
S

Numerical Libraries

Bhupender Thakur

The need for libraries
Why should you try them ?

It is very easy to write bad code !

Loops : branching, dependencies
I/O : resource conflicts,
Memory : long fetch-time
Portability : code and data portable?
Readability : Can you still understand it?

Source : http://xkcd.com/844/

The need for libraries
Why should you try them ?

Hopefully these will be some of the advantages

S  Computing optimizations

S  Easier to debug

S  I/O and communication optimizations

S  Portability

S  Easy to read

Compilers
Serial/parallel across LONI/HPC

S  Serial
S  Gcc

S  Intel

S  PGI

S  Parallel
S  Mvapich2

S  Openmpi

S  CUDA/ PGI-
accel

Know your algorithm

S  CPU bound: A system in which there is insufficient CPU power to keep
the number of runnable processes on the run queue low. This results in
poor interactive response by applications.

S  Memory bound: A system which is short of physical memory, and in
which pages of physical memory, but not their contents, must be shared
by different processes. This is achieved by paging out, and swapping in
cases of extreme shortage of physical memory.

S  I/O bound: A system prohibited by slow data transfer from I/O device.

S  Communication bound: Programs where CPU waits for communication
to end before computations can be performed. This is the domain of
parallel programming.

Libraries

What are they useful for?

S  Numerics

S  Visualization

S  I/O

S  Profiling, debugging

Where to find them?

S  http://en.wikipedia.org/wiki/List_of_numerical_libraries

S  Netlib

S  DOE ACTS collection

S  ORNL, CERN, NIST, JPL

S  Vendor libraries: Intel, PGI, NVIDIA, CRAY

Broswse the list of libraries on any LONI/HPC cluster: softenv

Libraries to be covered

S  BLAS/LAPACK/ARPACK:
Linear algebra libraries

S  MPI-IO(ROMIO) /HDF5/NetCDF:
I/O libraries

S  PETSc: Portable, Extensible Toolkit for Scientific Computationl
Solution of partial differential equations

S  PAPI/TAU:

Profiling

Libraries
General features

Know the library location (\root\some\where\libsome.a)

S  Lib_DIR=\root\some\where

Look for {lib}, {include}, {bin} subdirectories

S  Static : $(Lib_DIR)\lib\libsome.a

S  Dynamic: $(Lib_DIR)\lib\libsomeso

S  Include files: $(Lib_DIR)\include

Link your executable when compiling

S  $(F90) program.f90 –I $(Lib_DIR)\include -L$(Lib_DIR)\lib -lsome

Libraries
Libraries on LONI/HPC

The library location is generally(/usr/local/packages/name/version/build)

S  Lib_DIR=/usr/local/packages
 /usr/local/packages/hdf5/1.8.9/Intel-13.0.0-openmpi-1.6.2

Look for {lib}, {include}, {bin} subdirectories

S  Static : $(Lib_DIR)/lib/libhdf5.a

S  Dynamic: $(Lib_DIR)/lib/libhdf5.so

S  Include files: $(Lib_DIR)/include

Link your executable when compiling

S  $(F90) program.f90 –I $(Lib_DIR)/include -L$(Lib_DIR)/lib -lsome

Libraries
Libraries on LONI/HPC

Dynamic linker and loader

S  DT_RPATH: $(Lib_DIR)/lib/libhdf5.so

S  LD_LIBRARY_PATH

S  DT_RUNPATH

S  /etc/ld.so.cache , /etc/ld.so.conf.d/*

S  /lib and /usr/lib

Libraries
Libraries on LONI/HPC

Setting your path(/usr/local/packages/name/version/build)

export PATH=$PATH:$Lib_DIR/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$Lib_DIR/lib

export LIBRARY_PATH=$LD_LIBRARY_PATH

Look for

S  Dynamic: $(Lib_DIR)/lib/libhdf5.so

S  Include files: $(Lib_DIR)/include

Link your executable

BLAS
Basic Linear Algebra Subprograms

S  Available from: www.netlib.org/blas/

S  Three levels of BLAS:

S  Level 1: Vector operations, scalar products and norms

S  Level 2: Matrix-vector operations: y=A*x + c

S  Level 3: Matrix-matrix operations: A=B*C + D*y

S  Usually ships with LAPACK

S  Highly optimized binaries available from vendors

BLAS
Basic Linear Algebra Subprograms

Level 1 contains vector operations of the
form

 Interchange vectors X and Y
 Scale a vector by a constant

 Copy vector X to Y
 Return a constant times a vector

 plus a vector

 Return the dot product of two vectors

 …

BLAS
Basic Linear Algebra Subprograms

Level 2 contains matrix vector
operations

 General Matrix vector multiply

 Solve system of equations

 Perform rank 1 operation

 …

BLAS
Basic Linear Algebra Subprograms

Level 3 contains matrix-matrix
operations

 General Matrix matrix multiply

 Rank-k update

 …

LAPACK
Linear Algebra PACKage

S  Routines for

S  Solving systems of linear equations and linear least squares,

S  Eigenvalue problems,

S  Singular value decomposition.

