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What is Perl 

• Practical Extraction and Reporting Language 
• “Perl” is the language 
• “perl” is the command 



Typical Uses of Perl 

• Text processing 
• System administration tasks 

– Parsing log files etc. 

• Web programming 
• Database 



Not-So-Typical Use of Perl 

• Solving complex PDEs 



Philosophy of Perl 

• TIMTOWTDI – There Is More Than One Way To 
Do It 



Perl on HPC Systems 

System Version Softenv key 

Super Mike 2 5.16.3 +perl-5.16.3 

Philip 5.16.2 +perl-5.16.2 

LONI systems 5.8.4 



Running Perl Programs 
• Run a Perl program with perl <program name> 

[lyan1@mike1 tutorial]$ cat hello.pl 
print "Hello, world!\n"; 
[lyan1@mike1 tutorial]$ perl hello.pl 
Hello, world! 
 



Running Perl Programs (cont) 

• Or add the shebang line and make it 
executable 

[lyan1@mike1 tutorial]$ cat hello.pl 
#!/usr/bin/perl 
 
print "Hello, world!\n"; 
[lyan1@mike1 tutorial]$ chmod 755 hello.pl 
[lyan1@mike1 tutorial]$ ./hello.pl 
Hello, world! 
 



Comment 

• Single-line comments start with a “#” 
• Multiple-line comments start with “=<word>” 

and end with “=cut” 



Strict And Warnings 
• Perl can be a very loose programming language by 

default 
• Use these two statements at the beginning of your Perl 

program as a safety net (below the shebang line 
though) 
– Think them as boiler plate 

use strict; 
use warnings; 



Data::Dumper 
• Writes out varialbe contents in perl syntax 

– Very useful in debugging and learning 
use Data::Dumper; 
my $contacts = { 'Frank' => {'email' => 'frank@lsu.edu', 
                             'phone' => '578-5655'}, 
                 'Amy'   => {'email' => 'amy@lsu.edu', 
                             'phone' => '578-1420'} 
               }; 
print Dumper($contacts); 
 
#Output: 
$VAR1 = { 
          'Amy' => { 
                     'email' => 'amy@lsu.edu', 
                     'phone' => '578-1420' 
                   }, 
          'Frank' => { 
                       'email' => 'frank@lsu.edu', 
                       'phone' => '578-5655' 
                     } 
        }; 
 



Getting Help 

• perldoc <topic> 
– Lots of useful pages 

• Also available at perldoc.perl.org 



Outline 
• Variables 
• Control Flow 
• Operators and built-in functions 
• Regex 
• References 
• Functions 
• Regex 



Perl Variables 

• Variable name 
– Consist of numbers and letters 
– May not start with numbers (for user variable) 

• Variable type (indicated by a preceding sigil) 
– Scalar ($) 
– Array (@) 
– Hash (%) 



Declaring Variables 
• Use the “my” function 
• Perl do not require variables to be declared, but it is a good habit to 

avoid scoping and typo issues  
– use strict will enforce variable declaration  

my $scalar = 5; 
my $scalar = “Some string”; 
 
my @array = (1, 2, 3, 4); 
 
my %hash = (‘one’, ‘red’ 
      ‘two’, ‘blue’ 
      ‘three’, ‘green’); 



Variable Names 

• Perl allows variables of different types to have 
identical names 
– Confusing for programmers, so don’t do it 

# This is perfectly legal in Perl 
my $var = 5; 
my @var = (1, 2, 3, 4); 
my %var = (‘one’, ‘red’ 
      ‘two’, ‘blue’ 
      ‘three’, ‘green’); 



Scalar Variables 

• Store a single item 
• Does not distinguish between numbers and 

text 

my $integer = 5; 
my $string = “Some string”; 
my $meaning_of_life = “42”; 
my $decimal = 0.45; 
my $scientific = 6.23e23; 
 



Coercion 

• Perl converts between strings and numbers 
when necessary (more on this later) 

my $scalar = 5; 
my $life = '42'; 
 
say $scalar + $life; # 47 
say $scalar.’ ’.$string; 5 42 



Quotes 

• Single quotes – treat characters literally 
• Double quotes – expand variable and escape 

sequence 
my $item = 'meal'; 
my $single = 'I paid $4.99 for this $item'; 
my $double = "I paid $4.99 for this $item"; 
 
say $single; # print the literal string 
say $double; # will print an error message 
 



Quotes (cont) 

• Use \ to escape special characters, including ‘ 
and “ 

my $item = 'meal'; 
my $single = ‘He said “I paid $4.99 for this 
$item”'; 
my $double = “He said \”I paid \$4.99 for this 
$item\”"; 
 
say $single; # again, the literal string 
say $double; # He said “I paid $4.99 for this meal” 
 



