
Introduction to Perl

Le Yan
User Service @ HPC

Adapted from Dave Cross’s “Introduction to Perl”

Outline

• Variables
• Control Flow
• Operators and built-in functions
• References
• Functions
• Regex

What is Perl

• Practical Extraction and Reporting Language
• “Perl” is the language
• “perl” is the command

Typical Uses of Perl

• Text processing
• System administration tasks

– Parsing log files etc.

• Web programming
• Database

Not-So-Typical Use of Perl

• Solving complex PDEs

Philosophy of Perl

• TIMTOWTDI – There Is More Than One Way To
Do It

Perl on HPC Systems

System Version Softenv key

Super Mike 2 5.16.3 +perl-5.16.3

Philip 5.16.2 +perl-5.16.2

LONI systems 5.8.4

Running Perl Programs
• Run a Perl program with perl <program name>

[lyan1@mike1 tutorial]$ cat hello.pl
print "Hello, world!\n";
[lyan1@mike1 tutorial]$ perl hello.pl
Hello, world!

Running Perl Programs (cont)

• Or add the shebang line and make it
executable

[lyan1@mike1 tutorial]$ cat hello.pl
#!/usr/bin/perl

print "Hello, world!\n";
[lyan1@mike1 tutorial]$ chmod 755 hello.pl
[lyan1@mike1 tutorial]$./hello.pl
Hello, world!

Comment

• Single-line comments start with a “#”
• Multiple-line comments start with “=<word>”

and end with “=cut”

Strict And Warnings
• Perl can be a very loose programming language by

default
• Use these two statements at the beginning of your Perl

program as a safety net (below the shebang line
though)
– Think them as boiler plate

use strict;
use warnings;

Data::Dumper
• Writes out varialbe contents in perl syntax

– Very useful in debugging and learning
use Data::Dumper;
my $contacts = { 'Frank' => {'email' => 'frank@lsu.edu',
 'phone' => '578-5655'},
 'Amy' => {'email' => 'amy@lsu.edu',
 'phone' => '578-1420'}
 };
print Dumper($contacts);

#Output:
$VAR1 = {
 'Amy' => {
 'email' => 'amy@lsu.edu',
 'phone' => '578-1420'
 },
 'Frank' => {
 'email' => 'frank@lsu.edu',
 'phone' => '578-5655'
 }
 };

Getting Help

• perldoc <topic>
– Lots of useful pages

• Also available at perldoc.perl.org

Outline
• Variables
• Control Flow
• Operators and built-in functions
• Regex
• References
• Functions
• Regex

Perl Variables

• Variable name
– Consist of numbers and letters
– May not start with numbers (for user variable)

• Variable type (indicated by a preceding sigil)
– Scalar ($)
– Array (@)
– Hash (%)

Declaring Variables
• Use the “my” function
• Perl do not require variables to be declared, but it is a good habit to

avoid scoping and typo issues
– use strict will enforce variable declaration

my $scalar = 5;
my $scalar = “Some string”;

my @array = (1, 2, 3, 4);

my %hash = (‘one’, ‘red’
 ‘two’, ‘blue’
 ‘three’, ‘green’);

Variable Names

• Perl allows variables of different types to have
identical names
– Confusing for programmers, so don’t do it

This is perfectly legal in Perl
my $var = 5;
my @var = (1, 2, 3, 4);
my %var = (‘one’, ‘red’
 ‘two’, ‘blue’
 ‘three’, ‘green’);

Scalar Variables

• Store a single item
• Does not distinguish between numbers and

text

my $integer = 5;
my $string = “Some string”;
my $meaning_of_life = “42”;
my $decimal = 0.45;
my $scientific = 6.23e23;

Coercion

• Perl converts between strings and numbers
when necessary (more on this later)

my $scalar = 5;
my $life = '42';

say $scalar + $life; # 47
say $scalar.’ ’.$string; 5 42

Quotes

• Single quotes – treat characters literally
• Double quotes – expand variable and escape

sequence
my $item = 'meal';
my $single = 'I paid $4.99 for this $item';
my $double = "I paid $4.99 for this $item";

say $single; # print the literal string
say $double; # will print an error message

Quotes (cont)

• Use \ to escape special characters, including ‘
and “

my $item = 'meal';
my $single = ‘He said “I paid $4.99 for this
$item”';
my $double = “He said \”I paid \$4.99 for this
$item\”";

say $single; # again, the literal string
say $double; # He said “I paid $4.99 for this meal”

Quotes (cont)

• Use q() and qq() in place of single quotes
and double quotes, respectively

my $item = 'meal';
my $double = qq(He said ”I paid \$4.99 for this
$item“);

say $double;

