/First/First tcsh/g’ hello.sh
#!/bin/tcsh

My First tcsh Script

echo ‘‘Hello World!’’

The delimiter is slash (/). You can change it to whatever you want which is useful
when you want to replace path names

~/Tutorials/BASH/scripts/day1/examples> sed ’s:/bin/bash:/bin/tcsh:g’ hello.sh
#!/bin/tcsh

My First Script

echo ‘‘Hello World!’’

Shell Scripting Sep 25 & Oct 2, 2013 108/136

HPC Training: Fall 2013 108 / 136

sed III

If you do not use an alternate delimiter, use backslash (\) to escape the slash
character in your pattern

~/Tutorials/BASH/scripts/day1/examples> sed ’s/\/bin\/bash/\/bin\/tcsh/g’ hello.sh
#!/bin/tcsh

My First Script

echo ‘‘Hello World!’’

If you enter all your sed commands in a file, say sedscript, you can use the -f flag
to sed to read the sed commands
~/Tutorials/BASH/scripts/day1/examples> cat sedscript
s/bash/tcsh/g
~/Tutorials/BASH/scripts/day1/examples> sed -f sedscript hello.sh
#!/bin/tcsh

My First Script

echo ‘‘Hello World!’’

sed can also delete blank files from a file
~/Tutorials/BASH/scripts/day1/examples> sed ’/^$/d’ hello.sh
#!/bin/bash
My First Script
echo ‘‘Hello World!’’

Shell Scripting Sep 25 & Oct 2, 2013 109/136

HPC Training: Fall 2013 109 / 136

sed IV

delete line n through m in a file

~/Tutorials/BASH/scripts/day1/examples> sed ’2,4d’ hello.sh
#!/bin/bash
echo ‘‘Hello World!’’

insert a blank line above every line which matches “regex”

~/Tutorials/BASH/scripts/day1/examples> sed ’/First/{x;p;x;}’ hello.sh
#!/bin/bash

My First Script

echo ‘‘Hello World!’’

insert a blank line below every line which matches “regex”

~/Tutorials/BASH/scripts/day1/examples> sed ’/First/G’ hello.sh
#!/bin/bash

My First Script

echo ‘‘Hello World!’’

Shell Scripting Sep 25 & Oct 2, 2013 110/136

HPC Training: Fall 2013 110 / 136

sed V

insert a blank line above and below every line which matches “regex”

~/Tutorials/BASH/scripts/day1/examples> sed ’/First/{x;p;x;G;}’ hello.sh
#!/bin/bash

My First Script

echo ‘‘Hello World!’’

delete lines matching pattern regex

~/Tutorials/BASH/scripts/day1/examples> sed ’/First/d’ hello.sh
#!/bin/bash

echo ‘‘Hello World!’’

print only lines which match regular expression (emulates grep)

~/Tutorials/BASH/scripts/day1/examples> sed -n ’/echo/p’ hello.sh
echo ‘‘Hello World!’’

print only lines which do NOT match regex (emulates grep -v)

~/Tutorials/BASH/scripts/day1/examples> sed -n ’/echo/!p’ hello.sh
#!/bin/bash

My First Script

Shell Scripting Sep 25 & Oct 2, 2013 111/136

HPC Training: Fall 2013 111 / 136

sed VI

print current line number to standard output

~/Tutorials/BASH/scripts/day1/examples> sed -n ’/echo/ =’ quotes.sh
5
6
7
8
9
10
11
12
13

If you want to make substitution in place, i.e. in the file, then use the -i command.
If you append a suffix to -i, then the original file will be backed up as
filenamesuffix
~/Tutorials/BASH/scripts/day1/examples> cat hello1.sh
#!/bin/bash

My First Script

echo ‘‘Hello World!’’
~/Tutorials/BASH/scripts/day1/examples> sed -i.bak -e ’s/bash/tcsh/g’ -e ’s/First/First tcsh/g’ hello1.sh
~/Tutorials/BASH/scripts/day1/examples> cat hello1.sh
#!/bin/tcsh

My First tcsh Script

echo ‘‘Hello World!’’
~/Tutorials/BASH/scripts/day1/examples> cat hello1.sh.bak
#!/bin/bash

My First Script

echo ‘‘Hello World!’’