Quotes (cont) 

• Use q() and qq() in place of single quotes 
and double quotes, respectively 

my $item = 'meal'; 
my $double = qq(He said ”I paid \$4.99 for this 
$item“); 
 
say $double; 
 



Special Characters 

• Special character that can be used with 
double quotes or qq() 

/n New line 
/t Tab 
/r Carriage 
/f Form feed 
/b Backspace 



“Undef” Value 

• A scalar has a “undef” value when initiated 
– Can use defined() to test 

my $scalar; 
print $scalar; 
print Dumper($scalar); 
 



Array Variables 

• Store an ordered list of scalars 
– Again, Perl does not distinguish numerical and 

textual data 

my @pets = (‘cat’,’dog’,’hamster’,’salamander’); 
my @numbers = (4, 15, 26, 5, 77); 
my @mixture = (5, ‘bottle’, 3.5, $scalar); 



Array Elements 
• Access individual elements using square brackets [] and 

indices 
– Index starts from 0 
– Note that “$” is used to indicate a scalar is needed 

my @pets = (‘cat’,’dog’,’hamster’,’salamander’); 
 
print $pets[0]; # Will print “cat” 
 
#The size of an array is not fixed and can be 
expanded by adding new values 
$pets[4] = ‘guinea pig’; 



Array Slices 

• Access multiple elements in an array 
– Note that “@” is used to indicate an array is needed 

 my @pets = (‘cat’,’dog’,’hamster’,’salamander’); 
 
# Will print “cat” and “hamster” 
print @pets[0,2]; 
# Will print “cat”, “dog” and “hamster” 
print @pets[0 .. 2]; 
 
@pets[4,5] = (‘guinea pig’, ‘parrot’) 
# Not necessarily an array 
($x, $y) = ($a, $b) 



Array size 

• The size of an array is given by evaluating the 
array in a scalar context 

my @pets = (‘cat’,’dog’,’hamster’,’salamander’); 
 
my $size = @pets; 
print $size; # will print 4 
 
# will print 3, the index of last element of 
@pets 
Print my $last_element = $#pets;  



Try It Yourself 

use strict; 
use warnings; 
use feature ‘say’; 
 
my @numbers = (1 .. 10); 
 
#What will you get and why? 
say my $size = @numbers; 
say $numbers; 
say $#numbers; 
say @numbers; 
 



Context 

• Just as in human languages, the meaning of an 
operation in Perl often depends on the 
context 
– Amount context – how many items are expected 

from an operation 
– Value context – how data is interpreted 



Context (cont) 

# Amount context: scalar or list 
$size = @array; # scalar context 
@array_copy = @array; # array context 
 
# Value context: string, scalar or boolean 
$five = 5; 
print 8 + $five; # numerical context 
print ‘His jersey number is ‘.$five; # string context 
 
# Perl relies on the operator to provide context, so  
# programmers need to be specific 
print ‘five’ + ‘four’; # 0 



Hash Variables 

• Store a number of “key”=>”value” pairs 
– Not ordered  
– Called “associated arrays” sometimes 

# Create a hash with a flat list 
my %phone_book = 
(‘Frank’,’3465178’,’Anne’,’4561098’); 
 
# Or use the fat comma (=>), which is clearer 
my %lsu_id= 
(‘John’ => ’892342784’, ‘Olivia’ => ‘894326756’); 



Hash Values 
• Access hash values using {} and the name of the key 

– Again, note the use of “$” 

my %phone_book = 
(‘Frank’,’3465178’,’Anne’,’4561098’); 
my $number = $phone_book{‘Frank’}; 
 
# Like arrays, hashs can be expanded by assigned 
new values 
$phone_book{‘Amy’} = ‘2985387’; 



Hash Slices 

• Similar to arrays, one can access slices of a 
hash 

my %phone_book = 
(‘Frank’,’3465178’,’Anne’,’4561098’); 
 
my @numbers = $phone_book{‘Frank’,’Anne’}; 
 
@phone_book{‘Amy’,’Ted’} = (‘2985387’, ‘3362992’); 



Hash Size 
• Unlike arrays, it does not help to evaluate hashes in a scalar 

context 
– “%#” does not work either 

my %phone_book = 
(‘Frank’,’3465178’,’Anne’,’4561098’); 
 
print my $size = %phone_book; 
print %#phone_book; 
 
#This is one way of doing it 
print my $size = keys %phone_book; 



Predefined Variables 

• Perl has many special predefined variables 
– Some have the form of $/@/% + other 

punctuations  
– Some have the form of ALL_CAPS 
– Explained in perldoc perlvar 



Predefined Variables (cont) 