Special Characters

• Special character that can be used with
double quotes or qq()

/n New line
/t Tab
/r Carriage
/f Form feed
/b Backspace

“Undef” Value

• A scalar has a “undef” value when initiated
– Can use defined() to test

my $scalar;
print $scalar;
print Dumper($scalar);

Array Variables

• Store an ordered list of scalars
– Again, Perl does not distinguish numerical and

textual data

my @pets = (‘cat’,’dog’,’hamster’,’salamander’);
my @numbers = (4, 15, 26, 5, 77);
my @mixture = (5, ‘bottle’, 3.5, $scalar);

Array Elements
• Access individual elements using square brackets [] and

indices
– Index starts from 0
– Note that “$” is used to indicate a scalar is needed

my @pets = (‘cat’,’dog’,’hamster’,’salamander’);

print $pets[0]; # Will print “cat”

#The size of an array is not fixed and can be
expanded by adding new values
$pets[4] = ‘guinea pig’;

Array Slices

• Access multiple elements in an array
– Note that “@” is used to indicate an array is needed

 my @pets = (‘cat’,’dog’,’hamster’,’salamander’);

Will print “cat” and “hamster”
print @pets[0,2];
Will print “cat”, “dog” and “hamster”
print @pets[0 .. 2];

@pets[4,5] = (‘guinea pig’, ‘parrot’)
Not necessarily an array
($x, $y) = ($a, $b)

Array size

• The size of an array is given by evaluating the
array in a scalar context

my @pets = (‘cat’,’dog’,’hamster’,’salamander’);

my $size = @pets;
print $size; # will print 4

will print 3, the index of last element of
@pets
Print my $last_element = $#pets;

Try It Yourself

use strict;
use warnings;
use feature ‘say’;

my @numbers = (1 .. 10);

#What will you get and why?
say my $size = @numbers;
say $numbers;
say $#numbers;
say @numbers;

Context

• Just as in human languages, the meaning of an
operation in Perl often depends on the
context
– Amount context – how many items are expected

from an operation
– Value context – how data is interpreted

Context (cont)

Amount context: scalar or list
$size = @array; # scalar context
@array_copy = @array; # array context

Value context: string, scalar or boolean
$five = 5;
print 8 + $five; # numerical context
print ‘His jersey number is ‘.$five; # string context

Perl relies on the operator to provide context, so
programmers need to be specific
print ‘five’ + ‘four’; # 0

Hash Variables

• Store a number of “key”=>”value” pairs
– Not ordered
– Called “associated arrays” sometimes

Create a hash with a flat list
my %phone_book =
(‘Frank’,’3465178’,’Anne’,’4561098’);

Or use the fat comma (=>), which is clearer
my %lsu_id=
(‘John’ => ’892342784’, ‘Olivia’ => ‘894326756’);

Hash Values
• Access hash values using {} and the name of the key

– Again, note the use of “$”

my %phone_book =
(‘Frank’,’3465178’,’Anne’,’4561098’);
my $number = $phone_book{‘Frank’};

Like arrays, hashs can be expanded by assigned
new values
$phone_book{‘Amy’} = ‘2985387’;

Hash Slices

• Similar to arrays, one can access slices of a
hash

my %phone_book =
(‘Frank’,’3465178’,’Anne’,’4561098’);

my @numbers = $phone_book{‘Frank’,’Anne’};

@phone_book{‘Amy’,’Ted’} = (‘2985387’, ‘3362992’);

Hash Size
• Unlike arrays, it does not help to evaluate hashes in a scalar

context
– “%#” does not work either

my %phone_book =
(‘Frank’,’3465178’,’Anne’,’4561098’);

print my $size = %phone_book;
print %#phone_book;

#This is one way of doing it
print my $size = keys %phone_book;

Predefined Variables

• Perl has many special predefined variables
– Some have the form of $/@/% + other

punctuations
– Some have the form of ALL_CAPS
– Explained in perldoc perlvar

Predefined Variables (cont)

• Something that makes Perl interesting
– For example

[lyan1@mike1 tutorial]$ cat cat.pl
while (<>) {
 print;
}
[lyan1@mike1 tutorial]$ perl cat.pl datafile
>Rosalind_1
GATTACA
>Rosalind_2
TAGACCA

$_

• The default input and pattern-searching space
– “the default variable”
– Many Perl operations set or use the value of $_ if

no others are provided

$_ = 'I am the default variable';
say;

@ARGV

• The array that stores command lines
arguments
– Many array operations in the main program use its

value if none is provided
my $num_args = @ARGV;
say "$num_args arguments from command line";
say "The first argument is”, shift;

