Outline of the talk

- GPU architecture
- CUDA programming model
- CUDA tools and applications
- Benchmarks
Growth in GPU computing

- Kepler is the current release.
- SuperMike II has two Fermi 2090 GPU’s on the gpu nodes.
- Queenbee replacement is expected to have Nvidia Kepler GPUs.

Large theoretical GFLOPs count

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
High Bandwidth

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
Notable Data Center products

Tesla Data Center Products

<table>
<thead>
<tr>
<th>GPU</th>
<th>Compute Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tesla K20</td>
<td>3.5</td>
</tr>
<tr>
<td>Tesla K10</td>
<td>3.0</td>
</tr>
<tr>
<td>Tesla M2050/M2070/M2075/M2090</td>
<td>2.0</td>
</tr>
<tr>
<td>Tesla S1070</td>
<td>1.3</td>
</tr>
<tr>
<td>Tesla M1060</td>
<td>1.3</td>
</tr>
<tr>
<td>Tesla S870</td>
<td>1.0</td>
</tr>
</tbody>
</table>
The GPU’s were originally designed primarily for 3D game rendering.

SM – Streaming multi-processors with multiple processing cores

Streaming multi-processors with multiple processing cores

On Fermi, each SM contains 32 processing cores, Kepler SMX has 192

Execute in a Single Instruction Multiple Thread (SIMT) fashion

Fermi has up to 16 SMs on a card for a maximum of 512 compute cores

http://www.theregister.co.uk/Print/2012/05/18/inside_nvidia_kepler2_gk110_gpu_tesla/
• The GPU’s were originally designed primarily for 3D game rendering.
• SM – Streaming multi-processors with multiple processing cores
 Streaming multi-processors with multiple processing cores
• On Fermi, each SM contains 32 processing cores, Kepler SMX has 192
• Execute in a Single Instruction Multiple Thread (SIMT) fashion
• Fermi has up to 16 SMs on a card for a maximum of 512 compute cores

GPU design

Model GPU design

- Large number of cores working in SIMD mode
- Slow global memory access, high bandwidth
- CPU communication over PCI bus
- Warp scheduling and fast switching queue model
Streaming Multiprocessor

Fermi SM vs Kepler SMX
Device query (Fermi M2090)

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

<table>
<thead>
<tr>
<th>Device 0: "Tesla M2090"</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA Driver Version / Runtime Version:</td>
</tr>
<tr>
<td>CUDA Capability Major/Minor version number:</td>
</tr>
<tr>
<td>Total amount of global memory:</td>
</tr>
<tr>
<td>(16) Multiprocessors, (32) CUDA Cores/MP:</td>
</tr>
<tr>
<td>GPU Clock rate:</td>
</tr>
<tr>
<td>Memory Clock rate:</td>
</tr>
<tr>
<td>Memory Bus Width:</td>
</tr>
<tr>
<td>L2 Cache Size:</td>
</tr>
<tr>
<td>Maximum Texture Dimension Size (x,y,z):</td>
</tr>
<tr>
<td>Maximum Layered 1D Texture Size, (num) layers</td>
</tr>
<tr>
<td>Maximum Layered 2D Texture Size, (num) layers</td>
</tr>
<tr>
<td>Total amount of constant memory:</td>
</tr>
<tr>
<td>Total amount of shared memory per block:</td>
</tr>
<tr>
<td>Total number of registers available per block:</td>
</tr>
<tr>
<td>Warp size:</td>
</tr>
<tr>
<td>Maximum number of threads per multiprocessor:</td>
</tr>
<tr>
<td>Maximum number of threads per block:</td>
</tr>
<tr>
<td>Max dimension size of a thread block (x,y,z):</td>
</tr>
<tr>
<td>Max dimension size of a grid size (x,y,z):</td>
</tr>
<tr>
<td>Maximum memory pitch:</td>
</tr>
<tr>
<td>Texture alignment:</td>
</tr>
<tr>
<td>Concurrent copy and kernel execution:</td>
</tr>
<tr>
<td>Run time limit on kernels:</td>
</tr>
<tr>
<td>Integrated GPU sharing Host Memory:</td>
</tr>
<tr>
<td>Support host page-locked memory mapping:</td>
</tr>
<tr>
<td>Alignment requirement for Surfaces:</td>
</tr>
<tr>
<td>Device has ECC support:</td>
</tr>
<tr>
<td>Device supports Unified Addressing (UVA):</td>
</tr>
<tr>
<td>Device PCI Bus ID / PCI location ID:</td>
</tr>
<tr>
<td>Compute Mode:</td>
</tr>
</tbody>
</table>
Device query (Kepler K20xm)

