Xeon Phi programming on SuperMIC

Shaohao Chen

High performance computing (@ Louisiana State University

Outline

@ Intel Xeon Phi and i1ts computing features
& Usage of Xeon Phi in HPC
& Xeon Phi programming

native mode

offloading

symmetric processing

Multi-core vs. Many-core

Xeon Phi
Xeon Intel Many Integrated Core (MIC) Architecture
= , “zuyjll . T -’ e 'l

[Y i e S

1
=5

.
o r T ¥
- = - - < -
‘.' S < = = =
38 - = NE - - NS
e - 3 - - 9) 37 -
3 . '
g f)
i H e
“ L L
3 "_& gL 8
i

WSS T e TS =

& 8 ~ 12 cores & 61 cores (244 logical)
& Single-core 2.5 ~ 3 GHz & Single-core ~ 1.2 GHz
& 256-bit vectors & 512-bit vectors

Intel Xeon Phi coprocessor (accelerator)

& Add-on to CPU-based system

& PCI express (6.66 ~ 6.93 GB/s)
& IP-addressable

® 16 GB memory

& 61 x86 64-bit cores (244 threads)
& single-core 1.2 GHz

& 512-bit vector registers

7

Xeon Phi Computing Performance

Theoretical Maximums Updated

(2S Intel® Xeon® processor E5-2670 & E5-269/7v2 vs. Intel® Xeon Phi™ coprocessor)

-

Single Precision
(GF/s)

Up to 3.6x

Higher is Better

2,022
2,002

2,022

£5-2670 E5-2697v2 3120P/A 5110P 51200 7120P/X/D
(2x 26GHz, (2x 2.7GHz, (57C,1.1GHz, (60C, (60C, 61C,

8, 12¢, 300W) 1.053GHz 1.053GHz. 1.238GHz
115W) 130W) 225W) 245W) 300W)

\

r

/

Double Precision
(GF/s)

Up to 3.6x

1,208
Higher is Better

1,001 1,011 1,011

intel'
inside”
XEON PHI"

£5-2670 €5-2697v2 3120P/A 5110P 51200 7120P/X/D
(2x 26GHz, (2x 2.7GHz, (57C. 1.1GHz, [6OC, (60, (61C,
ac, 12¢, 300W) 1.053GHz. 1.053GHz, 1.238GHz,
115W) 130W) 225W) 245W) 300W)

<

r

J

Memory Bandwidth
(GB/s)

Up to 3.45x
352 352

| Higher is Better

320

£5-2670 E5-2697v2 3120P/A S110P 51200 7120P/X/D
(2x 26GHz, (2x 2.7GHz, (57C,1.1GHz, (60C, (60C, (61C, 1.1GHz,
8c, 12¢C, 300w) 1.053GHz 1.053CHz 300W)
115W) 130W) 225W) 245W) W,

Synthetic Benchmark Summary (1 of 2)

r

Using Intel® MKL

Higher is Better

1,722

SGEMM

(GF/s)

1,741

Up to 3.32x
Higher

2,221 2,225

intel'
inside”
XEON PHI

£5-2670 £5-2697v2 (2x
(2x 2.6GHz, BC, 2.7CHz,12C, (57C,
115W) 130W)

3120P 5110P
11GHz, (60C,
300W) 1 osacHz
225W)

51200 7120P 7120D
(60C, (61C, (61C,

Updated

1053GHz, 1.238CHz 1.238GHz,
245W) 300W) 270W))

Using Intel® MKL

Higher is Better
1000

800

600

400

200

\

Up to 3.2x
Higher

1,067 1,064

lnte
in side
XEON PHI

£5-2670 E5-2697v2
(2x 26GHz, 8C,
115W) 12€,

130W)

(2x 2.7GHz,

3120P

(57C,

1.1GHz,

300W

)

5110P

(60C,

1.053CHz,

225w

)

5120D 7120P 71200
(60C, (61C, (61C,
1 053G|-|z 1238GHz, 1.238GHz,
245W) 300w) 270W)