• Something that makes Perl interesting 
– For example 

[lyan1@mike1 tutorial]$ cat cat.pl 
while (<>) { 
  print; 
} 
[lyan1@mike1 tutorial]$ perl cat.pl datafile 
>Rosalind_1 
GATTACA 
>Rosalind_2 
TAGACCA 



$_ 

• The default input and pattern-searching space 
– “the default variable” 
– Many Perl operations set or use the value of $_ if 

no others are provided 

$_ = 'I am the default variable'; 
say; 



@ARGV 

• The array that stores command lines 
arguments 
– Many array operations in the main program use its 

value if none is provided 
my $num_args = @ARGV; 
say "$num_args arguments from command line"; 
say "The first argument is”, shift; 



@_ 

• The default array 
– Within a function, @_ contains the parameters 

passed to that subroutine 
– Many array operations within the function use its 

value if none is provided 
– More on this later 



%ENV 

• A hash that stores the shell environment 
variables 
– Keys are the shell variable names (PATH etc.) 
– Values and the shell variable values 



Try It Yourself 

# This mimic the “cat” shell command 
# The readline operator <> takes @ARGV as  
# its operand and reads the provide file list 
# line by line, which is passed to print as  
# the value of $_ 
 
while (<>) { 
  print; 
} 
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Control Flow 

• Controls the order of program execution 
– Conditional 
– Loop 



Boolean Context 
• Perl does not offer a boolean type variable 

– Evaluates different types variable when presented in a 
Boolean context 

– A expression is false in Perl if it is a 
• Number 0 
• Empty string 
• Undef 
• Empty list 

– Everything else is true 
 



Boolean Context (cont) 
# Scalars with a value of 0 or undef evaluate 
# to “false” 
my $zero = 0; 
my $another_zero = 100 * $zero; 
 
# But a string like this evaluates to “true” 
my $zero_but_true = “0.0”; 
 
# Empty arrays and hashes are “false” 
my @array; 
my %hash; 
 
# Non-empty arrays or hashes are true, even 
# if the values are 0 or undef 
$array[0] = undef; 



Conditional Construct - if  

• If…elsif…else construct 
if (EXPRESSION 1) { 
 Block of code 
} 
elsif (EXPRESSION 2) { 
 Block of code 
} 
else { 
 Block of code 
} 



Postfix Form of if 

• Simplify the code sometimes 

say “Hello, Bob” if ($name eq ‘Bob’) 



Comparison Operators 

Equal == eq 

Not equal  != ne 

Greater than > gt 

Greater than or equal >= ge 

Less than  < lt 

Less than or equal <= le 

The first column enforces numerical context 



Comparison Examples 

62 > 42   #True 
‘0’ == (3*2)-6  #True 
‘apple’ gt ‘banana’  #false 
‘apple’ == ‘banana’  #true 
‘apple’ eq ‘banana’  #false 
1 + 2 == ‘3 bears’  #true 
1 + 3 == ‘three’  #false 
 
if ('apple' == 'banana') {say 'Not good';} 
if (! ('apple' eq 'banana')) {say 'This is better';} 
 



Boolean Operators 

Operator Choice 1 Choice 2 

Not ! 

And and && 

Or or || 



Unless 

• Equivalent to “if not” 
• Useful for parameter validation 

sub validate_identity { 
  return unless ($id{$name}) 
} 



Ternary Conditional Operator 

• EXPR ? EXPR 1 : EXPR 2 
– Execute EXPR 1 if EXPR is true, otherwise 

execute EXPR 2 

my $salutation = male($name) ? ‘Mr.’ : ‘Ms.’ 



Short-Circuit Operators 

• Use or to write clearer code 

# Only needs to evaluate the second expression when 
the first is false 
 
open FH, ‘datafile’ or die “Can open file $!”; 
 
@ARGV == 3 or print $usage_msg; 



Loops - for 
• C-style for loops 

– Rarely used 

my @square; 
for (my $i = 0; $i <= $#square ; $i++) { 
    $square[i] = $i ** 2; 
} 



Loops - foreach 
• Loop over a list – preferred over the C-styled for 

loop 
foreach my $i (1 .. 10) { 
    say “$i * $i =“,$i*$i; 
} 
 
#Or use the default variable 
foreach (1 .. 10) { 
    say “$_ * $_ = “,$_*$_; 
} 
 
#Postfix form 
say “$_ * $_ = “,$_*$_ foreach (1 .. 10) 



Loops – foreach (cont) 
# Loop over a hash 
foreach (keys %hash) { 
    say $hash{$_}; 
} 
 
# Perl actually treats for and foreach 
interchagably, so the following code is 
perfectly fine: 
for (keys %hash) { 
    say $hash{$_}; 
} 
 



Loops – while 

• While (EXPR) { code block} 
– Repeat the same block of code while EXPR is true 

my @array = (1 .. 10); 
 