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "Tesla K20Xm"

- **CUDA Driver Version / Runtime Version**: 5.5 / 5.5
- **CUDA Capability Major/Minor version number**: 3.5
- **Total amount of global memory**: 5760 MBytes (6039339008 bytes)
- **(14) Multiprocessors, (192) CUDA Cores/MP**: 2688 CUDA Cores
- **GPU Clock rate**: 732 MHz (0.73 GHz)
- **Memory Clock rate**: 2600 Mhz
- **Memory Bus Width**: 384-bit
- **L2 Cache Size**: 1572864 bytes
- **Maximum Texture Dimension Size (x,y,z)**: 1D=(65536), 2D=(65536, 65536)
- **Maximum Layered 1D Texture Size, (num) layers**: 1D=(16384), 2048 layers
- **Maximum Layered 2D Texture Size, (num) layers**: 2D=(16384, 16384), 2048 layers
- **Total amount of constant memory**: 65536 bytes
- **Total amount of shared memory per block**: 49152 bytes
- **Total number of registers available per block**: 65536
- **Warp size**: 32
- **Maximum number of threads per multiprocessor**: 2048
- **Maximum number of threads per block**: 1024
- **Max dimension size of a thread block (x,y,z)**: (1024, 1024, 64)
- **Max dimension size of a grid size (x,y,z)**: (2147483647, 65535, 65535)
- **Maximum memory pitch**: 2147483647 bytes
- **Texture alignment**: 512 bytes
- **Concurrent copy and kernel execution**: Yes with 2 copy engine(s)
- **Run time limit on kernels**: No
- **Integrated GPU sharing Host Memory**: No
- **Support host page-locked memory mapping**: Yes
- **Alignment requirement for Surfaces**: Yes
- **Device has ECC support**: Enabled
- **Device supports Unified Addressing (UVA)**: Yes
- **Device PCI Bus ID / PCI location ID**: 42 / 0
- **Compute Mode**:

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Memory hierarchy

Memory Model

Registers
Per thread
Data lifetime = \textit{thread lifetime}

Local memory: Per thread off-chip memory (physically in device DRAM)
Data lifetime = \textit{thread lifetime}

Shared memory
Per thread block on-chip memory
Data lifetime = \textit{block lifetime}

Global (device) memory
Accessible by all threads as well as host (CPU)
Data lifetime = \textit{from allocation to deallocation}

Host (CPU) memory
Not directly accessible by CUDA threads

The per-SM L1 cache is configurable to support both shared memory and caching of local and global memory operations. The 64 KB memory can be configured as either 48 KB of Shared memory with 16KB of L1 cache, or 16 KB of Shared memory with 48 KB of L1 cache.
Memory hierarchy

<table>
<thead>
<tr>
<th>Memory</th>
<th>on/off chip</th>
<th>Cached</th>
<th>Access</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>On</td>
<td>n/a</td>
<td>R/W</td>
<td>1 thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Local</td>
<td>Off</td>
<td>†</td>
<td>R/W</td>
<td>1 thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On</td>
<td>n/a</td>
<td>R/W</td>
<td>All threads in block</td>
<td>Block</td>
</tr>
<tr>
<td>Global</td>
<td>Off</td>
<td>†</td>
<td>R/W</td>
<td>All threads + host</td>
<td>Host allocation</td>
</tr>
<tr>
<td>Constant</td>
<td>Off</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Host allocation</td>
</tr>
<tr>
<td>Texture</td>
<td>Off</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Host allocation</td>
</tr>
</tbody>
</table>