Synthetic Benchmark Summary (2 of 2)

r

Using Intel®* MKL

1000

800

600

400

Higher is Better

Linpack’
(GF/s) Up to 3.0x
Higher

999 1,003

|nl:e

lnslde
KEON PHI”

£5-2670 E5-2697v2

(2x 2.60Hz, 8C, (2x 2.7GHz, 12C,(57C,

115W)

130W)

3120P 5110P 5120D 7120P 7120D

Updated

\

STREAM Triad

(GB/s)

mte
lnslde
XEON PHIY

Up to 2.3x
Higher

Higher is Better

1.1GHz, (60C, 1.053GHz,(60C, 1.053GHz,(61C, 1.238GHz, (61C, 1.238GHz,

300W) 225W) 245W) 300W) 270W))

E5.2670 E52697v2 3120P 5110P 51200 7120P 7120D
(2x 26GHz, (2% 2.7CHz, (57€, (60, (60C, 61€, (61€,
8C, 12€, 1.1GHz, 1053GHz, 1.053GHz 1.238GHz, 1.238CHz,
115W) 130W) 300W) 225W) 245W) 300W) 270))

Intel® Xeon Phi™ Coprocessor vs. 25 Intel® Xeon® processor

* MKL)

Updated

Native = Benchmark run 100% on coprocessor. AO = Automatic Offload Function = Xeon + Xeon Phi together

Using Intel® MKL Higher is Better Intel® Xeon Phi™ Coprocessor 7120P
- VS.
2 Socket Intel®* Xeon® processor (E5-2697v2)

. -

]

et

E -

et

Q

ﬁ — 7

nJ

a > i
€N 203 209
S -
€50
- N
82w 150 4
5 = S 1.00
o % & =

@

>2m g
o 7
L - a
[])
@ S S

S Q S P o © (58\{\ N \&b@e & N N &

2 << O) QO \

N & @@ 635' DA R & ,5-\& \+"*° ,L+°’° o ,\‘\-Q‘ Q,b& O@ ,L+‘2' ?;&\& \+'?* ,L+® @69 @59

m (L‘J;- {\o‘\ K RS Qx Q\x C}‘(} (\x OF g\x N & (\x \’b"’ Q},b(_,

= N o & & S R & & © & & @

E S & S¥ S¥F SF S N N K 3 N

o SF & \3 \3 \g ¥ ¥ S \ \a

< v &) O & S & &

= B o & & & o B

\{" g('f &) \><\ \§‘ g{b 6"
S ¢S ¢ S 3 ¢S
<<’b {<‘2>) =) G &
& & NS NS

m Customer App|ication Performance Increase’ vs. 2S Xeon*

Energy

Financial Services

Physics

Finite Element

Solid State Physics

Digital Content Creation/Video

Astronomy

Fluid Dynamics

Acceleware

Sinopec

CNPC

(China Qil & Gas)

Financial Services

Jefferson Labs

Sandia Labs

ZIB

(Zuse-Institut Berlin)

Intel Labs

NEC
CSIRO/ASKAP (Australia Astronomy)

TUM (Technische Universitat Munchen)

AWE (Atomic Weapons Establishment -
UK)

8t order isotropic variable velocity

Seismic Imaging

GeoEast Pre-Stack Time Migration (Seismic)

BlackScholes SP
Monte Carlo SP

Lattice QCD

miniFE
(Finite Element Solver)

Ising 3D
(Solid State Physics)

Ray Tracing

(incoherentrays)

Video Transcoding

tHogbom Clean (Astronomy image smear
removal)

SG++ (Astronomy Adaptive Sparse Grids/Data
Mining)

Cloverleaf
(2D Structured Hydrodynamics)

Up to 2.23x

Up to 2.53x°
Up to 3.54x

Up to 7.5x
Up to 10.75x

Up to 2.79x

Up to 2x3
Up to 1.3x°

Up to 3.46x
Up to 1.88x*

Up to 3.0x¢
Upto2.27x

Upto 1.7x

1.77x

© © © o 9

&

Intel Xeon Phi vs. Nvidia GPU

Less acceleration

In terms of computing speed, one GPU beats one Xeon Phi for
most cases currently.