@_

• The default array
– Within a function, @_ contains the parameters

passed to that subroutine
– Many array operations within the function use its

value if none is provided
– More on this later

%ENV

• A hash that stores the shell environment
variables
– Keys are the shell variable names (PATH etc.)
– Values and the shell variable values

Try It Yourself

This mimic the “cat” shell command
The readline operator <> takes @ARGV as
its operand and reads the provide file list
line by line, which is passed to print as
the value of $_

while (<>) {
 print;
}

Outline

• Variables
• Control Flow
• Operators and built-in functions
• References
• Functions
• Regex

Control Flow

• Controls the order of program execution
– Conditional
– Loop

Boolean Context
• Perl does not offer a boolean type variable

– Evaluates different types variable when presented in a
Boolean context

– A expression is false in Perl if it is a
• Number 0
• Empty string
• Undef
• Empty list

– Everything else is true

Boolean Context (cont)
Scalars with a value of 0 or undef evaluate
to “false”
my $zero = 0;
my $another_zero = 100 * $zero;

But a string like this evaluates to “true”
my $zero_but_true = “0.0”;

Empty arrays and hashes are “false”
my @array;
my %hash;

Non-empty arrays or hashes are true, even
if the values are 0 or undef
$array[0] = undef;

Conditional Construct - if

• If…elsif…else construct
if (EXPRESSION 1) {
 Block of code
}
elsif (EXPRESSION 2) {
 Block of code
}
else {
 Block of code
}

Postfix Form of if

• Simplify the code sometimes

say “Hello, Bob” if ($name eq ‘Bob’)

Comparison Operators

Equal == eq

Not equal != ne

Greater than > gt

Greater than or equal >= ge

Less than < lt

Less than or equal <= le

The first column enforces numerical context

Comparison Examples

62 > 42 #True
‘0’ == (3*2)-6 #True
‘apple’ gt ‘banana’ #false
‘apple’ == ‘banana’ #true
‘apple’ eq ‘banana’ #false
1 + 2 == ‘3 bears’ #true
1 + 3 == ‘three’ #false

if ('apple' == 'banana') {say 'Not good';}
if (! ('apple' eq 'banana')) {say 'This is better';}

Boolean Operators

Operator Choice 1 Choice 2

Not !

And and &&

Or or ||

Unless

• Equivalent to “if not”
• Useful for parameter validation

sub validate_identity {
 return unless ($id{$name})
}

Ternary Conditional Operator

• EXPR ? EXPR 1 : EXPR 2
– Execute EXPR 1 if EXPR is true, otherwise

execute EXPR 2

my $salutation = male($name) ? ‘Mr.’ : ‘Ms.’

Short-Circuit Operators

• Use or to write clearer code

Only needs to evaluate the second expression when
the first is false

open FH, ‘datafile’ or die “Can open file $!”;

@ARGV == 3 or print $usage_msg;

Loops - for
• C-style for loops

– Rarely used

my @square;
for (my $i = 0; $i <= $#square ; $i++) {
 $square[i] = $i ** 2;
}

Loops - foreach
• Loop over a list – preferred over the C-styled for

loop
foreach my $i (1 .. 10) {
 say “$i * $i =“,$i*$i;
}

#Or use the default variable
foreach (1 .. 10) {
 say “$_ * $_ = “,$_*$_;
}

#Postfix form
say “$_ * $_ = “,$_*$_ foreach (1 .. 10)

Loops – foreach (cont)
Loop over a hash
foreach (keys %hash) {
 say $hash{$_};
}

Perl actually treats for and foreach
interchagably, so the following code is
perfectly fine:
for (keys %hash) {
 say $hash{$_};
}

Loops – while

• While (EXPR) { code block}
– Repeat the same block of code while EXPR is true

my @array = (1 .. 10);

This loop will do the same thing as the
one on previous slide
while (@array) {
 my $i = shift @array;
 say “$i * $i = “,$i*$i;
}

Loops - until

• Until (EXPR) { code block }
– Repeat the same block of code while EXPR is false
– The opposite of while

Loop Control

• next – jump to the next iteration
• redo – jump to the start of the same iteration
• last – jump out of the loop

Outline

• Variables
• Control Flow
• Operators and built-in functions
• References
• Functions
• Regex

Arithmetic Operators

• The usual suspect
+ Add

- Subtract

* Multiply

/ Divide

% Modulus

** Exponentiation

Shortcut Operators

• $x <op>= $y performs operations $x =
$x <op> $y

+= Add

-= Subtract

*= Multiply

/= Divide

%= Modulus

**= Exponentiation

Shortcut Operators (cont)

• $x++ is equivalent to $x -= 1
• $x-- is equivalent to $x -= 1
• ++$x and --$x have the same meanings, but

there is subtle difference
my @array = (0 .. 10)
my $i = 0;
say $array[$i++]; #will print 0
say $array[++$i]; #will print 2