Shell Scripting Sep 25 & Oct 2, 2013 112/136

HPC Training: Fall 2013 112 / 136

sed VII

print section of file between two regex:

~/Tutorials/BASH/scripts/day2/awk-sed> cat nh3-drc.out | sed -n ’/START OF DRC CALCULATION/,/END OF ONE-
ELECTRON INTEGRALS/p’

START OF DRC CALCULATION

TIME MODE Q P KINETIC POTENTIAL TOTAL
FS BOHR*SQRT(AMU) BOHR*SQRT(AMU)/FS E ENERGY ENERGY
0.0000 L 1 1.007997 0.052824 0.00159 -56.52247 -56.52087

L 2 0.000000 0.000000
L 3 -0.000004 0.000000
L 4 0.000000 0.000000
L 5 0.000005 0.000001
L 6 -0.138966 -0.014065

CARTESIAN COORDINATES (BOHR) VELOCITY (BOHR/FS)

7.0 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00616
1.0 -0.92275 1.59824 0.00000 0.00000 0.00000 0.02851
1.0 -0.92275 -1.59824 0.00000 0.00000 0.00000 0.02851
1.0 1.84549 0.00000 0.00000 0.00000 0.00000 0.02851

GRADIENT OF THE ENERGY

UNITS ARE HARTREE/BOHR E’X E’Y E’Z
1 NITROGEN 0.000042455 0.000000188 0.000000000
2 HYDROGEN 0.012826176 -0.022240529 0.000000000
3 HYDROGEN 0.012826249 0.022240446 0.000000000
4 HYDROGEN -0.025694880 -0.000000105 0.000000000

...... END OF ONE-ELECTRON INTEGRALS

Shell Scripting Sep 25 & Oct 2, 2013 113/136

HPC Training: Fall 2013 113 / 136

sed VIII

print section of file from regex to end of file

~/Tutorials/BASH/scripts/day2/awk-sed> cat h2o-opt-freq.nwo | sed -n ’/CITATION/,$p’
CITATION

Please use the following citation when publishing results
obtained with NWChem:

E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma,
M. Valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, P. Nichols,
S. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison,
M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan,
Q. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen,
E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao,
R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell,
D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan,
K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe,
B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield,
X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing,
G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong,
and Z. Zhang,
‘‘NWChem, A Computational Chemistry Package for Parallel Computers,
Version 5.1’’ (2007),

Pacific Northwest National Laboratory,
Richland, Washington 99352-0999, USA.

Total times cpu: 3.4s wall: 18.5s

Shell Scripting Sep 25 & Oct 2, 2013 114/136

HPC Training: Fall 2013 114 / 136

sed IX

print the line immediately before or after a regexp, but not the line containing the
regexp

apacheco@apacheco:~/Tutorials/BASH/scripts/day2/csplit> grep -B1 Normal h2o-opt-freq.log
File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1
Normal termination of Gaussian 09 at Thu Nov 11 08:44:07 2010.

--
File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1
Normal termination of Gaussian 09 at Thu Nov 11 08:44:17 2010.

apacheco@apacheco:~/Tutorials/BASH/scripts/day2/csplit> sed -n ’/Normal/{g;1!p;};h’ h2o-opt-freq.log
File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1
File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1

~/Tutorials/BASH/scripts/day2/csplit> grep -A1 Normal h2o-opt-freq.log
Normal termination of Gaussian 09 at Thu Nov 11 08:44:07 2010.
(Enter /usr/local/packages/gaussian09/g09/l1.exe)

--
Normal termination of Gaussian 09 at Thu Nov 11 08:44:17 2010.

apacheco@apacheco:~/Tutorials/BASH/scripts/day2/csplit> sed -n ’/Normal/{n;p;}’ h2o-opt-freq.log
(Enter /usr/local/packages/gaussian09/g09/l1.exe)

double space a file

~/Tutorials/BASH/scripts/day1/examples> sed G hello.sh
#!/bin/bash

My First Script

echo ‘‘Hello World!’’