X86 architecture
IP-addressable
Traditional parallelization (OpenMP, MPI)

Native and symmetric: no need to modify source codes, only
changes in compiling and running codes.

Offload: minor change of source code, similar to OpenACC but
much less efforts than CUDA.

New. Still a lot of room for improvement.

Usage of Xeon Phi in HPC

Accelerator/CP Family System Share

Al

Accelerator/CP Family

N/A

Nvidia Kepler
Nvidia Fermi
Intel Xeon Phi
Hybrid

ATl Radeon

Accelerator/CP Family Performance Share

B N/A

B Nvidia Kepler
Nvidia Fermi

B Intel Xeon Phi

B Hybrid

B ATI Radeon

System Share (%)

87.2
46
4
3.2
0.6
0.4

Rmax (GFlops)

179,221,078
35,133,206
9,813,752
47,390,611
1,373,234
831,900

Rpeak (GFlops)

252,023,035
52,529,949
20,123,473
75,176,932

2,018,688
1,686,749

Cores

15,384,521
960,416
750,056

4,234,766
236,284
83,328

B NA

B Nvidia Kepler
Nvidia Fermi

B Intel Xeon Phi

B Hybrid

B ATl Radeon

List
Jun 2014
Nov 2013
Jun 2013
Nov 2012
Jun 2012

System Count

Jul 2012

Oct2012 Jan 2013 Apr 2013

System Share (%)

Jul 2013 Oct 2013 Jan 2014 Apr 2014

Rmax (GFlops) Rpeak (GFlops)

47,390,611
45,244,135
42,131,863
4,302,764
118,600

75,176,932
72,197,351
67,790,175
6,309,356
180,992

Cores

4,234,766
4,079,172
3,830,503
337,301
9,800

Rank Site

1

National Super Computer
Center in Guangzhou
(/site/50365)

China

System

Tianhe-2 (MilkyWay-2) -
TH-IVB-FEP Cluster, Intel
Xeon E5-2692 12C
2.200GHz, TH Express-2,
Intel Xeon Phi 31S1P
(/system/177999)

NUDT

Power
(kW)

Rmax Rpeak

Cores (TFlop/s) (TFlopl/s)

3120000 33862.7 549024 17808

65

Texas Advanced Computing
Center/Univ. of Texas
(/site/48958)

United States

Louisiana State University
(/site/48279)
United States

Stampede - PowerEdge
C8220, Xeon E5-2680 8C
2.700GHz, Infiniband FDR,
Intel Xeon Phi SE10P
(/system/177931)

Dell

SuperMIC - Dell C8220X
Cluster, Intel Xeon E5-
2680v2 10C 2.8GHz,
Infiniband FDR, Intel Xeon
Phi 7120P
(/system/178423)

Dell

462462 51681 8520.1 4510

557.0 9251 370

SuperMIC
@LSU

s 360 Compute Nodes
* Two 2.8GHz 10-Core Ivy Bridge-EP E5-2680 Xeon 64-bit Processors
* Two Intel Xeon Phi 7120P Coprocessors
 64GB DDR3 1866 MHz Ram
« 500GB HD
* 56 Gigabit/sec Infiniband network interface
1 Gigabit Ethernet network interface

Ref: http://www.hpc.lsu.edu/resources/hpc/system.php?system=SuperMIC

SuperMIC

Hostname smic_hpc.lsu.edu

Peak Performance/ TFlops

Compute nodes 360

Processor/node 2 Deca—core

Processor Speed 2 8GH=z

Processor Type Intel Xeon 64bit

Modes with Accelerators

Accelerator Type Xeon Phi 7120P

os RHEL w6
Vendor

Memaory per node 64 GB

Detailed Cluster Description

A typical compute node on SuperMIC

Two One Two
Intel® Xeon® Intel® Xeon Phi™ Intel® Xeon Phi™
CPUs COProcessor COProcessors

