Data Graphics with Gnuplot

Le Yan

User Services

HPC @ LSU
Training Goals

• Produce simple interactive plots and graphs
• Create 2- and 3-d graphs from functions and data files
• Understand the automation potential of Gnuplot
What is Gnuplot

- **Gnuplot** is a portable command-line driven graphing utility
 - for Linux, IBM AIX, MS Windows, Apple OS-X, and many other platforms
 - Open source
 - Used as the plotting engine of applications such as Octave
 - Can be used with various languages such as Perl and Python
 - Alternatives: MATLAB, Mathematica, matploblib (python)
What is Gnuplot for?
Gnuplot vs. Excel

• Gnuplot
 – Can be readily embedded in a program
 – Allows the batch processing of many files with simple scripting
 – Has many different terminal types
Availability on LONI and HPC Systems

• Super Mike 2: Gnuplot 4.6.0
 – Softenv key: +gnuplot-4.6.0-gcc-4.4.6

• Linux systems: Gnuplot 4.2.4
 – Softenv key: +gnuplot-4.2.4-intel-11.1

• Pandora: Gnuplot 4.4.3
 – Softenv key: +gnuplot-4.4.3

• You will need a working X Window system if you want to view the plot immediately
 – Linux and Mac: use “-X” option when connecting to the cluster
 – Windows: need to have a X Window server (e.g. Xming) and enable X11 forwarding in the ssh client
The Very First Plot

[lyan1@philip1 ~]$ gnuplot
 G N U P L O T
 Version 4.2 patchlevel 4
 last modified Sep 2008
 System: Linux 2.6.18-

 Copyright (C) 1986 -
 Thomas Williams, Colin Kelley

 Type `help` to access
 The gnuplot FAQ is available

 Terminal type set to 'x11'
 gnuplot> plot sin(x)

Mathematical functions

Default x- and y- axis ranges and ticks

Default plot key
Refine the Plot (1)

```
> plot sin(x)
> unset key # remove plot key
> set title "Function Sin(x)" # Add a title above the plot area
> set xlabel "Phase" # Add a label for x-axis
> set ylabel "Amplitude" # Add a label for y-axis
> replot
```
Refine the Plot (2)

gnuplot> set xrange [-2.0*pi:2.0*pi] # You can use constants, variables or mathematical expressions
gnuplot> replot
Commands: plot and replot

• **Plot** generates a new plot
 – Gnuplot records settings and uses them until they are changed

• **Replot** repeats the last *plot* or *splot* command, using remembered settings
 – Capable of adding a plot specification to what has already been display
Defining Functions and Variables

• Syntax
 – `<varname> = <value>`
 – `<funcname>(<var1>{, <var2>, ...}) = <expression>`

```
gnuplot> plot sin(x)
gnuplot> A = 1.3
gnuplot> g(x)=A*cos(x)*sin(x)
gnuplot> replot g(x)
```
Saving and Loading Work

• Gnuplot allows you to save your efforts in a file, and reuse it at a later time
 – Particularly useful with standarized plots for which data changes periodically
 – The files are plain text and can be edited using any text editor
 – Files names need to be quoted

 gnuplot> save "my_gnuplot_file"
 gnuplot> load "my_gnuplot_file"
Ending a Gnuplot Session

• To end a Gnuplot session, use the `quit` or `exit` command
Getting Help

• Syntax
 – Help <topic> <subtopic> ...

```
$gnuplot> help functions abs
The `abs(x)` function returns the absolute value of its argument. The returned value is of the same type as the argument.

For complex arguments, abs(x) is defined as the length of x in the complex plane [i.e., sqrt(real(x)**2 + imag(x)**2)].
```
Working with Data Files

• Syntax
 – Plot “data file name” <options>

• Works with both text and binary data, but we will focus on text data
Files for Exercises

• Files can be found under
 /home/lyan1/traininglab/gnuplot
 on all Linux clusters
Date File Structure

• A data file may contain
 – Comment lines
 – Point data provided in column format
 • White space is the default delimiter unless otherwise specified
 – Breaks to separate unique lines within a data set
 – Multiple data sets
 • The index starts from 0

This is a comment
Data records starts here
1 1
2 4
3 9

One blank marks discontinuity
in a plot
4 16
5 25

Two blanks mark end of dataset
The data below belongs to
dataset 1
1 2 4
2 4 8
3 6 12
INDEX option

- The INDEX option allows users to choose datasets to plot from a data file.

```gnuplot
set pointsize 3
plot 'demo1.dat' index 1 using 1:2 with lp
```
USING option

- The **USING** keyword allows user to
 - Select columns from a multi-column data set
 - Manipulate the elements of a column to change the values that are plot

```
gnuplot> plot 'demol.dat' index 1 using 1:2 with lp, ">
> 'demol.dat' index 1 using 1:3 with boxes
```
WITH option

• The **WITH** keyword allows specification of the style of the data display

• Possible styles

 Subtopics available for plotting styles:

 - boxerrorbars
 - dots
 - financebars
 - image
 - linespoints
 - vectors
 - xyerrorlines
 - boxes
 - errorbars
 - fsteps
 - impulses
 - points
 - xerrorbars
 - yerrorbars
 - boxxyerrorbars
 - errorlines
 - histeps
 - labels
 - rgbimage
 - xerrorlines
 - yerrorlines
 - candlesticks
 - filledcurves
 - histograms
 - lines
 - steps
 - xyerrorbars