Shell Scripting Sep 25 & Oct 2, 2013 115/136

HPC Training: Fall 2013 115 / 136

sed X

double space a file which already has blank lines in it. Output file should contain
no more than one blank line between lines of text.
~/Tutorials/BASH/scripts/day1/examples> sed ’2,4d’ hello.sh | sed ’/^$/d;G’
#!/bin/bash

echo ‘‘Hello World!’’

triple space a file sed ’G;G’

undo double-spacing (assumes even-numbered lines are always blank)

~/Tutorials/BASH/scripts/day1/examples> sed ’n;d’ hello.sh
#!/bin/bash
My First Script
echo ‘‘Hello World!’’

sed one-liners: http://sed.sourceforge.net/sed1line.txt

sed is a handy utility very useful for writing scripts for file manipulation.

Shell Scripting Sep 25 & Oct 2, 2013 116/136

HPC Training: Fall 2013 116 / 136

http://sed.sourceforge.net/sed1line.txt

Outline

7 Regular Expressions

8 File Manipulation
cut
paste & join
split & csplit

9 grep

10 sed

11 awk

12 Wrap Up

Shell Scripting Sep 25 & Oct 2, 2013 117/136

HPC Training: Fall 2013 117 / 136

awk I

The Awk text-processing language is useful for such tasks as:

F Tallying information from text files and creating reports from the results.
F Adding additional functions to text editors like "vi".
F Translating files from one format to another.
F Creating small databases.
F Performing mathematical operations on files of numeric data.

Awk has two faces:

F it is a utility for performing simple text-processing tasks, and
F it is a programming language for performing complex text-processing tasks.

awk comes in three variations

awk : Original AWK by A. Aho, B. W. Kernighnan and P. Weinberger
nawk : New AWK, AT&T’s version of AWK
gawk : GNU AWK, all linux distributions come with gawk. In some distros, awk is a

symbolic link to gawk.

Shell Scripting Sep 25 & Oct 2, 2013 118/136

HPC Training: Fall 2013 118 / 136

awk II

Simplest form of using awk

� awk pattern {action}
� Most common action: print
� Print file dosum.sh: awk ’{print $0}’ dosum.sh
� Print line matching bash in all files in current directory:

awk ’/bash/{print $0}’ *.sh

awk patterns may be one of the following

BEGIN : special pattern which is not tested against input. Mostly used for preprocessing,
setting constants, etc. before input is read.

END : special pattern which is not tested against input. Mostly used for postprocessing
after input has been read.

/regular expression/ : the associated regular expression is matched to each input line that is read
relational expression : used with the if, while relational operators

&& : logical AND operator used as pattern1 && pattern2. Execute action if pattern1 and
pattern2 are true

|| : logical OR operator used as pattern1 || pattern2. Execute action if either pattern1
or pattern2 is true

! : logical NOT operator used as !pattern. Execute action if pattern is not matched
?: : Used as pattern1 ? pattern2 : pattern3. If pattern1 is true use pattern2 for testing

else use pattern3
pattern1, pattern2 : Range pattern, match all records starting with record that matches pattern1

continuing until a record has been reached that matches pattern2

Shell Scripting Sep 25 & Oct 2, 2013 119/136

HPC Training: Fall 2013 119 / 136

awk III

Example: Print list of files that are csh script files

~/Tutorials/BASH/scripts/day1/examples> awk ’/^#\!\/bin\/tcsh/{print FILENAME}’ *
dooper.csh
factorial.csh
hello1.sh
name.csh
nestedloops.csh
quotes.csh
shift.csh

Example: Print contents of hello.sh that lie between two patterns

~/Tutorials/BASH/scripts/day1/examples> awk ’/^#\!\/bin\/bash/,/echo/{print $0}’ hello.sh
#!/bin/bash

My First Script

echo ‘‘Hello World!’’

awk reads the file being processed line by line.

The entire content of each line is split into columns with space or tab as the delimiter. The
delimiter can be changed as will be seen in the next few slides.

To print the entire line, use $0.

The intrinsic variable NR contains the number of records (lines) read.

The intrinsic variable NF contains the number of fields or columns in the current line.

Shell Scripting Sep 25 & Oct 2, 2013 120/136

HPC Training: Fall 2013 120 / 136

awk IV

By default the field separator is space or tab. To change the field separator use the -F
command.