& host & mic(¢ micl
20 cores 61 cores (244 logical) 61 cores (244 logical)
64 GB memory 16 GB memory 16 GB memory

O Theoretical maximum acceleration:
Oen Xeon Phi / Two Xeons = 1208 GFLOPS / 448 GFLOPS =
(Tow Xeons + Two Xeon Phis) / Two Xeons = (2*1208 + 448) GFLOPS / 448 GFLOPS =

Xeon Phi programming

¢ Native mode

vectorization performance
& Oftloading

Explicit offload

MKL automatic offload

offload MPI-OpenMP hybrid codes
& Symmetric processing

run on one node

run on multi nodes

Getting started ...

Window 1 (run jobs)

& ssh # login SuperMIC

& qsub -I -A allocation_name -l nodes=2:ppn=20,wallttime=hh:mm:ss # interactive session

O & & SO UNOEE

Window 2 or 3 (monitor performance)

ssh -X # login SuperMIC with graphics

ssh -X smic{number} # login the compute node with graphics

micsmc & (or micsmc-gui & or micsmc -a) # open Xeon phi monitor from the host
ssh smic{number}p-mic0 # login micO

top # monitor processes on Xeon Phi

mailto:username@smic.hpc.lsu.edu
mailto:username@smic.hpc.lsu.edu

I. Native mode

Computer codes

F* S0 ot

O An example (vector_omp.c): vector addition, parallelized with OpenMP.

0 Compilation
¢ 1cc -O3 -openmp vector_omp.c -0 vec.omp.cpu # CPU binary

& 1cc -O3 -openmp vector_omp.c -0 vec.omp.mic # MIC binary

Oty B oMiE for U

© & CEBOIIE

execute CPU binary on the host
export LD_LIBRARY_PATH=/usr/local/compilers/Intel/composer_xe_2013.5.192/compiler/lib/intel64

export OMP_NUM_THREADS=20 # set OepnMP threads on host. Maximum i1s 20.

./vec.omp.cpu # run on the host

execute MIC binary on Xeon Phi natively

ssh smic{number}p-mic0 # login mic(
export LD_LIBRARY_PATH=/usr/local/compilers/Intel/composer_xe_2013.5.192/compiler/lib/mic
export OMP_NUM_THREADS=244 # Set OepnMP threads on mic0O. Maximum is 244.

./vec.omp.mic # Run natively on micO

a Exercise 1: Native run and affinity setting

1) Compile vector_omp.c with and without the flag , then execute
the binaries on the host and on Xeon Phi respectively.

11) Set up the affinity environment (e.g. export =
compact,granularity=fine,verbose), then execute the MIC binary natively
on Xeon Phi. Change “compact” to “scatter” or “balanced” then run it
again. Observe the outputs.

Vectorization performance

Compare performance with and without vectorization
An example (vector.c): a serial code for vector addintion.
icc -O3 -openmp -mmic vector.c -o vec.mic # vectorized by default

icc -O3 -openmp -mmic vector.c -0 novec.mic # no vectorization

OO ROBAL > 1T

Q Exercise 2: vectorization

1) Compile vector.c with and without the flag , then run the binaries and
compare the computational time.

11) Compile vector.c with the flags and , then vary the vector
report number from 1 to 7. Observe the outputs.

Summary for Native mode

0 Add flag to create MIC binary files.
a ssh to MIC and execute MIC binary natively.
Q Vectorization 1s critical.

Q Monitor MIC performance with

I1. Offloading

a A simple C code with explicit offload (off02block.c)

int totalProcs;

int maxThreads;

// begin offload block

totalProcs = omp_get_num_procs();

maxThreads = omp_get_max_threads();

// end offload block

printf(" total procs: %d\n", totalProcs);

printf(" max threads: %d\n", maxThreads);

QLE© O SNIE

Explicit Offload: compilation and run

Compilation
, the same as compiling normal CPU codes.
icc -openmp name.c -0 name.off # C

ifort -openmp name.f90 -o name.off # Fortran

0 Execute offloading jobs from the host

¢ export MIC_ENV_PREFIX=MIC # necessary to set the prefix whenever execute mic-

%

related jobs from the host.

export MIC_OMP_NUM_THREADS=240 # set OepnMP threads for Xeon Phi (The default
1s the maximum, that is 240, not 244. Leave one core with 4 threads to execute offloading.)