Numeric Functions

• Again the usual suspects

abs Absolute value
cos, sin, tan Trigonometric
exp Exponentiation
log Logarithm
rand Random number generator
sqrt Square root

String Operators

my $first_name = ‘Le’;
my $last_name = ‘Yan’;
Concatenation (.)
my $full_name = $first_name.“ “.$last_name; # “Le Yan”
Repetition (x)
my $line = ‘-’ x 80;
Shortcut available
$full_name .= ‘ had his lunch.’;

String Functions
length: returns the length of a string
my $full_name = “Le Yan”;
say length $full_name; #will print 6
uc: returns all uppercase version of string
lc: returns all lowercase version of string
ucfirst: returns the string with first letter in
uppercase
lcfirst:returns the string with first letter in
lowercase
chomp: returns the string with the trailing new line
character removed (if there is any)

Substr
substr: returns a substring
Syntax: substr EXPR,OFFSET,LENGTH,REPLACEMENT
Extracts a substring out of EXPR and returns it.

my $s = “The black cat climbed the green tree”;
my $color = substr $s, 4, 5; # black
#If LENGTH is negative, leave that many characters off the end.
my $middle = substr $s, 4, -11; # black cat climbed the
#If LENGTH is omitted, returns everything through the end.
my $end = substr $s, 14; #climbed the green tree
#If OFFSET is negative, start from the end of the string.
my $tail = substr $s, -4;
#If REPLACEMENT is provided, substitute the substring with it (will
happen in place).
substr $s, 14, 7, “jumped from”;

Split
split: splits a string into a list of strings and
returns the list
syntax: split /PATTERN/,STRING

my $s = “The black cat climbed the green tree”;
my @array = split “ “,$s;
say $array[1]; # black

if PATTERN is an empty string, will split into a list
where each character is an element
my @another_array = split “”,$array[1];
say $another_array[1]; # l

Array Functions

• pop, push, shift, unshift
my @names = (‘Frank’, ‘John’);

#pop: remove and return last element
say pop @names; # will print ‘John’
#push: add a new element to the end
push @names,’Amy’; # @names is now (‘Frank’,’Amy’)
#shift: remove and return first element
say shift @names; # will print ‘Frank’
#unshift: add a new element to the start
unshift @names,’Fred’; @names is now (‘Fred’,’Amy’)

Join

• Opposite of split

my @names = (‘Frank’, ‘John’, ‘Amy’, ‘Olivia’);

say join ‘:’,@names; # Frank:John:Amy:Olivia

Reverse

• Reverses an given list
@array = (2, 5, 3, 1);
@reversed = reverse @array; #(1, 3, 5, 2)

Sort

• Returns a sorted list (does NOT sort in place)
@array = (2, 5, 3, 1);
@sorted = sort @array; #(1, 2, 3, 5)

The default order is ascending in ASCII
Sometimes the result is surprsing
@array = (‘a’,’c’,’D’,’b’,’E’);
@sorted = sort @array; (‘D’,’E’,’a’,’b’,’c’)

@array = (1 .. 10);
@sorted = sort @array; (1,10,2,3,…)

Sort (cont)

• sort can be customized by adding a sorting
block as an argument

Syntax: sort {$a cmp $b} LIST
$a and $b are two elements being compared.
$a and $b can be replaced by two expressions
involing $a and $b, respectively.
The order is decided by the result of #comparison.

cmp is for strings
sort {$a cmp $b} @list;
cmp
sort ($a <=> $b} @list;

Sort (cont)

Sort in numerically descending order
@sorted = sort {$b <=> $a} @array;

Case insensitive sort
@array = (‘a’,’c’,’D’,’b’,’E’);
@sorted = sort {fc($a) cmp fc($b)} @array; # (’a’,’b’,’c’,‘D’,’E’)

Sort hash keys by their associated values
@sorted = sort {$hash{$a} <=> $hash{$b}} keys %hash;

Map
• Evaluate an expression or a block of code for each

element of a list
– Like an implied loop
– Setting each element as $_

The number of returned elements can be different from the
input.
Use an empty list () to skip an element

my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;

Default Variables

• Many of the functions mentioned above
operate on $_, @ARGV or @_

Hash Functions
• keys: returns a list of keys
• values: returns a list of values
• delete: deletes a pair from the hash
• exists: tells if a element exists (key or value)

File I/O
• open opens a file and associates with a file handle
• close closes a file

‘<‘ is for reading, ‘>’ is for overwriting
‘>>’ is for appending
open (my $file, ‘<‘, ‘datafile’);

Read one line
my $line = <$file>;

Read all lines
my @lines = <$file>;

close($file);

File I/O (cont)

• Use print or say to write to a file

open (my $file, ‘>‘, ‘datafile’);

print $file $somedata;

close($file);

File Test Operators

• Use with if to check file attributes
-e $file File exists?
-r $file File readable?
-w $file File writable?
-d $file File is a directory?
-f $file File is a normal file?
-T $file File is a text file?
-B $file File is a binary file?