# This loop will do the same thing as the 
one on previous slide 
while (@array) { 
    my $i = shift @array; 
    say “$i * $i = “,$i*$i; 
} 



Loops - until 

• Until (EXPR) { code block } 
– Repeat the same block of code while EXPR is false 
– The opposite of while 



Loop Control 

• next – jump to the next iteration 
• redo – jump to the start of the same iteration 
• last – jump out of the loop 
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Arithmetic Operators 

• The usual suspect 
+ Add 

- Subtract 

* Multiply 

/ Divide 

% Modulus 

** Exponentiation 



Shortcut Operators 

• $x <op>= $y performs operations $x = 
$x <op> $y 

+= Add 

-= Subtract 

*= Multiply 

/= Divide 

%= Modulus 

**= Exponentiation 



Shortcut Operators (cont) 

• $x++ is equivalent to $x -= 1 
• $x-- is equivalent to $x -= 1 
• ++$x and --$x have the same meanings, but 

there is subtle difference 
my @array = (0 .. 10) 
my $i = 0; 
say $array[$i++]; #will print 0 
say $array[++$i]; #will print 2 



Numeric Functions 

• Again the usual suspects 

abs Absolute value 
cos, sin, tan Trigonometric 
exp Exponentiation 
log Logarithm  
rand Random number generator 
sqrt Square root 



String Operators 

my $first_name = ‘Le’; 
my $last_name = ‘Yan’; 
# Concatenation (.) 
my $full_name = $first_name.“ “.$last_name; # “Le Yan” 
# Repetition (x) 
my $line = ‘-’ x 80;  
# Shortcut available 
$full_name .= ‘ had his lunch.’; 



String Functions 
# length: returns the length of a string 
my $full_name = “Le Yan”; 
say length $full_name; #will print 6 
# uc: returns all uppercase version of string 
# lc: returns all lowercase version of string 
# ucfirst: returns the string with first letter in 
uppercase 
# lcfirst:returns the string with first letter in 
lowercase 
# chomp: returns the string with the trailing new line 
character removed (if there is any) 



Substr 
# substr: returns a substring 
# Syntax: substr EXPR,OFFSET,LENGTH,REPLACEMENT 
# Extracts a substring out of EXPR and returns it.  
 
my $s = “The black cat climbed the green tree”; 
my $color = substr $s, 4, 5; # black 
#If LENGTH is negative, leave that many characters off the end. 
my $middle = substr $s, 4, -11; # black cat climbed the 
#If LENGTH is omitted, returns everything through the end. 
my $end = substr $s, 14; #climbed the green tree 
#If OFFSET is negative, start from the end of the string. 
my $tail = substr $s, -4; 
#If REPLACEMENT is provided, substitute the substring with it (will 
happen in place). 
substr $s, 14, 7, “jumped from”; 



Split 
# split: splits a string into a list of strings and 
returns the list 
# syntax: split /PATTERN/,STRING 
 
my $s = “The black cat climbed the green tree”; 
my @array = split “ “,$s; 
say $array[1]; # black 
 
# if PATTERN is an empty string, will split into a list 
where each character is an element 
my @another_array = split “”,$array[1]; 
say $another_array[1]; # l 



Array Functions 

• pop, push, shift, unshift 
my @names = (‘Frank’, ‘John’); 
 
#pop: remove and return last element 
say pop @names; # will print ‘John’ 
#push: add a new element to the end 
push @names,’Amy’; # @names is now (‘Frank’,’Amy’) 
#shift: remove and return first element 
say shift @names; # will print ‘Frank’ 
#unshift: add a new element to the start 
unshift @names,’Fred’; @names is now (‘Fred’,’Amy’) 



Join 

• Opposite of split 

my @names = (‘Frank’, ‘John’, ‘Amy’, ‘Olivia’); 
 
say join ‘:’,@names; # Frank:John:Amy:Olivia 



Reverse 

• Reverses an given list 
@array = (2, 5, 3, 1); 
@reversed = reverse @array; #(1, 3, 5, 2) 
 
 



Sort 

• Returns a sorted list (does NOT sort in place) 
@array = (2, 5, 3, 1); 
@sorted = sort @array; #(1, 2, 3, 5) 
 
# The default order is ascending in ASCII 
# Sometimes the result is surprsing 
@array = (‘a’,’c’,’D’,’b’,’E’); 
@sorted = sort @array; (‘D’,’E’,’a’,’b’,’c’) 
 
@array = (1 .. 10); 
@sorted = sort @array; (1,10,2,3,…) 
 
 



Sort (cont) 

• sort can be customized by adding a sorting 
block as an argument 

# Syntax: sort {$a cmp $b} LIST 
# $a and $b are two elements being compared. 
# $a and $b can be replaced by two expressions 
# involing $a and $b, respectively. 
# The order is decided by the result of #comparison. 
 