S  Important implementations:

S  Netlib.org/lapack, Intel MKL, ATLAS, LACAML, CLAPACK,
SciPy, PLASMA, MAGMA,…

LAPACK
Naming convention: X-YY-ZZZ

 X

S  S: Single

S  D: Double

S  C: Complex

 YY

S  DI: Diagonal

S  SY: Symmetric

S  GE: General

 ZZZ

S  LQF:
LQ factorization

S  EGR:
Few eigenvalues

S  TRD:
Tridiagonal reduction

Example
Calculate the eigenvalue and eigenvectors of A(n,n):

Call DSYEVD('V', 'U’ ,N, A, N, w, work, lwork, iwork, liwork, info)

 'V’ Compute eigenvalue and eigenvectors;

 'U’ Upper triangle of mat is stored;

 A N*N matrix on (input) and eigenvectors on (output);

 w Array of (output) eigenvalue;

 work Real (workspace/output) of dimension lwork;

 iwork Integer (workspace/output) of dimension liwork;

 info (Output) flag for successful run.

Example (cont.)

program ex_dsyev
 use global
…
 allocate(w (n), &
 work (1000), &
 iwork(1000))
…
Call DSYEV('V', 'U', n, mat, n, w, &
 work, 1000, iwork,1000,info)
…

Link to lapack and blas:
On LONI add following to the soft file

+lapack-3.2-intel-11.1

DIR=/usr/local/packages/lapack/3.2/
intel-11.1
LIBS= -L$(DIR)/lib -llapack -lblas

ifort global.f90 ex_dsyev.f90 $(LIBS)

Intel MKL

Dynamic linking

LIBS=-shared-intel -Wl, -rpath,$
 (LDIR) -L$(LDIR)
 -lmkl_intel_lp64

 -lmkl_intel_thread

 -lmkl_core -lguide –lpthread

Static linking

LIBS=-shared-intel -Wl,--start group

$(LDIR)/libmkl_intel_lp64.a

$(LDIR)/libmkl_intel_thread.a

$(LDIR)/em64t/libmkl_core.a

-Wl,--end-group -lguide
-lpthread

Fast LAPACK by Intel (http://software.intel.com/sites/products/mkl/)
LDIR = /usr/local/compilers/Intel/mkl-10.2.2.025/lib/em64t

ARPACK
Large sparse eigenvalue problem

S  LAPACK requires as input A(N, N)

S  Consider N=1,000,000

 Storage = (1012 * 4)/(1024)3 = 3725 GB

S  Fortunately,

S  Matrices are usually sparse

S  Iterative algorithms need not store full matrix

S  +arpack-96-intel-11.1 on LONI

Sparse matrices

 idx= [1 2 1 2 3 2 3]
 jdx= [1 1 2 2 2 3 3]
 r = [10 20 30 40 50 60 70]

10 30 0

20 40 60

0 50 70

S  Coordinate format

 idx(k), jdx(k), r(k)

S  Matvec operation (v=Au)

 v(idx(k)) = v(idx(k))
 + u(jdx(k))*r(k)

Sparse matrix formats store non-zero elements and arrays referencing them

ARPACK
Large sparse eigenvalue problem

progran test_lanczos

use modarpack
use sparpack

…

 which_eig = "LM”
 n_eigvalues = 2
 tolerance = .01d0
 get_vectors = .true.
 i_guesspivot = 0
…

Code is a modified example from arpack
examples/SYM/dsdrv1.f

ARPACK
Large sparse eigenvalue problem

progran test_lanczos

use modarpack
use sparpack

…

 which_eig = "LM”
 n_eigvalues = 2
 tolerance = .01d0
 get_vectors = .true.
 i_guesspivot = 0
…

Code is a modified example from arpack
examples/SYM/dsdrv1.f

ARPACK
Large sparse eigenvalue problem

S  Matlab incorporates ARPACK as eigs

eigs(A,B,k,sigma,opts)
d = eigs(A)
[V,D] = eigs(A)
[V,D,flag] = eigs(A)
eigs(A,B)
eigs(A,k)
eigs(A,B,k)
eigs(A,k,sigma)
eigs(A,B,k,sigma)
eigs(A,K,sigma,opts)
eigs(A,B,k,sigma,opts)
eigs(Afun,n,...)