Outline

• Variables
• Control Flow
• Operators and built-in functions
• References
• Functions
• Regex

References

• Perl references are like pointers in C
• It is a mechanism to refer to a value without

making a copy
– Any change made through the reference is made

in place

• A reference always fits in a scalar

Reference Operator

• Putting \ in front of a variable creates a
reference to it

my $scalar_ref = \$scalar;
my $array_ref = \@array;
my $hash_ref = \%hash;

Dereferencing

• An extra sigil is needed to deference a
reference to access the value it refers to

my $scalar_ref = \$scalar;
${$scalar_ref} = ‘some value’;

my $array_ref = \@array;
my $size = @{$array_ref};
${$array_ref}[0] = ‘some other value’;

my $hash_ref = \%hash;
foreach (keys %{$hash_ref}) {
 say ${$hash_ref}{$_};
}

Deferencing (cont)

• The curl brackets can be omitted
– They improve readability though

my $scalar_ref = \$scalar;
$$scalar_ref = ‘some value’;

my $array_ref = \@array;
my $size = @$array_ref;
$$array_ref[0] = ‘some other value’;

my $hash_ref = \%hash;
foreach (keys %$hash_ref) {
 say $$hash_ref{$_};
}

Deferencing (cont)

• Can also use arrow (->) to access elements of
arrays and hashes
– ${$array_ref}[0] is equivalent to
$array_ref->[0]

– ${$hash_ref}{$key} is equivalent to
$hash_ref->{$key}

Anonymous Variables
• It is possible to create anonymous variables using

references
– Only accessible by using references

Use [] for anonymous arrays
my $array_ref = [1 .. 10];
say $array_ref->[2];

What will happen?
$array_ref = (1 .. 10);

Use {} for anonymous hashs
my $contacts_ref = (‘Frank’ => ‘frank@lsu.edu’,
 ‘Amy’ => ‘amy@lsu.edu’};

Why Use References?

• Complex data structure
• Passing parameters (more on this later)

2-D Arrays (Array of Arrays)
This will result in an array (1,2, …, 9)
due to list flattening
my @numbers = ((1 .. 3),
 (4 .. 6),
 (7 .. 9));

[LIST] creates an anonymous array and
returns the reference
So we are creating an array of references
my @array_of_arrays =
 ([1 .. 3],[4 .. 6],[7 .. 9]);
say $array_of_arrays[0]; # ARRAY(0x1c45a98)
say $array_of_arrays[0]->[1]; # 2

Complex Data Structure

• Hash of hashes

• You can also define array of hashes, hash of
arrays etc.

my %contacts = (‘Frank’ => {‘email’ => ‘frank@lsu.edu’,
 ‘phone’ => ‘578-5655’},
 ‘Amy’ => {‘email’ => ‘amy@lsu.edu’,
 ‘phone’ => ‘578-1420’}
);
say $contacts{‘Frank’}->{‘email’};

Outline

• Variables
• Control Flow
• Operators and built-in functions
• References
• Functions
• Regex

Write Your Own Functions

• Declare a function

• No list of input parameters in function
definition

sub function_name {
 block of code
}

Input Parameters
• Instead, all input parameters are put in the array @_

– The function needs to either unpack it or operate on it directly
– List flattening applies

my %contacts = (‘Frank’ => ‘frank@lsu.edu’,
 ‘Amy’ => ‘amy@lsu.edu’);

flattened_contacts(%contacts);
contacts_as_hash(%contacts);

sub flattened_contacts {
 say “The key is “,shift;
 say “The value is ”,shift;
}

sub contacts_as_hash {
 my %hash = @_;
}

Parameter Passing

What will happen?
my @array1 = (1 .. 3);
my @array2 = (4 .. 6);
check_size (@array1, @array2);

sub check_size {

 my (@a1,@a2) = @_;
 say @a1 == @a2 ? ‘Yes’ : ‘No’;

}

Parameter Passing (cont)

What will happen?
my @array1 = (1 .. 3);
my @array2 = (4 .. 6);
check_size (@array1, @array2);

sub check_size {
@_ is flattened as (1,2,3,4,5,6)
@a1 gets all while @a2 gets none
 my (@a1,@a2) = @_;
 say @a1 == @a2 ? ‘Yes’ : ‘No’;