• Use the **help plotting styles** command to find more
WITH option

gnuplot> set xrange [0:6]
gnuplot> plot 'demo1.dat' index 3 using 1:2:5 with yerrorlines pt 5 ps 2
Multiple Plots with Single Plot Command

gnuplot> plot 'demol.dat' i 3 u 1:2:5 w yerrorlines pt 5 ps 2, \
> 'demol.dat' i 2 w vectors head filled title "Vectors", \
> 'demol.dat' i 2 u 1:2 w lp lt 0 lw 2 ps 4

Separate plot specifications by comma
Processing Data Before Plotting

- Gnuplot allows one to process the data in a column before it is used to plot.
 - Use the `using` option with a function defined with `$N` representing values from the N'th column.
 - This feature helps plot transformed data without writing a program to create a transformed data file.

```gnuplot
plot 'demo1.dat' i 1 \\
> u 1:(\cos($2)/$3) \\
> w lp ps 2 pt 8
```
SET Command

• One can use the set command to set LOTS of options
 – Try help set to see all the option names
• The option value can be shown by the show command
 – Syntax: show <option name>
 – show all shows all the options (which will be a very long list)
Setting Line Styles

- Gnuplot allows users to define line styles (line weight, line type, line color, point size, point type etc.) and use them later by referring to the index.

```
   gnuplot> plot 'demo1.dat' index 0
   gnuplot> set style line 1 lt 0 lw 2 pt 3 ps 2
   gnuplot> plot 'demo1.dat' i 0 w lp ls 1
```
3D Plot

• The **splot** command generates surface plot
 – Functions with 2 variables, matrix data, or x-y-z data
 – Works in the same fashion with the **plot** command
• Multiple styles are available
• Can add contour to it

```
gnuplot> set xrange [0:5]
gnuplot> set yrange [0:5]
gnuplot> splot \cos(x)\times\sin(y)
```
Refining 3D Plot

gnuplot> set pm3d # Add pallete map
gnuplot> set isosamples 50,50 # Increase sample points
gnuplot> set hidden3d # Enable hidden line removal
gnuplot> replot
3D Plot – Matrix Data

- Matrix data can be plotted using the matrix option
 - The cell index is used as the X-Y coordinates, and the cell contents as the Z value

```plaintext
gnuplot> set hidden3d
gnuplot> splot 'matrix.dat' matrix with lines
```
3D Plot – X-Y-Z data

- Can also use `splot` to plot column data

```
gnuplot> splot 'demol.dat' index 2 using 1:2:3 with lines
```
Terminal Types

• Gnuplot supports many terminal types
 – Use `help set terminal` to see all of them
 – Mainly three types: actual terminals, printers, graphical file formats

• The sub-options vary from terminal to terminal
 – GIF terminal
 • Font settings, background settings, animation options etc.
 – PostScript terminal
 • Font settings, page orientation, print settings etc.
Saving Graphical Output

• Plots and graphs can be saved to file by the following steps
 – Set terminal type
 – Specify file name
 – Generate the plot

• If the plot has been generated, then use the replot command to save to a file after setting the terminal type and file name

```
set terminal jpeg
Terminal type set to 'jpeg'
Options are 'nocrop medium '
set output "3d_xyz.jpg"
splot 'demol.dat' index 1 using 1:2:3 with lines
```
Gnuplot script

• Like shell scripts, a Gnuplot script is a text file that contains Gnuplot commands
 – We already saw the `save` and `load` command
 – We can also write one from scratch, then
 – Run it by
 • Executing `gnuplot <script name>`
 • Making it executable by adding the shebang line
Gnuplot script

```bash
[lyan1@philip1 gnuplot]$ cat 3d_surface.gnuplot
#!/usr/local/packages/gnuplot/4.2.4/intel-11.1/bin/gnuplot

unset key
set xrange [0:5]
set yrange [0:5]
set hidden3d
set pm3d
set isosamples 50,50
set terminal jpeg
set output "3d_surface.jpg"

splot cos(x)*sin(y) title "3D surface plot"
[lyan1@philip1 gnuplot]$ chmod u+x 3d_surface.gnuplot
[lyan1@philip1 gnuplot]$ ./3d_surface.gnuplot
[lyan1@philip1 gnuplot]$ display 3d_surface.jpg
```
Curve Fitting

- Two step process
 - Define a function with unknown parameters
 - Fit the parameters with specified data
- A log file will be created (default name is ‘fit.log’)

```
gnuplot> f(x)=a*x**2+b*x+c
gnuplot> fit f(x) 'demo1.dat' index 0 via a,b,c
...
Final set of parameters Asymptotic Standard Error
======================= ==========================
a               = 1                +/- 4.893e-15    (4.893e-13%)
b               = -2.55713e-13     +/- 8.214e-14    (32.12%)
c               = 3.30293e-13      +/- 1.098e-14    (3.323%)
...```
Shell Commands

• GnuPlot supports the ability to issue shell commands
  – Shell commands start with “!”

```plaintext
gnuplot> !ls
demol.dat matrix.dat
!
```
```
gnuplot> !head demol.dat
Data set 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
```
```
!
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
What’s Next

• HPC Moodle course “Data Graphics with Gnuplot”
  – https://docs.loni.org/moodle/course/view.php?id=19

• Gnuplot website
  – Links to user documentation and tutorials
  – Demo scripts: http://www.gnuplot.info/demo_4.6/
Questions?