./name.off

a Exercise 3 (a): report offloading information

1) Compile off02block.c, then execute it from the host.

11) Export the value of in the range of 1, 2 and 3.
Then run 1t again and analyze the outputs.
111) Compile off02block.c with the flag . Observe

the outputs.

0 Exercise 3 (b):
Do exercise 3 (a) with the Fortran code off02block.f90 .

Offload an OpenMP region

O Assign values to a vector (C code: off03omp.c)

double a[500000]; // placed on host
int1;, // placed on host

// auto pass 1 and a in and out of MIC

for (1=0; 1<500000; 1++) {
a[1] = (double)y;

b
printf("\n\t last val = %f \n", a[500000-1]); // output

a Exercise 4 (a): Compile and run off03omp.c. Report offloading information and
analyze data transfer between host and MIC.

O Assign values to a vector (Fortran code: off03omp.f90)

integer, parameter :: N = 500000
real :: a(N) I placed on host

[auto pass 1 and a in and out of MIC

do1=1,N
a(1) = real(1)
end do

print*, "last val 1s ", a(N) ! output

0 Exercise 4 (b): Compile and run off03omp.f90. Report offloading information and
analyze data transfer between host and MIC.

Place valuables on MIC

a attribute decorations (C code: off05global.c)

int myGloballnt; // global valuable, available on MIC

int myLocallnt = 123; // local valuable, not available on MIC
int myStaticInt; // local valuable, available on MIC
// auto IN: myLocallnt; auto OUT: myGloballnt, myStaticInt
myGloballnt = 2 * myLocallnt;
myStaticInt = 2 * myGloballnt;

attribute decorations (Fortran code: off05global.f90) E-_l.

module mymodvars

integer :: mymoduleint ! global valuable, available on MIC
end module mymodvars
program main
use mymodvars
implicit none
integer :: mylocalint = 123 !local valuable, not available on MIC
integer, save :: mysaveint ! local valuable, available on MIC
l'auto IN: mylocalint; auto OUT: mymoduleint, mysaveint
mymoduleint = 2 * mylocalint

mysaveint = 2 * mymoduleint

end program

0 Exercise 5 (a): declspec/attribute decorations
1) Compile and run off05global.c.

i1) Report offloading information and analyze data transfer between host and
MIC.

111) Replace all with :
then compile and run it again.

1v) Remove all attribute/declspec decorations, then compile the code with the
flag ”. Run 1t again.

a Exercise 5 (b):

Do sections 1, 11 and 1v of exercise 5 (a) with the Fortran code off05global.f90 .

Control data transfer between host and MIC

a 1n, out, inout (C code: off06stack.c)

double a[100000], b[100000], c[100000], d[100000];
Int 1;
for (1=0; 1<100000; 1++) {
a[i] = 1.0; Db[i] = (double)(1);
j

for (1=0; 1<100000; 1++) {
cli = afi] + b[i; d[i] = afi] - bl1]; bl1] = -bli];

Manage MIC memory LSU

O Associated with dynamically allocated memory on the host.

a alloc_if, free_if (C code: off07heap.c)

int1; 1nt N =5000000; double *a, *D;

a = (double*) memalign(64, N*sizeof(double));
b = (double*) memalign(64, N*sizeof(double));
for (1=0; 1<N; 1++) { a[i] = (double)(1); }

// length(N) is required for dynamically allocated arrays

for (1=0; i<N; 1++) {
b[i] = 2.0 * aJ1];

0 Exercise 6 (a): control data transfer
1) Compile and run off06stack.c and off07heap.c.

11) Report offloading information and analyze data transfer between host
and MIC 1n these cases.

0 Exercise 6 (b):

Do exercise 6 (a) with the Fortran codes off06stack.f90 and off07heap.f90.