}

Parameter Passing (cont)

Should use reference
my @array1 = (1 .. 3);
my @array2 = (4 .. 6);
check_size (\@array1, \@array2);

sub check_size {

 my ($a1,$a2) = @_;
 say @$a1 == @$a2 ? ‘Yes’ : ‘No’;

}

Returning Values

• Functions can return none, one or more
values

my @array1 = (1 .. 3);
my @array2 = (4 .. 6);
say ‘Yes’ if check_size (\@array1, \@array2);

sub check_size {

 my ($a1,$a2) = @_;
 my $result = @$a1 == @$a2 ? ‘Yes’ : undef;
 return $result;

}

Outline

• Variables
• Control Flow
• Operators and built-in functions
• References
• Functions
• Regex

Regex

• Regex stand for REGular Expression
– Powerful tool for text processing
– Allows users to define a pattern to describe

characteristics of a text segment
– Can be used to match or modify text
– Perl regex documentation: perlretut,
perlreref, perlre

Matching

• Regex can be used to match literals
Match operator: // or m// or m with any delimiter
Binding operator: =~

The match operator returns true/false in scalar context, a list of
captured text in list context
my $s = “GATATATGCATATACTT”;
say ‘Found a match’ if $s =~ /TATA/;

Operate on $_ if operand is omitted
$_ = “GATATATGCATATACTT”;
say ‘Found a match’ if /TATA/;

The function index can be used for this purpose as well
It returns the position of first match or -1 if none
say index $s,’TATA’; # will print 2

Substituting

Substitution operator: s/PATTERN/REPLACEMENT/
Can choose any delimiter
Also operate on $_ if operand is omitted;

Returns true if successful in scalar context, the number of
replacements in list context
The substitution is done in place

$_ = “GATATATGCATATACTT”;
s/TATA/GCGC/g; # The value is true
say; # will print GAGCGCTGCAGCGCCTT

$_ = “GATATATGCATATACTT”;
s/TATA/GCGC/; # Without “g”, will return after the first success
say; # will print GAGCGCTGCATATACTT

Metacharacters
. Any character except \n

^ Start of string

$ End of string

\s Any whitespace \S Any non-whitespace

\d Any digit \D Any non-digit

\w Any word \W Any non-word

\b Any word boundary \B Anything except a word boundary

Special characters such as ., ^, $ need to be escaped
by using “\” if the literals are to be matched

Metacharacters (cont)

While (<FILE>) {
 say if m|^http://|; # Match any line that starts with http://
 say if /\bperl\b/; # Match any line with the word “perl”
 say if /\S/; # Match any line with content;
 say if /\$\d\.\d\d/; # Match any line containing $x.xx
}

Define Patterns

• The qr// operator define patterns that can be
used and reused for later match

my $http = qr/^http:\/\//;
my $www = qr/www/;
while (<FILE>) {
 say if /$http$www/;
}

Quantifiers

• Allow users to specify the number of
occurrence

* Zero or more
+ One or more
? Zero or one
{n} Exactly n times
{n,} At least n times
{n,m} At least n, but at most m times

Quantifiers (cont)

While (<FILE>) {
 say if /ca?t/; # Match “ct” or “cat”
 say if /ca*t/; # Match “ct”, “cat”, “caat”, …
 say if /ca+t/; # Match “cat”, “caat”, …
 say if /ca{3}t/; # Match “caaat”
 say if /\d{3}-?\d{3}-?\d{4}/; # Match a phone number with
area code
}

Greediness

+ and * are greedy – they will grab any many character as possible
$gene = “GATATATGCATATACTT”;
$gene =~ s/A.*T/GC/; # GGC

Appending a “?” will make them “reluctant”
$gene = “GATATATGCATATACTT”;
$gene =~ s/A.*?T/GC/; # GGCATATGCATATACTT

Character Classes

• Define a class of characters

/[aeiou]/ Match all vowels

/[^aeiou]/ Match any character except ‘a’, ’e’ ,’i’, ’o’, ’u’

/[a-zA-Z]/ Match any letter

/[-!?]/ Match ‘-’, ‘!’, ‘?’ (hyphen at start)

/!\-?/ Same as above (hyphen escaped)

Modifiers

• Modifiers change the behavior of regex
$gene = “GATATATGCATATACTT”;

/i cause regex to ignore case distinctions
say “Match found” if $gene =~ /tata/i;

/g cause regex to match globally throughout a string
$gene =~ s/TATA/GCGC/g;
say $gene; # will print GAGCGCTGCAGCGCCTT

/r cause regex to ignore whitespace in the regex pattern
Modifiers can be combined
say “Match found” if $gene =~ /g c g c/ri