† Cached only on devices of compute capability 2.x.
Programming model follows the architecture

Programming model:
1. Allocate device resource
2. Transfer data
3. Parallel execution of device code
4. Copy results back to host thread

General considerations:
• Minimize data transfers between host and device
• Avoid serialization of device code: branching, divergence, low occupancy, non-strided memory access
• Data reuse
<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>
// Device memory allocation
 cudaMalloc(void **pointer, size_t nbytes)

// Initialization
 cudaMemcpy(void *pointer, int value, size_t count)

// Device memory Release
 cudaMemcpy(void *pointer)

int n = 1024;
int nbytes = n*sizeof(int);

cudaMalloc((void**)&a_d, nbytes);
cudaMemset(a_d, 0, nbytes);
...
cudaFree(a_d);
Memory copy to/from device

// Copy data to/from GPU
cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

direction specifies locations (host or device) of src and dst
Blocks CPU thread: returns after the copy is complete
Doesn’t start copying until previous CUDA calls complete

// Direction of copy is specified by:
enum cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice
Executing code on the GPU (kernels)

// Kernels
Kernels are C functions with some restrictions
Can only access GPU memory
Must have void return type
No variable number of arguments ("varargs")
Not recursive
No static variables

// Launching kernels
Modified C function call syntax Execution Configuration ("<<< >>>"):

// Allocate and copy data to GPU
kernel<<<dim3 grid, dim3 block>>>(...)
// Copy data back

E.g:
kernel<<<grid, block>>>(...);
kernl<<<32, 512>>>(...);
Kernel configuration

- Threads/local, shared mem
- Threadblocks
- Grid of threadblocks
Executing code on the GPU (kernels)

// Built in variables
blockIdx.x, blockIdx.y, blockIdx.z are built-in variables that returns the block ID in the x-axis, y-axis, and z-axis of the block that is executing the given block of code.

threadIdx.x, threadIdx.y, threadIdx.z are built-in variables that return the thread ID in the x-axis, y-axis, and z-axis of the thread that is being executed by this stream processor in this particular block.

blockDim.x, blockDim.y, blockDim.z are built-in variables that return the “block dimension” (i.e., the number of threads in a block in the x-axis, y-axis, and z-axis).
Executing code on the GPU (kernels)

// Built in variables
blockIdx.x, blockIdx.y, blockIdx.z are built-in variables that return the block ID in the x-axis, y-axis, and z-axis of the block that is executing the given block of code.

threadIdx.x, threadIdx.y, threadIdx.z are built-in variables that return the thread ID in the x-axis, y-axis, and z-axis of the thread that is being executed by this stream processor in this particular block.

blockDim.x, blockDim.y, blockDim.z are built-in variables that return the “block dimension” (i.e., the number of threads in a block in the x-axis, y-axis, and z-axis).

Full global thread ID in x and y dimensions can be computed by:

\[
x = blockIdx.x * blockDim.x + threadIdx.x;
\]
\[
y = blockIdx.y * blockDim.y + threadIdx.y;
\]
// Built in variables uint3, dim3

uint3 and dim3 are CUDA-defined structures of unsigned integers: x, y, and z.

- struct uint3 {x; y; z;};
- struct dim3 {x; y; z;};

- The unsigned structure components are automatically initialized to 1.
- These vector types are mostly used to define grid of blocks and threads.

// Setting dimensions via uint3, dim3

dim3 gridDim -- Grid dimensions, x and y (z not used).
Number of blocks in grid = gridDim.x * gridDim.y

dim3 blockDim -- Size of block dimensions x, y, and z.
Number of threads in a block = blockDim.x * blockDim.y * blockDim.z

dim3 grid(16,16); // grid = 16 x 16 blocks
dim3 block(32,32); // block = 32 x 32 threads
myKernel<<<grid, block>>>(...);
Kernels
CUDA C extends C by allowing the programmer to define C functions, called kernels, that, when called, are executed N times in parallel by N different CUDA threads, as opposed to only once like regular C functions.