Asynchronous offload

O wait, signal, offload_wait (C code: off08asynch.c)

mtn =123;
/ /record this offload event &tag
printf("\n\t logical cores on mic: %d\n\n", omp_get_num_procs()); // total MIC threads
printf("\n\t maximum threads on mic: %d\n\n", omp_get_max_threads()); // used MIC threads

incrementSlowly(&n); // n increases 1 then sleep 2 seconds on MIC

...... // the host can do something else here, while MIC is busy.
//Host does not execute the following codes until event &tag is finished.
printf("\n\t logical cores: %d\n\n", omp_get_num_procs()); // total host threads

printf("\n\t maximum threads: %d\n\n", omp_get_max_threads()); // used host threads

if (n==123) { printf("\n\tThe offload increment has NOT finished...\n"); } // n does not change without waiting

else { printf("\n\tThe offload increment DID finish successfully...\n"); } // n increases 1 after waiting

O wait, signal, offload_wait (Fortran code: off08asynch.f90) m

integer ::n =123

I record this offload event &tag

call incrementslowly(n) ! nincreases 1 then sleep 2 seconds on MIC

...... I the host can do something else here, while MIC is busy.

//Host does not execute the following codes until event &tag is finished.

print *, " procs: ", omp_get_num_procs()

if (n.eq. 123) then

print *, " The offload increment has NOT finished... "," n: ", n // n does not change without waiting
else
print *, " The offload increment DID finish successfully... ", " n: ", n // nincreases 1 after waiting

endif

0 Exercise 7 (a): asynchronous offload
1) Compile and run 0ff08asynch.c .

11) Comment out the line with , then compile and run again. Does the
value of n increase? Why?

111) Change to , then compile and run again. Observe the
number of threads in the output. Is it changed? Why?

0 Exercise 7 (b):

Do sections 1 and 11 of exercise 7 (a) with the Fortran code off08asynch.f90.
For section 111, output the number of MIC threads instead of CPU threads.

Data-only offload

O Offload_transfer, nocopy (C code: off06stack.c)

a = (double*) memalign(64, N*sizeof(double)); // allocate alligned memory on host

b = (double*) memalign(64, N*sizeof(double));

// allocate memory on MIC

for (1=0; 1<N; i++) { a[i] = (double)(1); } // assign value on host

// after tagl 1s finished, copy a from host to MIC,

for (1=0; i<N;i++) { b[1]]=2.0*aJi]; } // calculate b on MIC

/7 (...... continued from the previous slide)
// after tag?2 is finished
// deallocate a on mic
// copy b from mic to host, deallocate b on mic
// wait until tag3 is finished
printf("\n\t last a val = %f", a[N-1]); // print values on the host
printf("\n\t last b val = %f\n\n", b[N-1]);

Automatic offload with Intel MKL

0 Intel Math Kernel Library (MKL):

highly vectorized and threaded Linear Algebra, Fast Fourier Transforms (FFT), Vector Math
and Statistics functions.

O An example: Matrix product and addition, C = alpha*A*B + beta*C

% ao_intel.c cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, p, alpha,
A, p, B, n, beta, C,n); // Double-precision General Matrix Multiplication

» ao_intel.f

Compilation (the same for normal CPU code)

1cC -openmp ao_intel.c

ifort -openmp ao_intel.f

Run auto-offloading jobs
export MKL_MIC_ENABLE=1
export OMP_NUM_THREADS=16

enable auto offload, also set the prefix MIC_
set CPU threads

export MIC_OMP_NUM_THREADS=240 # set MIC threads from the host

export OFFLOAD_REPORT=2

./ao_intel

offload report level

0 Exercise 8 (a): automatic offload with MKL

1) Compile and run ao_intel.c. Observe the usage of MICs on the
“micsmc” monitor.

11) Compare the computational time with and without automatic offload.

111) Change the number of threads on the host and on the MICs. Observe
the variation of computational time.

1v) Increase the problem size from small to large and observe the results.
At what threshold(s) does MKL begin to use the MIC?