Alternation

• Use “|” to match either one thing or another

my $pork = qr/pork/;
my $chicken = qr/chicken/;
say “Food okay” if $food =~ /$pork|$chicken/i;

Grouping And Capturing Matches
• Use parentheses to

– Group atoms into larger unit
– Capture matches for later use

 # Will match “por and beans”
my $por_and_beans = qr/pork?.*?beans/
Will not match “por and beans”
my $pork_and_beans = qr/(pork)?.*?beans/

() also capture the matched text and store
them in special variables $1, $2 etc.
while (<FILE>) {
 if (/^(\w+)\s+(\w+)/) {
 say “The first word is: “,$1;
 say “The second word is: “,$2;
 }
}

Named Captures

Use ?< name > in a group to name a capture
It must appear immediately after the left parenthesis
Can access it later with $+{name}

my $phone_number = qr/\d{3}-?\d{3}-?\d{4}/;
while (<FILE>) {
 push @numbers, $+{phone} if /(?<phone>$phone_number)/;
}

Perl Modules

• Think Perl modules as libraries – reusable
codes

• CPAN – tons of modlues developed by the Perl
community (www.cpan.org)
– Before setting out to write something serious,

check CPAN first

Installing Modules

• Option 1: manual installation
– Download the tarball and extract the content
– Create a Makefile
– Make, make test and make install

• Option 2: use the “cpan” module
– Provides a console to search, download and install

modules and their dependencies automatically

Installing Modules on HPC Systems

• You don’t have root process, so you need to
install them in your own user space
– Most likely somewhere in your home directory
– Then point the environment variable $PERL5LIB to

the location

Using Modules
• Use the use function

– We’ve seen a few examples

use strict;
use warnings;
use Data::Dumper;

#use optional components
use feature qw(say switch fc);

Perl One-Liners

• Perl can perform lots of seemingly complex
task with one line of code, aka one-liners
– There are other similar tools (e.g. awk)

• For example:
Number and print only non-empty lines in a file (drop empty
lines)
perl -ne 'print ++$a." $_" if /./‘ file

Remove all consecutive blank lines (leave only one)
perl -00 -pe ''

Perl Command Line Options

• -e allows to enter a program directly on the
command line-l, -n, -a

• -n assumes the follow loop around the
provided program:

while (<>) {
 # your program goes here
}

More Command Line Options
• -p assumes the follow loop around the provided

program:

• -l automatically chomps the input when used with
-n or -p

• -a turns on autosplit mode when used with a -n or
-p.

while (<>) {
 # your program goes here
} continue {
 print or die "-p failed: $!\n";
}

Double Space A File

[lyan1@mike1 tutorial]$ cat data
Apple
Pear
Mango
[lyan1@mike1 tutorial]$ perl -pe '$\="\n"' data
Apple

Pear

Mango

The one-liner is equivalent to:
while (<>) {
if defined, the content of $\ is appended
to each print command
 $\ = “\n”;
} continue {
 print or die "-p failed: $!\n";
}

Printing All Lines between Line A and
Line B

[lyan1@mike1 tutorial]$ perl -ne 'print if $. >= 2 && $. <= 3’ data
Pear
Mango
 # The one-liner is equivalent to:

while (<>) {
$. is the current line number
 print if $. >=2 && $. <= 3;
}

Not Covered

• Scope
• Advanced function features
• OOP features
• …

Beyond This Tutorial

• http://perldoc.perl.org
• http://learn.perl.org
• http://www.catonmat.net/series/perl-one-

liners-explained

Exercise

• Data files can be found under

• Solutions can be found under

• Each of the solutions is just a solution, not the
solution (Remember, ‘Tim Toady’)

/home/lyan1/traininglab/perl/data

/home/lyan1/traininglab/perl/solution

Exercise 1: Hamming Distance
Background
Given two strings with same length, the Hamming distance is the number of
corresponding characters that differ. For example, the Hamming distance
between is 7.

Problem
Given: Two strings read from a file
Return: The Hamming distance

Note
There are two data files, one large and one small. The answer should be 7
for HAMM_data_small and 489 for HAMM_data_large

Exercise 2: Replace and Print
Problem
For a given file, replace all occurrence of “GTAG” with “CATC”, then print
each line that contains “GACTA”

Note
There are two data files, replace_data_large and
replace_data_small.
Should be able to do this with a one-liner.

Exercise 3: FASTA file reader
Background
FASTA is a file format used to store genetic strings. Every string in a FASTA file begins
with a single-line that contains the symbol '>' along with some labeling information
about the string. All subsequent lines contain the string itself. A .fasta file would look
like this:

Problem
Given: A .fasta file
Return: A hash with the labels as the keys and the strings as values
Note
One string can and often span across multiple lines, so you need to take it into
consideration.