# cmp is for strings 
sort {$a cmp $b} @list; 
# cmp 
sort ($a <=> $b} @list; 



Sort (cont) 

# Sort in numerically descending order 
@sorted = sort {$b <=> $a} @array; 
 
# Case insensitive sort 
@array = (‘a’,’c’,’D’,’b’,’E’); 
@sorted = sort {fc($a) cmp fc($b)} @array; # (’a’,’b’,’c’,‘D’,’E’) 
 
# Sort hash keys by their associated values 
@sorted = sort {$hash{$a} <=> $hash{$b}} keys %hash; 
 
 



Map 
• Evaluate an expression or a block of code for each 

element of a list 
– Like an implied loop 
– Setting each element as $_  
 
# The number of returned elements can be different from the  
# input. 
# Use an empty list () to skip an element 
 
my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers; 
 



Default Variables 

• Many of the functions mentioned above 
operate on $_, @ARGV or @_ 



Hash Functions 
• keys: returns a list of keys 
• values: returns a list of values 
• delete: deletes a pair from the hash 
• exists: tells if a element exists (key or value) 



File I/O 
• open opens a file and associates with a file handle 
• close closes a file 

# ‘<‘ is for reading, ‘>’ is for overwriting 
# ‘>>’ is for appending 
open (my $file, ‘<‘, ‘datafile’); 
 
# Read one line 
my $line = <$file>; 
 
# Read all lines 
my @lines = <$file>; 
 
close($file); 



File I/O (cont) 

• Use print or say to write to a file 

open (my $file, ‘>‘, ‘datafile’); 
 
print $file $somedata; 
 
close($file); 



File Test Operators 

• Use with if to check file attributes 
-e $file File exists? 
-r $file File readable? 
-w $file File writable? 
-d $file File is a directory? 
-f $file File is a normal file? 
-T $file File is a text file? 
-B $file File is a binary file? 



Outline 

• Variables 
• Control Flow 
• Operators and built-in functions 
• References 
• Functions 
• Regex 



References 

• Perl references are like pointers in C 
• It is a mechanism to refer to a value without 

making a copy 
– Any change made through the reference is made 

in place 

• A reference always fits in a scalar 



Reference Operator 

• Putting \ in front of a variable creates a 
reference to it 
 
 

my $scalar_ref = \$scalar; 
my $array_ref = \@array; 
my $hash_ref = \%hash; 
 
 



Dereferencing 

• An extra sigil is needed to deference a 
reference to access the value it refers to 

my $scalar_ref = \$scalar; 
${$scalar_ref} = ‘some value’; 
 
my $array_ref = \@array; 
my $size = @{$array_ref}; 
${$array_ref}[0] = ‘some other value’; 
 
my $hash_ref = \%hash; 
foreach (keys %{$hash_ref}) { 
  say ${$hash_ref}{$_}; 
} 



Deferencing (cont) 

• The curl brackets can be omitted 
– They improve readability though 

my $scalar_ref = \$scalar; 
$$scalar_ref = ‘some value’; 
 
my $array_ref = \@array; 
my $size = @$array_ref; 
$$array_ref[0] = ‘some other value’; 
 
my $hash_ref = \%hash; 
foreach (keys %$hash_ref) { 
  say $$hash_ref{$_}; 
} 



Deferencing (cont) 

• Can also use arrow (->) to access elements of 
arrays and hashes 
– ${$array_ref}[0] is equivalent to 
$array_ref->[0] 

– ${$hash_ref}{$key} is equivalent to 
$hash_ref->{$key} 



Anonymous Variables 
• It is possible to create anonymous variables using 

references 
– Only accessible by using references 

# Use [] for anonymous arrays 
my $array_ref = [1 .. 10]; 
say $array_ref->[2]; 
 
# What will happen? 
$array_ref = (1 .. 10); 
 
# Use {} for anonymous hashs 
my $contacts_ref = ( ‘Frank’ => ‘frank@lsu.edu’, 
                     ‘Amy’   => ‘amy@lsu.edu’}; 
 



Why Use References? 