ARPACK
Large sparse eigenvalue problem

ARPACK
Large sparse eigenvalue problem

ARPACK
Large sparse eigenvalue problem

[bthakur@eric2]$./cpu.exe

 E-vals -6.38745949107957
 E-vals 6.07252812124572

 _SDRV1
 ======

 Size of the matrix is 51537
 Ritz values requested is 2
 Arnoldi vecs generated(NCV) 3
 Portion of the spectrum: LM
 Number of converged values 2
 Implicit Arnoldi iterations 135
 The number of OP*x is 137
 The convergence criterion 0.01

progran test_lanczos

use modarpack
use sparpack

…

 which_eig = "LM” ! Which ?
 n_eigvalues = 2 ! Eigenvalues
 tolerance = .01d0 ! Tolerance
 get_vectors = .true. ! Eigenvectors
 i_guesspivot = 0 ! Guess
…

More libraries

S  Parallel libraries beyond LAPACK/ARPACK are available

S  SLEPSc Scalable Library for Eigenvalue Problem Computations

S  Hypre Solves large, sparse linear systems of equations on
 massivelly parallel computers

S  Blopex parallel preconditioned eigenvalue solvers

S  Plasma Parallel Linear Algebra Software for Multicore
 Architectures

S  Scalapack Scalable LAPACK

Parallel I/O
HDF5/NetCDF/PNetCDF

HDF / HDF4/ HDF5 (Hierarchical Data Format)

S  Originally developed by NCSA, now supported by non-profit HDF5 group

S  Current release version 5-1.8.10 / Nov 13, 2012

NetCDF (Network Common Data Form)

S  Originally based on Common Data Format developed by NASA

S  Current release version 4.2.1.1 / Aug 3, 2012

S  NetCDF API version 4.0 allows the use of the HDF5 data format.

Parallel-netCDF

S  An extension of netCDF for parallel computing developed by Argonne.

S  Uses MPI-IO and communications and high-level netCDF data structures.

S  Uses C/Fortran APIs, different from, but similar to those of netdcf.

HDF5

S  HDF5 FILE ORGANIZATION

S  HDF5 group: a grouping structure containing zero or more HDF5

objects, together with supporting metadata

S  HDF5 dataset: a multidimensional array of data elements, together

with supporting metadata. To create a dataset, the application

program must specify the location at which to create the dataset, the

dataset name, the datatype and dataspace of the data array, and the

property lists.

HDF5

HDF5

S  HDF5 Procedures

S  Create group:

S  Create file:

S  Create datasets

NetCDF

S  What is NetCDF?

S  NetCDF is a set of data formats, programming interfaces, and
software libraries that help read and write scientific data files.

S  The Classic NetCDF Data Model

S  The classic netCDF data model consists of variables, dimensions, and
attributes. This way of thinking about data was introduced with the
very first netCDF release, and is still the core of all netCDF files.

NetCDF

S  The Classic NetCDF Data Model

S  Variables: N-dimensional arrays of data. Variables in netCDF files can
be one of six types (char, byte, short, int, float, double)

S  Dimensions describe the axes of the data arrays. A dimension has a
name and a length. An unlimited dimension has a length that can be
expanded at any time. NetCDF files can contain at most one
unlimited dimension.

S  Attributes annotate variables or files with small notes or
supplementary metadata. Attributes are always scalar values or 1D
arrays, which can be associated with either a variable or the file.

NetCDF
Example

program simple_xy_wr
 use netcdf
 implicit none
! Name of the data file
 character (len = *), parameter ::
FILE_NAME = "simple_xy.nc”
! We are writing 2D data, a 6 x 12 grid.

integer, parameter :: NDIMS = 2
integer, parameter :: NX = 6, NY = 12
integer :: ncid, varid, dimids(NDIMS)
integer :: x_dimid, y_dimid

 ! This is the data array
 integer :: data_out(NY, NX)

NetCDF

! Create the netCDF file.
 call check(nf90_create(FILE_NAME,

 NF90_CLOBBER, ncid))

! Define dimensions. It hands ID for each.
 call check(nf90_def_dim(ncid, "x", NX,

 x_dimid))

 call check(nf90_def_dim(ncid, "y", NY,
 y_dimid))

 dimids = (/ y_dimid, x_dimid /)