~/Tutorials/BASH/scripts/day1/examples> uptime
11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11, 0.17

apacheco@apacheco:~/Tutorials/BASH/scripts/day1/examples> uptime | awk ’{print $1,$NF}’
11:19am 0.17
apacheco@apacheco:~/Tutorials/BASH/scripts/day1/examples> uptime | awk -F: ’{print $1,$NF}’
11 0.12, 0.10, 0.16

~/Tutorials/BASH/scripts/day2> for i in $(seq 1 10); do touch file${i}.dat ; done
~/Tutorials/BASH/scripts/day2> ls file*
file10.dat file2.dat file4.dat file6.dat file8.dat
file1.dat file3.dat file5.dat file7.dat file9.dat
~/Tutorials/BASH/scripts/day2> for i in file* ; do
> prefix=$(echo $i | awk -F. ’{print $1}’)
> suffix=$(echo $i | awk -F. ’{print $NF}’)
> echo $prefix $suffix $i
> done
file10 dat file10.dat
file1 dat file1.dat
file2 dat file2.dat
file3 dat file3.dat
file4 dat file4.dat
file5 dat file5.dat
file6 dat file6.dat
file7 dat file7.dat
file8 dat file8.dat
file9 dat file9.dat

print expression is the most common action in the awk statement. If formatted output is
required, use the printf format, expression action.

Format specifiers are similar to the C-programming language

Shell Scripting Sep 25 & Oct 2, 2013 121/136

HPC Training: Fall 2013 121 / 136

awk V

%d,%i : decimal number
%e,%E : floating point number of the form [-]d.dddddd.e[±]dd. The %E format uses E

instead of e.
%f : floating point number of the form [-]ddd.dddddd

%g,%G : Use %e or %f conversion with nonsignificant zeros truncated. The %G format uses
%E instead of %e

%s : character string

Format specifiers have additional parameter which may lie between the % and the control
letter

0 : A leading 0 (zero) acts as a flag, that indicates output should be padded with
zeroes instead of spaces.

width : The field should be padded to this width. The field is normally padded with spaces.
If the 0 flag has been used, it is padded with zeroes.

.prec : A number that specifies the precision to use when printing.

string constants supported by awk

\\ : Literal backslash
\n : newline
\r : carriage-return
\t : horizontal tab
\v : vertical tab

Shell Scripting Sep 25 & Oct 2, 2013 122/136

HPC Training: Fall 2013 122 / 136

awk VI

~/Tutorials/BASH/scripts/day1/examples> echo hello 0.2485 5 | awk ’{printf ‘‘%s %f %d %0.5d\n’’,$1,$2,$3,
$3}’

hello 0.248500 5 00005

The print command puts an explicit newline character at the end while the printf command
does not.

awk has in-built support for arithmetic operations

Operation Operator

Addition +
Subtraction -

Multiplication *
Division /

Exponentiation **
Modulo %

Assignment Operation Operator

Autoincrement ++
Autodecrement –

Add result to varibale +=
Subtract result from variable -=

Multiple variable by result *=
Divide variable by result /=

~/Tutorials/BASH/scripts/day1/examples> echo | awk ’{print 10%3}’
1
~/Tutorials/BASH/scripts/day1/examples> echo | awk ’{a=10;print a/=5}’
2

Shell Scripting Sep 25 & Oct 2, 2013 123/136

HPC Training: Fall 2013 123 / 136

awk VII

awk also supports trignometric functions such as sin(expr) and cos(expr) where expr is in
radians and atan2(y/x) where y/x is in radians

~/Tutorials/BASH/scripts/day1/examples> echo | awk ’{pi=atan2(1,1)*4;print pi,sin(pi),cos(pi)}’
3.14159 1.22465e-16 -1

Other Arithmetic operations supported are

exp(expr) : The exponential function
int(expr) : Truncates to an integer

log(expr) : The natural Logarithm function
sqrt(expr) : The square root function

rand() : Returns a random number N between 0 and 1 such that 0 ≤ N < 1
srand(expr) : Uses expr as a new seed for random number generator. If expr is not

provided, time of day is used.

awk supports the if and while conditional and for loops

if and while conditionals work similar to that in C-programming

if (condition) {
command1 ;
command2

}

while (condition) {
command1 ;
command2

}

Shell Scripting Sep 25 & Oct 2, 2013 124/136

HPC Training: Fall 2013 124 / 136

awk VIII

awk supports if ... else if .. else conditionals.