• Complex data structure 
• Passing parameters (more on this later) 



2-D Arrays (Array of Arrays) 
# This will result in an array (1,2, …, 9)  
# due to list flattening 
my @numbers = ((1 .. 3), 
               (4 .. 6), 
               (7 .. 9)); 
 
# [ LIST ] creates an anonymous array and  
# returns the reference 
# So we are creating an array of references 
my @array_of_arrays = 
         ([1 .. 3],[4 .. 6],[7 .. 9]); 
say $array_of_arrays[0]; # ARRAY(0x1c45a98) 
say $array_of_arrays[0]->[1]; # 2 



Complex Data Structure 

• Hash of hashes 
 
 
 
 

• You can also define array of hashes, hash of 
arrays etc. 

my %contacts = ( ‘Frank’ => {‘email’ => ‘frank@lsu.edu’, 
                             ‘phone’ => ‘578-5655’}, 
                 ‘Amy’   => {‘email’ => ‘amy@lsu.edu’, 
                             ‘phone’ => ‘578-1420’} 
               ); 
say $contacts{‘Frank’}->{‘email’}; 
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Write Your Own Functions 

• Declare a function 
 
 

• No list of input parameters in function 
definition 

sub function_name { 
 block of code 
} 



Input Parameters 
• Instead, all input parameters are put in the array @_ 

– The function needs to either unpack it or operate on it directly 
– List flattening applies 

my %contacts = (‘Frank’ => ‘frank@lsu.edu’, 
                ‘Amy’ => ‘amy@lsu.edu’); 
 
flattened_contacts(%contacts); 
contacts_as_hash(%contacts); 
 
sub flattened_contacts { 
  say “The key is “,shift; 
  say “The value is ”,shift; 
} 
 
sub contacts_as_hash { 
  my %hash = @_; 
} 



Parameter Passing 

# What will happen? 
my @array1 = (1 .. 3); 
my @array2 = (4 .. 6); 
check_size (@array1, @array2); 
 
sub check_size { 
 
 
  my (@a1,@a2) = @_; 
  say @a1 == @a2 ? ‘Yes’ : ‘No’; 
 
} 



Parameter Passing (cont) 

# What will happen? 
my @array1 = (1 .. 3); 
my @array2 = (4 .. 6); 
check_size (@array1, @array2); 
 
sub check_size { 
# @_ is flattened as (1,2,3,4,5,6) 
# @a1 gets all while @a2 gets none 
  my (@a1,@a2) = @_; 
  say @a1 == @a2 ? ‘Yes’ : ‘No’; 
 
} 



Parameter Passing (cont) 

# Should use reference 
my @array1 = (1 .. 3); 
my @array2 = (4 .. 6); 
check_size (\@array1, \@array2); 
 
sub check_size { 
 
 
  my ($a1,$a2) = @_; 
  say @$a1 == @$a2 ? ‘Yes’ : ‘No’; 
 
} 



Returning Values 

• Functions can return none, one or more 
values 

my @array1 = (1 .. 3); 
my @array2 = (4 .. 6); 
say ‘Yes’ if check_size (\@array1, \@array2); 
 
sub check_size { 
 
  my ($a1,$a2) = @_; 
  my $result = @$a1 == @$a2 ? ‘Yes’ : undef; 
  return $result; 
 
} 
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Regex 

• Regex stand for REGular Expression 
– Powerful tool for text processing 
– Allows users to define a pattern to describe 

characteristics of a text segment 
– Can be used to match or modify text 
– Perl regex documentation: perlretut, 
perlreref, perlre 



Matching 

• Regex can be used to match literals 
# Match operator: // or m// or m with any delimiter 
# Binding operator: =~ 
 
# The match operator returns true/false in scalar context, a list of 
captured text in list context 
my $s = “GATATATGCATATACTT”; 
say ‘Found a match’ if $s =~ /TATA/; 
 
# Operate on $_ if operand is omitted 
$_ = “GATATATGCATATACTT”; 
say ‘Found a match’ if /TATA/; 
 
# The function index can be used for this purpose as well 
# It returns the position of first match or -1 if none 
say index $s,’TATA’; # will print 2 



Substituting 

# Substitution operator: s/PATTERN/REPLACEMENT/ 
# Can choose any delimiter 
# Also operate on $_ if operand is omitted; 
 
# Returns true if successful in scalar context, the number of 
replacements in list context 
# The substitution is done in place 
 
$_ = “GATATATGCATATACTT”; 
s/TATA/GCGC/g; # The value is true 
say; # will print GAGCGCTGCAGCGCCTT 
 
$_ = “GATATATGCATATACTT”; 
s/TATA/GCGC/; # Without “g”, will return after the first success 
say; # will print GAGCGCTGCATATACTT 
 
 



Metacharacters 
. Any character except \n 

^ Start of string 

$ End of string 

\s Any whitespace \S Any non-whitespace 

\d Any digit \D Any non-digit 

\w Any word \W Any non-word 

\b Any word boundary \B Anything except a word boundary 

Special characters such as ., ^, $ need to be escaped 
by using “\” if the literals are to be matched 



Metacharacters (cont) 

While (<FILE>) { 
    say if m|^http://|; # Match any line that starts with http://  
    say if /\bperl\b/; # Match any line with the word “perl” 
    say if /\S/; # Match any line with content; 
    say if /\$\d\.\d\d/; # Match any line containing $x.xx 
} 
 