0 Exercise 8 (b):

Do exercise 8 (a) with the Fortran code ao_intel.f .

Using MPI and offload together

Q MPI is required to run jobs on multi nodes.

o Offloading of MPI functions?

Calling MPI functions within an offload region 1s not supported.

Q Offload OpenMP blocks in MPI-OpenMP hybrid codes?

a An example: Calculate the value of pi.

Parallelization: Distribute the integration grids into various MPI tasks, then spread
every MPI task into various OpenMP threads.

MPI-OpenMP hybrid codes with offload L5SLU

[Calculate pi (C code: pi_hybrid_off.c)

MPI_Init(&argc, &argv); // MPI functions
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
/ /Offload OepnMP block of each MPI task to one MIC
// OpenMP block

iam = omp_get_thread_num() ;

np=omp_get_num_threads() ;

printf("Thread %5d of %5d in MPI task %5d of %5d\n",ijam,np,myrank,nprocs);

) Calculate p1 (Fortran code: pi_hybrid_off.f90) E_

call mpi_init(ierr) // MPI functions
call mpi_comm_size(mpi_comm_world,nprocs,ierr)
call mpi_comm_rank(mpi_comm_world, myrank,ierr)
//Offload OepnMP block of each MPI task to one MIC
// OpenMP block
iam = omp_get_thread_num()
np=omp_get_num_threads()

write(*,*) iam, myrank, np,nprocs

Use Intel MPI implementation (a better option than MVAPICH?2) E_

module switch mvapich2/2.0/INTEL-14.0.2 impi1/4.1.3.048/intel64
module load impi1/4.1.3.048/1ntel64

Compile
mpiicc -O3 -openmp pi_hybrid_off.c -o pi_hybrid.off
mpiifort -O3 -openmp pi_hybrid_off.f90 -o p1_hybrid.off

Run with mpiexec.hydra

export OFFLOAD_REPORT=2 # level-2 offload report

export MIC_ENV_PREFIX=MIC # make prefix simple

export MIC_OMP_NUM_THREADS=240 # number of threads on MIC
export MIC_KMP_AFFINITY =scatter # affinity type on MIC

mpiexec.hydra -n 2 -machinefile nodefile ./pi_hybrid.off # specify node names in node file

a Exercise 9 (a): Offload OpenMP blocks in MPI-OpenMP hybrid codes

1) Compile pi_hybrid_off.c, then run it on one node and two nodes
respectively, with two MPI tasks per node. Observe the usage of MICs on the
monitor.

11) Change the number of threads on the MICs. Observe the variation of
computational time.

111) Change the number of MPI tasks to 1 per node, run it again. How
many MICs on each node are utilized now?

1v) Compare the computational time of the following cases: 1) without
offloading; 2) offload to one MIC; 3) offload to two MICs.

a Exercise 9 (b):
Do exercise 9 (a) with the Fortran code pi_hybrid_off.f90 .

Summary for offloading

0 Explicitly offload blocks by adding lines started with

or in C or Forthran source codes respectively.
0 Control data transfer with 1, and
a Place valuables on MIC with or decorations.
a Use and for asynchronous offload.
a Use for data-only offload.
0 Auto offload MKL functions by setting =1.

a Offload OpenMP blocks in MPI-OpenMP hybrid codes.

ITII. Symmetric processing
O Distribute MPI tasks “symmetrically” on both CPUs and MICs.

MPI tasks

o SR

\
/

F S

3

F* S nam

Compilation

Use Intel MPI implementation (the only working one)
module switch mvapich2/2.0/INTEL-14.0.2 imp1/4.1.3.048/1intel64
module load impi/4.1.3.048/intel64

Create CPU and MIC binaries separately

mpiicC -openmp name.c -0 hame.cpu # CPU binary, C code
mpiicc -openmp name.c -0 name.mic # MIC binary, C code
mpiifort -openmp name.f90 -o name.cpu # CPU binary, Fortran code
mpiifort -openmp name.f90 -o name.mic # MIC binary, Fortran code

& The flag -openmp 1s unnecessary for a pure MPI job.