if (condition1) {
command1 ;
command2

} else if (condition2) {
command3

} else {
command4

}

Relational operators supported by if and while

== : Is equal to
!= : Is not equal to
> : Is greater than

>= : Is greater than or equal to
< : Is less than

<= : Is less than or equal to
∼ : String Matches to
!∼ : Doesn’t Match

~/Tutorials/BASH/scripts/day1/examples> awk ’{if (NR > 0){print NR,’’:’’, $0}}’ hello.sh
1 : #!/bin/bash
2 :
3 : # My First Script
4 :
5 : echo ‘‘Hello World!’’

Shell Scripting Sep 25 & Oct 2, 2013 125/136

HPC Training: Fall 2013 125 / 136

awk IX

The for command can be used for processing the various columns of each line

~/Tutorials/BASH/scripts/day1/examples> cat << EOF | awk ’{for (i=1;i<=NF;i++){if (i==1){a=$i}else if (i
==NF){print a}else{a+=$i}}}’

1 2 3 4 5 6
7 8 9 10
EOF

15
24
~/Tutorials/BASH/scripts/day1/examples> echo $(seq 1 10) | awk ’BEGIN{a=6}{for (i=1;i<=NF;i++){a+=$i}}END

{print a}’
61

Like all progamming languages, awk supports the use of variables. Like Shell, variable types
do not have to be defined.

awk variables can be user defined or could be one of the columns of the file being
processed.

~/Tutorials/BASH/scripts/day1/examples> awk ’{print $1}’ hello.sh
#!/bin/bash

#

echo

~/Tutorials/BASH/scripts/day1/examples> awk ’{col=$1;print col,$2}’ hello.sh
#!/bin/bash

My

echo ‘‘Hello

Shell Scripting Sep 25 & Oct 2, 2013 126/136

HPC Training: Fall 2013 126 / 136

awk X

Unlike Shell, awk variables are referenced as is i.e. no $ prepended to variable name.

awk one-liners: http://www.pement.org/awk/awk1line.txt

Shell Scripting Sep 25 & Oct 2, 2013 127/136

HPC Training: Fall 2013 127 / 136

http://www.pement.org/awk/awk1line.txt

awk programming language I

awk can also be used as a programming language.

The first line in awk scripts is the shebang line (#!) which indicates the location of the awk
binary. Use which awk to find the exact location

On my Linux desktop, the location is /usr/bin/awk while on SuperMike II, it is /bin/awk

hello.awk

#!/usr/bin/awk -f

BEGIN {
print "Hello World!"

}

~/Tutorials/BASH/scripts/day2/examples> ./hello.awk
Hello World!

To support scripting, awk has several built-in variables, which can also be used in one line
commands

ARGC : number of command line arguments
ARGV : array of command line arguments

FILENAME : name of current input file
FS : field separator

OFS : output field separator
ORS : output record separator, default is newline

Shell Scripting Sep 25 & Oct 2, 2013 128/136

HPC Training: Fall 2013 128 / 136

awk programming language II

awk permits the use of arrays

arrays are subscripted with an expression between square brackets ([· · ·])
#!/usr/bin/awk -f

BEGIN {
x[1] = "Hello,"
x[2] = "World!"
x[3] = "\n"
for (i=1;i<=3;i++)

printf " %s", x[i]
}

~/Tutorials/BASH/scripts/day2/examples> ./hello1.awk
Hello, World!

Use the delete command to delete an array element

awk has in-built functions to aid writing of scripts

length : length() function calculates the length of a string.
toupper : toupper() converts string to uppercase (GNU awk only)
tolower : tolower() converts to lower case (GNU awk only)

split : used to split a string. Takes three arguments: the string, an array and a separator
gsub : add primitive sed like functionality. Usage gsub(/pattern/,"replacement

pattern",string)
getline : force reading of new line

Shell Scripting Sep 25 & Oct 2, 2013 129/136

HPC Training: Fall 2013 129 / 136

awk programming language III

Similar to bash, GNU awk also supports user defined function

#!/usr/bin/gawk -f
{

if (NF != 4) {
error(‘‘Expected 4 fields’’);