>Taxon1
CCTGCGGAAGATCGGCACTAGAATAGCCAGAACCGTTTCTCTGAGGCTTCCGGCCTT
CCC TCCCACTAATAATTCTGAGG
 >Taxon2
CCATCGGTAGCGCATCCTTAGTCCAATTAAGTCCCTATCCAGGCGCTCCGCCGAAGG
TCT ATATCCATTTGTCAGCAGACACGC

Exercise 4: Computing GC Content

Background
DNA strings are composed of “A”, “C”, “G” and “T”. The GC content of a given
DNA string is the percentage of symbol “G” and “C”.

Problem
Given: DNA strings in FASTA format
Return: The label of the string that has highest GC content, followed by its GC-
content.

Note
You might need to use the fasta file reader in Exercise 3.

Exercise 5: Overlap Graphs
Background
For a group of strings, the adjacency list corresponding to On is all pairs of strings (s,t)
such that the last n characters of s is the same with the first n characters of t.

Problem
Given: DNA strings in FASTA format
Return: The adjacency list corresponding to O3.

Note
You might need to use the fasta file reader in Exercise 3.
If the start of string s overlaps with the end of string t, the returned pair should be (t,s),
not (s,t).
A string that overlaps with itself, such as (s,s), is not allowed and should not be counted.

Exercise 5: Overlap Graphs
Example
If the given strings are:

Then the answer should be:

>Rosalind_0498
AAATAAA
>Rosalind_2391
AAATTTT
>Rosalind_2323
TTTTCCC
>Rosalind_0442
AAATCCC
>Rosalind_5013
GGGTGGG

Rosalind_0498 Rosalind_2391
Rosalind_0498 Rosalind_0442
Rosalind_2391 Rosalind_2323

	Introduction to Perl
	Outline
	What is Perl
	Typical Uses of Perl
	Not-So-Typical Use of Perl
	Philosophy of Perl
	Perl on HPC Systems
	Running Perl Programs
	Running Perl Programs (cont)
	Comment
	Strict And Warnings
	Data::Dumper
	Getting Help
	Outline
	Perl Variables
	Declaring Variables
	Variable Names
	Scalar Variables
	Coercion
	Quotes
	Quotes (cont)
	Quotes (cont)
	Special Characters
	“Undef” Value
	Array Variables
	Array Elements
	Array Slices
	Array size
	Try It Yourself
	Context
	Context (cont)
	Hash Variables
	Hash Values
	Hash Slices
	Hash Size
	Predefined Variables
	Predefined Variables (cont)
	$_
	@ARGV
	@_
	%ENV
	Try It Yourself
	Outline
	Control Flow
	Boolean Context
	Boolean Context (cont)
	Conditional Construct - if
	Postfix Form of if
	Comparison Operators
	Comparison Examples
	Boolean Operators
	Unless
	Ternary Conditional Operator
	Short-Circuit Operators
	Loops - for
	Loops - foreach
	Loops – foreach (cont)
	Loops – while
	Loops - until
	Loop Control
	Outline
	Arithmetic Operators
	Shortcut Operators
	Shortcut Operators (cont)
	Numeric Functions
	String Operators
	String Functions
	Substr
	Split
	Array Functions
	Join
	Reverse
	Sort
	Sort (cont)
	Sort (cont)
	Map
	Default Variables
	Hash Functions
	File I/O
	File I/O (cont)
	File Test Operators
	Outline
	References
	Reference Operator
	Dereferencing
	Deferencing (cont)
	Deferencing (cont)
	Anonymous Variables
	Why Use References?
	2-D Arrays (Array of Arrays)
	Complex Data Structure
	Outline
	Write Your Own Functions
	Input Parameters
	Parameter Passing
	Parameter Passing (cont)
	Parameter Passing (cont)
	Returning Values
	Outline
	Regex
	Matching
	Substituting
	Metacharacters
	Metacharacters (cont)
	Define Patterns
	Quantifiers
	Quantifiers (cont)
	Greediness
	Character Classes
	Modifiers
	Alternation
	Grouping And Capturing Matches
	Named Captures
	Perl Modules
	Installing Modules
	Installing Modules on HPC Systems
	Using Modules
	Perl One-Liners
	Perl Command Line Options
	More Command Line Options
	Double Space A File
	Printing All Lines between Line A and Line B
	Not Covered
	Beyond This Tutorial
	Exercise
	Exercise 1: Hamming Distance
	Exercise 2: Replace and Print
	Exercise 3: FASTA file reader
	Exercise 4: Computing GC Content
	Exercise 5: Overlap Graphs
	Exercise 5: Overlap Graphs