Define Patterns 

• The qr// operator define patterns that can be 
used and reused for later match 

my $http = qr/^http:\/\//;  
my $www = qr/www/; 
while (<FILE>) { 
    say if /$http$www/; 
} 



Quantifiers 

• Allow users to specify the number of 
occurrence 

* Zero or more 
+ One or more 
? Zero or one 
{n} Exactly n times 
{n,} At least n times 
{n,m} At least n, but at most m times 



Quantifiers (cont) 

While (<FILE>) { 
    say if /ca?t/; # Match “ct” or “cat” 
    say if /ca*t/; # Match “ct”, “cat”, “caat”, … 
    say if /ca+t/; # Match “cat”, “caat”, … 
    say if /ca{3}t/; # Match “caaat” 
    say if /\d{3}-?\d{3}-?\d{4}/; # Match a phone number with 
area code 
} 
 



Greediness 

# + and * are greedy – they will grab any many character as possible 
$gene = “GATATATGCATATACTT”; 
$gene =~ s/A.*T/GC/; # GGC 
 
# Appending a “?” will make them “reluctant” 
$gene = “GATATATGCATATACTT”; 
$gene =~ s/A.*?T/GC/; # GGCATATGCATATACTT 
 



Character Classes 

• Define a class of characters 

/[aeiou]/ Match all vowels 

/[^aeiou]/ Match any character except ‘a’, ’e’ ,’i’, ’o’, ’u’ 

/[a-zA-Z]/ Match any letter 

/[-!?]/ Match ‘-’, ‘!’, ‘?’ (hyphen at start) 

/!\-?/ Same as above (hyphen escaped) 



Modifiers 

• Modifiers change the behavior of regex 
$gene = “GATATATGCATATACTT”; 
 
# /i cause regex to ignore case distinctions 
say “Match found” if $gene =~ /tata/i; 
 
# /g cause regex to match globally throughout a string 
$gene =~ s/TATA/GCGC/g;  
say $gene; # will print GAGCGCTGCAGCGCCTT 
 
# /r cause regex to ignore whitespace in the regex pattern 
# Modifiers can be combined 
say “Match found” if $gene =~ /g c g c/ri 
 



Alternation 

• Use “|” to match either one thing or another 

my $pork = qr/pork/; 
my $chicken = qr/chicken/; 
say “Food okay” if $food =~ /$pork|$chicken/i; 



Grouping And Capturing Matches 
• Use parentheses to 

– Group atoms into larger unit 
– Capture matches for later use 

 # Will match “por and beans” 
my $por_and_beans = qr/pork?.*?beans/  
# Will not match “por and beans” 
my $pork_and_beans = qr/(pork)?.*?beans/ 
 
# () also capture the matched text and store 
# them in special variables $1, $2 etc. 
while (<FILE>) { 
  if (/^(\w+)\s+(\w+)/) { 
    say “The first word is: “,$1; 
    say “The second word is: “,$2; 
  } 
} 



Named Captures 

# Use ?< name >  in a group to name a capture 
# It must appear immediately after the left parenthesis 
# Can access it later with $+{name} 
 
my $phone_number = qr/\d{3}-?\d{3}-?\d{4}/; 
while (<FILE>) { 
  push @numbers, $+{phone} if /(?<phone>$phone_number)/; 
} 



Perl Modules 

• Think Perl modules as libraries – reusable 
codes 

• CPAN – tons of modlues developed by the Perl 
community (www.cpan.org) 
– Before setting out to write something serious, 

check CPAN first 



Installing Modules 

• Option 1: manual installation 
– Download the tarball and extract the content 
– Create a Makefile 
– Make, make test and make install 

• Option 2: use the “cpan” module 
– Provides a console to search, download and install 

modules and their dependencies automatically 



Installing Modules on HPC Systems 

• You don’t have root process, so you need to 
install them in your own user space 
– Most likely somewhere in your home directory 
– Then point the environment variable $PERL5LIB to 

the location 



Using Modules 
• Use the use function 

– We’ve seen a few examples 

use strict; 
use warnings; 
use Data::Dumper; 
 
#use optional components 
use feature qw(say switch fc); 



Perl One-Liners 

• Perl can perform lots of seemingly complex 
task with one line of code, aka one-liners 
– There are other similar tools (e.g. awk) 

• For example:  
Number and print only non-empty lines in a file (drop empty 
lines) 
perl -ne 'print ++$a." $_" if /./‘ file 
 
Remove all consecutive blank lines (leave only one)  
perl -00 -pe '' 



Perl Command Line Options 

• -e allows to enter a program directly on the 
command line-l, -n, -a 

• -n assumes the follow loop around the 
provided program: 

while (<>) {  
  # your program goes here  
} 



More Command Line Options 
• -p assumes the follow loop around the provided 

program: 
 