! Define the variable ttype: NF90_INT
 call check(nf90_def_var(ncid, "data”,

 NF90_INT, dimids, varid))

call check(nf90_put_var(ncid, varid,
data_out))

call check(nf90_close(ncid))

end

NetCDF

Utilities

 nc-config

 nf-config

 ncdump

PETSc

S  Aimed at parallel non-trivial PDE solvers

S  Portable to any parallel system supporting MPI

S  Offers robust scaling

S  Supports many languages: C, Fortran, Python

PETSc
Components

Vec:
Provides the vector operations required for setting up and solving large-scale
linear and nonlinear problems. Includes easy-to-use parallel scatter and
gather operations, as well as special-purpose code for handling ghost points
for regular data structures.

Mat:
A large suite of data structures and code for the manipulation of parallel
sparse matrices. Includes four different parallel matrix data structures, each
appropriate for a different class of problems.

PC:
A collection of sequential and parallel preconditioners, including (sequential)
ILU(k), LU, and (both sequential and parallel) block Jacobi, overlapping
additive Schwarz methods and structured MG using DMMG.

PETSc
Components

KSP:
Parallel implementations of many popular Krylov subspace iterative
methods, including GMRES, CG, CGS, Bi-CG-Stab, two variants of
TFQMR, CR, and LSQR, immediately usable with any preconditioners and
any matrix data structures, including matrix-free methods.

SNES:
Data-structure-neutral implementations of Newton-like methods for
nonlinear systems. Includes both line search and trust region techniques with
a single interface. Users can set custom monitoring routines, convergence
criteria, etc.

TS:
Code for the time evolution of solutions of PDEs. In addition, provides
pseudo-transient continuation techniques for computing steady-state
solutions.

PETSc
Components

PETSc

S  Initialize PETSc

 #include "finclude/petsc.h90”
 #include "finclude/petscvec.h90”

 #include "finclude/petsc.h"
 #include "finclude/petscvec.h"

 Call PetscInitialize()
 Call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr)

PETSc

PETSc objects and procedures

VecCreateSeq() VecScale(), VecNorm()
VecCreateMPI() VecAXPY(), VecDot()

Example
 Vec v
 PetscScalar pointer :: array(:,:)
 PetscInt n, i
 PetscErrorCode ierr
 call VecGetArrayF90(v, array, ierr)
 call VecGetLocalSize(v, n, ierr)
 do i=1,n
 array(i) = array(i) + rank
 end do

PETSc

PETSc objects and procedures

 MatCreate(MPI_Comm, Mat *)

 MatSetSizes(Mat, PetscInt m, PetscInt n, M, N)

 MatSetType(Mat, MatType typeName)

 MatSetFromOptions(Mat)

Single user interface but multiple underlying implementations

PETSc

Higher abstractions

 The PETSc DA class is a topology and discretization interface.

 The PETSc Mesh class is a topology interface.

 The PETSc DM class is a hierarchy interface.

 The PetscSection class is a helper class for data layout.

Profiling and debugging

 PETSc has integrated profiling, logging events.

 Higher level of error detection

PETSc
Example

program main

#include "finclude/petsc.h"
#include "finclude/petscvec.h”

! Variables:
! x, y, w - vectors
! z - array of vectors

 Vec x,y,w,z(5)
 PetscReal norm,v,v1,v2
 PetscInt n,ithree
 PetscTruth flg
 PetscErrorCode ierr
 PetscMPIInt rank
 PetscScalar one,two,three

call PetscInitialize &
(PETSC_NULL_CHARACTER,ierr)
…

call PetscOptionsGetInt &
(PETSC_NULL_CHARACTER,’n',n,flg,ierr)
…
call MPI_Comm_rank &
(PETSC_COMM_WORLD,rank,ierr)
…
call VecCreate &
(PETSC_COMM_WORLD,x,ierr)
…
call VecDot(x,x,dot,ierr)
call VecNorm(x,NORM_2,norm,ierr)
call VecDestroy(x,ierr)
…
call PetscFinalize(ierr)

end

PETSc
Example

Makefile

 PETSC_DIR = /usr/local/packages/petsc/3.0.0.p3/intel-11.1-mpich-1.2.7p1

 include ${PETSC_DIR}/conf/base

 ex1f: ex1f.o chkopts

 -${FLINKER} -o ex1f ex1f.o ${PETSC_VEC_LIB}
 ${RM} -f ex1f.o

Summary

S  We reviewed some basic libraries, which form the core of
many computational algorithms.

S  Hopefully, through this tutorial, you have learnt how to use
libraries to write more efficient programs.