} else {
print;

}
}
function error (message) {

if (FILENAME != ‘‘-’’) {
printf(‘‘%s: ‘‘, FILENAME) > ‘‘/dev/tty’’;

}
printf(‘‘line # %d, %s, line: %s\n’’, NR, message, $0) >> ‘‘/dev/tty’’;

}

Shell Scripting Sep 25 & Oct 2, 2013 130/136

HPC Training: Fall 2013 130 / 136

Example Scripts I

getcpmdvels.sh

#!/bin/bash

narg=($#)
if [$narg -ne 2]; then
echo "2 arguments needed:[Number of atoms] [Velocity file]\n"
exit 1

fi

natom=$1
vels=$2

cat TRAJECTORY | \
awk ’{ if (NR % ’$natom’ == 0){ \

printf " %s %s %s\n",$5,$6,$7 \
}else{ \
printf " %s %s %s",$5,$6,$7 \

} \
}’ > $vels

getengcons.sh

#!/bin/bash

GMSOUT=$1

grep ’TIME MODE’ $GMSOUT | head -1 > energy.dat
awk ’/ FS BOHR/{getline;print }’ $GMSOUT >> energy.dat

getmwvels.awk

#!/bin/awk -f
BEGIN{

if(ARGC < 3){
printf "3 arguments needed:[Gaussian log file] [Number of atoms] [MW Velocity

file]\n";
exit;

}
gaulog = ARGV[1];
natom = ARGV[2];
vels = ARGV[3];
delete ARGV[2];
delete ARGV[3];

}
/^ *MW Cartesian velocity:/ {

icount=1;
while((getline > 0)&&icount<=natom+1){

if(icount>=2){
gsub(/D/,"E") ;
printf "%16.8e%16.8e%16.8e",$4,$6,$8 > vels;

}
++icount;

}
printf "\n" > vels;

}

gettrajxyz.awk

#!/bin/awk -f
BEGIN{

if(ARGC < 3){
printf "3 arguments needed:[Gaussian log file] [Number of atoms] [Coordinates

file]\n";
exit;

}
gaulog = ARGV[1];
natom = ARGV[2];
coords = ARGV[3];
delete ARGV[2];
delete ARGV[3];

}
/^ *Input orientation:/ {

icount=1;
printf "%d\n\n",natom > coords;
while((getline > 0)&&icount<=natom+4){

if(icount>=5){
printf "%5d%16.8f%16.8f%16.8f\n",$2,$4,$5,$6 > coords;

}
++icount;

}

}

Shell Scripting Sep 25 & Oct 2, 2013 131/136

HPC Training: Fall 2013 131 / 136

Example Scripts II

getcoordvels.sh

#!/bin/bash

narg=($#)
if [$narg -ne 6]; then
echo "4 arguments needed: [GAMESS output file] [Number of atoms] [Time Step (fs)] [Coordinates file] [Velocity file] [Fourier Transform Vel. File]"
exit 1

fi

gmsout=$1
natoms=$2
deltat=$3
coords=$4
vels=$5
ftvels=$6
au2ang=0.5291771
sec2fs=1e15
mass=mass.dat

rm -rf $vels $coords $ftvels

######## Atomic Masses (needed for MW Velocities) ##########

cat $gmsout | sed -n ’/ATOMIC ISOTOPES/,/1 ELECTRON/p’ | \

egrep -i = | \

sed -e ’s/=//g’ | \

xargs | awk ’{for (i=2;i<=NF;i+=2){printf "%s\n",$i;printf "%s\n",$i;printf "%s\n",$i}}’ > $mass
Use the following with grep####

#grep -i -A1 ’ATOMIC ISOTOPES’ $gmsout | \

grep -iv atomic | \
awk ’{for (i=2;i<=NF;i+=2){printf "%s\n",$i;printf "%s\n",$i;printf "%s\n",$i}}’ > $mass
Use the following with grep and sed

#grep -i -A1 ’ATOMIC ISOTOPES’ $gmsout | \

sed -e ’/ATOMIC/d’ -e ’s/[0-9]=//g’ | \
awk ’{for (i=1;i<=NF;i+=1){printf "%s\n",$i;printf "%s\n",$i;printf "%s\n",$i}}’ > $mass