 
• -l automatically chomps the input when used with 
-n or -p 

• -a turns on autosplit mode when used with a -n or 
-p. 

while (<>) {  
  # your program goes here  
} continue {  
  print or die "-p failed: $!\n";  
} 



Double Space A File 

[lyan1@mike1 tutorial]$ cat data 
Apple 
Pear 
Mango 
[lyan1@mike1 tutorial]$ perl -pe '$\="\n"' data 
Apple 
 
Pear 
 
Mango 
 

# The one-liner is equivalent to: 
while (<>) { 
# if defined, the content of $\ is appended  
# to each print command 
  $\ = “\n”;  
} continue { 
  print or die "-p failed: $!\n"; 
} 



Printing All Lines between Line A and 
Line B 

[lyan1@mike1 tutorial]$ perl -ne 'print if $. >= 2 && $. <= 3’ data 
Pear 
Mango 
 # The one-liner is equivalent to: 

while (<>) { 
# $. is the current line number 
  print if $. >=2 && $. <= 3;  
} 



Not Covered 

• Scope 
• Advanced function features 
• OOP features 
• …  



Beyond This Tutorial 

• http://perldoc.perl.org 
• http://learn.perl.org 
• http://www.catonmat.net/series/perl-one-

liners-explained 



Exercise 

• Data files can be found under 
 

• Solutions can be found under 
 

• Each of the solutions is just a solution, not the 
solution (Remember, ‘Tim Toady’) 

/home/lyan1/traininglab/perl/data 

/home/lyan1/traininglab/perl/solution 



Exercise 1: Hamming Distance 
Background 
Given two strings with same length, the Hamming distance is the number of 
corresponding characters that differ. For example, the Hamming distance 
between                                                                     is 7.  
 
Problem 
Given: Two strings read from a file 
Return: The Hamming distance 
 
Note 
There are two data files, one large and one small. The answer should be 7 
for HAMM_data_small and 489 for HAMM_data_large 



Exercise 2: Replace and Print 
Problem 
For a given file, replace all occurrence of “GTAG” with “CATC”, then print 
each line that contains “GACTA” 
 
Note 
There are two data files, replace_data_large and 
replace_data_small. 
Should be able to do this with a one-liner.  
 



Exercise 3: FASTA file reader 
Background 
FASTA is a file format used to store genetic strings. Every string in a FASTA file begins 
with a single-line that contains the symbol '>' along with some labeling information 
about the string. All subsequent lines contain the string itself. A .fasta file would look 
like this: 
 
 
 
Problem 
Given: A .fasta file  
Return: A hash with the labels as the keys and the strings as values 
Note 
One string can and often span across multiple lines, so you need to take it into 
consideration. 

>Taxon1 
CCTGCGGAAGATCGGCACTAGAATAGCCAGAACCGTTTCTCTGAGGCTTCCGGCCTT
CCC TCCCACTAATAATTCTGAGG 
 >Taxon2 
CCATCGGTAGCGCATCCTTAGTCCAATTAAGTCCCTATCCAGGCGCTCCGCCGAAGG
TCT ATATCCATTTGTCAGCAGACACGC 



Exercise 4: Computing GC Content 

Background 
DNA strings are composed of “A”, “C”, “G” and “T”. The GC content of a given 
DNA string is the percentage of symbol “G” and “C”.  
 
Problem 
Given: DNA strings in FASTA format 
Return: The label of the string that has highest GC content, followed by its GC-
content. 
 
Note 
You might need to use the fasta file reader in Exercise 3. 



Exercise 5: Overlap Graphs 
Background 
For a group of strings, the adjacency list corresponding to On is all pairs of strings  (s,t) 
such that the last n characters of s is the same with the first n characters of t. 
 
Problem 
Given: DNA strings in FASTA format 
Return: The adjacency list corresponding to O3.  
 
Note 
You might need to use the fasta file reader in Exercise 3. 
If the start of string s overlaps with the end of string t, the returned pair should be (t,s), 
not (s,t). 
A string that overlaps with itself, such as (s,s), is not allowed and should not be counted. 



Exercise 5: Overlap Graphs 
Example 
If the given strings are: 
 
 
 
 
 
 
 
 
 
 
Then the answer should be: 

>Rosalind_0498  
AAATAAA  
>Rosalind_2391  
AAATTTT  
>Rosalind_2323  
TTTTCCC  
>Rosalind_0442  
AAATCCC  
>Rosalind_5013  
GGGTGGG 

Rosalind_0498 Rosalind_2391 
Rosalind_0498 Rosalind_0442 
Rosalind_2391 Rosalind_2323 
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