Run jobs with mpiexec.hydra

#!/bin/bash

source setup_mpi_mic.sh # set up environments for mpiexec.hydra

export TASKS_PER_HOST=2 # number of MPI tasks per host

export THREADS_HOST=10 # number of OpenMP threads spawned by each task on the host
export TASKS_PER_MIC=3 # number of MPI tasks per MIC

export THREADS_MIC=80 # number of OpenMP threads spawned by each task on the MIC

export CPU_EN
export MIC_EN

—n

—n

-env OMP_NUM_ THREADS $THREADS HOST" # CPU run-time environments
-env OMP_NUM THREADS $THREADS MIC -env LD LIBRARY PATH \

SMIC_LD LIBRARY PATH" # MIC run-time environments

a command provided by the Intel MPI
run on CPU
run on mic(

run on micl

O Exercise 10: run jobs with mpiexec.hydra

1) Compile pi_hybrid.c or pi_hybrid.f90, then run it with
on one compute node. Observe the usage of MICs on the micsmc
monitor.

11) Vary the numbers of MPI tasks and OpenMP threads. Find out the
best combination of them so that the computational time is the shortest.

111) Compare the computational time of the following cases: 1) use only
CPU; 2) use only one MIC; 3) use CPU and one MIC; 4) use CPU and
two MICs.

O Number of MPI tasks on MIC

/
0’0

The theoretical maximum is 61, which 1s equal to the number of
cores on MIC.

QO An 1ssue of using mpiexec.hydra

The command lines become very messy if many nodes are utilized.

Run jobs with micrun.sym

O micrun.sym is a bash script to run symmetric jobs on SuperMIC.

)
0’0

Automatically obtains the target names, sets up the environments and constructs the
complicated command lines.

)
0’0

Easy for running heavy jobs with many nodes.

a Usage of micrun.sym:

a Exercise 11: run jobs with micrun.sym

Redo exercise 10 on four compute nodes instead of one, using
instead of

a A PBS batch script using micrun.sym with Torque/Moab job scheduler

#!/bin/bash

#PBS -q workq

#PBS -A your_allocation

#PBS -1 walltime=01:30:00

#PBS -l nodes=4:ppn=20

#PBS -V

module load imp1/4.1.3.048/intel64 # load Intel MPI

export TASKS_PER_HOST=20 # number of MPI tasks per host

export THREADS_HOST=1 # number of OpenMP threads spawned by each task on the host
export TASKS_PER_MIC=30 # number of MPI tasks per MIC

export THREADS_MIC=1 # number of OpenMP threads spawned by each task on the MIC

run with micrun.sym

Summary for symmetric processing

a Use Intel MPI () implementation.

a Create CPU and MIC binaries with and without
respectively.

Q Run symmetric jobs on few nodes with
0 Run symmaetric jobs on many nodes with

0 Balance works on CPU and MIC to obtain the best
performance.

Optimization, debug and profile

0 Debug and profile:
« Intel VTune Amplifier

« Intel Trace Analyzer and Collector

Final remarks

“Well..., I hear lots of stuffs from this training, but where should I start to
accelerate my codes on Xeon Phi? ”

o MKL

« If your code employs MKL, congratulations! Some MKL functions are automatically
offloaded to Xeon Phi.

Q Non-MKL: If your code s
« parallel with OpenMP, explicitly offload the OpenMP blocks to Xeon Phiu.
« parallel with pure MPI, run it symmetrically on both CPUs and Xeon Phis.

« parallel with hybrid MPI and OpenMP, either explicitly offload the OpenMP blocks to
Xeon Phi or run 1t symmetrically on both CPUs and Xeon Phis.

« serial, most likely it becomes slower, because the frequency of a Xeon Phi core 1s much
lower than that of a CPU core.

References

Intel® Xeon Phi™
Coprocessor

High Performance
.rogrammmg .

& User guide of SuperMIC: http://www.hpc.lsu.edu/docs/guides.php?system=SuperMIC