######## Coordinates and Velocities ########################
awk ’/ CARTESIAN COORDINATES / { \
icount=3; \
printf "%d\n\n",’$natoms’
while (getline>0 && icount<=7){ \
print $0 ;\
++icount \

} \

}’ $gmsout | sed ’/----/d’ > tmp.$$

#egrep -i -A5 ’cartesian coordinates’ $gmsout | \
sed -e ’/CARTESIAN/d’ -e ’/----/d’ > tmp.$$
#

cat tmp.$$ | cut -c -42 | \
awk ’{if (NF == 4){ \
printf " %4.2f %9.6f %9.6f %9.6f\n",$1,$2*’$au2ang’,$3*’$au2ang’,$4*’$au2ang’ \

} else { \
print $0 \

} \
}’ > $coords

cat tmp.$$ | cut -c 42- | sed ’/^ *$/d’ | \
awk ’{if (NR % ’$natoms’ ==0){ \
printf " %15.8e %15.8e %15.8e\n",$1*’$sec2fs’,$2*’$sec2fs’,$3*’$sec2fs’ \
} \

else { \
printf " %15.8e %15.8e %15.8e",$1*’$sec2fs’,$2*’$sec2fs’,$3*’$sec2fs’ \

} \
}’ > $vels

Shell Scripting Sep 25 & Oct 2, 2013 132/136

HPC Training: Fall 2013 132 / 136

Outline

7 Regular Expressions

8 File Manipulation
cut
paste & join
split & csplit

9 grep

10 sed

11 awk

12 Wrap Up

Shell Scripting Sep 25 & Oct 2, 2013 133/136

HPC Training: Fall 2013 133 / 136

References & Further Reading

BASH Programming http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

Advanced Bash-Scripting Guide http://tldp.org/LDP/abs/html/

Regular Expressions http://www.grymoire.com/Unix/Regular.html

AWK Programming http://www.grymoire.com/Unix/Awk.html

awk one-liners: http://www.pement.org/awk/awk1line.txt

sed http://www.grymoire.com/Unix/Sed.html

sed one-liners: http://sed.sourceforge.net/sed1line.txt

CSH Programming http://www.grymoire.com/Unix/Csh.html

csh Programming Considered Harmful
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Wiki Books http://en.wikibooks.org/wiki/Subject:Computing

Shell Scripting Sep 25 & Oct 2, 2013 134/136

HPC Training: Fall 2013 134 / 136

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/LDP/abs/html/
http://www.grymoire.com/Unix/Regular.html
http://www.grymoire.com/Unix/Awk.html
http://www.pement.org/awk/awk1line.txt
http://www.grymoire.com/Unix/Sed.html
http://sed.sourceforge.net/sed1line.txt
http://www.grymoire.com/Unix/Csh.html
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://en.wikibooks.org/wiki/Subject:Computing

Additional Help

Online Courses: https://docs.loni.org/moodle

Contact us
� Email ticket system: sys-help@loni.org
� Telephone Help Desk: 225-578-0900
� Instant Messenger (AIM, Yahoo Messenger, Google Talk)

F Add "lsuhpchelp"

Shell Scripting Sep 25 & Oct 2, 2013 135/136

HPC Training: Fall 2013 135 / 136

https://docs.loni.org/moodle

The End
Any Questions?

Next Week

Introduction to Perl

Survey:
http://www.hpc.lsu.edu/survey

Shell Scripting Sep 25 & Oct 2, 2013 136/136

HPC Training: Fall 2013 136 / 136

http://www.hpc.lsu.edu/survey

	Day 1
	Overview of Introduction to Linux
	Types of Shell
	File Editing
	Variables
	File Permissions
	Input and Output

	Shell Scripting Basics
	Start Up Scripts
	Getting Started with Writing Simple Scripts

	Beyond Basic Shell Scripting
	Arithmetic Operations
	Arrays
	Flow Control
	Command Line Arguments
	Functions

	Advanced Topics Preview
	Wrap Up
	Hands-On Exercises: Day 1

	Day 2
	Regular Expressions
	File Manipulation
	cut
	paste & join
	split & csplit

	grep
	sed
	awk
	Wrap Up