A kernel is defined using the __global__ declaration specifier and the number of CUDA threads that execute that kernel for a given kernel call is specified using a new <<<...>>> execution configuration syntax

Each thread that executes the kernel is given a unique thread ID that is accessible within the kernel through the built-in threadIdx variable.

// Kernel launch with one block having N threads

```c
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}
int main()
{
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
}
```
/\ Typical access of a 1D matrix

```c
__global__ void assign( int* d_a, int value)
{
    int idx = blockDim.x * blockIdx.x + threadIdx.x;
    d_a[idx] = value;
}
```
// Accessing a flattened 2D matrix

global__ void assign2D(int* d_a, int w, int h, int value)
{
 int iy = blockDim.y * blockIdx.y + threadIdx.y;
 int ix = blockDim.x * blockIdx.x + threadIdx.x;
 int idx = iy * w + ix;
 d_a[idx] = value;
}

...assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);
Cuda
- Subset of C with extensions
- Parallel execution using threads and kernels
- CUDA threads are extremely lightweight
- Very little creation overhead
- Fast switching
- CUDA uses 1000s of threads
- Data needs to be copied in/out of GPU
CUDA programming model

Cuda
- Threads > Blocks > kernel
- A kernel is executed by a grid of thread blocks
- A thread block is a batch of threads that can cooperate with each other by:
 - Sharing data through shared memory
 - Synchronizing their execution
 - Threads from different blocks cannot cooperate

CUDA Hierarchy of threads, blocks, and grids, with corresponding per-thread private, per-block shared, and per-application global memory spaces.
Asynchronous memory transfers can overlap data copy with kernel execution
CUDA programming model

Synchronization:

• There is no global synchronization/barrier
• Barrier within a threadblock exists and can be called by `__syncthreads();`
• Data from global memory is fetched in warps of 32 threads. Non-aligned or random fetches serialize the calls or render them very inefficient.

CUDA runtime API

There are two levels for the runtime API.

- The C API (cuda_runtime_api.h) is a C-style interface that does not require compiling with nvcc.
- The C++ API (cuda_runtime.h) is a C++-style interface built on top of the C API.

- Device Management
- Error Handling
- Stream Management
- Event Management
- Execution Control
- Memory Management
- Unified Addressing
- Peer Device Memory Access
- OpenGL Interoperability
- Direct3D 9 Interoperability
- Direct3D 10 Interoperability
- Direct3D 11 Interoperability
- VDPAU Interoperability
- Graphics Interoperability
- Texture Reference Management
- Surface Reference Management
- Version Management
- C++ API Routines
- C++-style interface built on fCUDA runtime API.
- Interactions with the CUDA Driver API
- Interactions between the CUDA Driver API and the CUDA Runtime API.
- Profiler Control
- Data types used by CUDA Runtime
CUDA runtime API: Device Management

Functions

cudaChooseDevice (int *device, const struct cudaDeviceProp *prop)
Select compute-device which best matches criteria.

cudaDeviceSynchronize (void)
Wait for compute device to finish.

cudaGetDeviceCount (int *count)
Returns the number of compute-capable devices.
Device Enumeration

A host system can have multiple devices. The following code sample shows how to enumerate these devices, query their properties, and determine the number of CUDA-enabled devices.

```c
int deviceCount;
cudaGetDeviceCount(&deviceCount);
int device;
for (device = 0; device < deviceCount; ++device) {
    cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, device);
    printf("Device %d has compute capability %d.%d.\n",
        device, deviceProp.major, deviceProp.minor);
}
```
CUDA runtime API: Error Management

Functions

cudaGetErrorString (cudaError_t error)
Returns the message string from an error code.

cudaGetLastError (void)
Returns the last error from a runtime call.

cudaPeekAtLastError (void)
Returns the last error from a runtime call.
CUDA runtime API: Stream Management

Functions

cudaStreamCreate (cudaStream_t *pStream)
Create an asynchronous stream.

cudaStreamDestroy (cudaStream_t stream)
Destroys and cleans up an asynchronous stream.

cudaStreamQuery (cudaStream_t stream)
Queries an asynchronous stream for completion status.

cudaStreamSynchronize (cudaStream_t stream)
Waits for stream tasks to complete.

cudaStreamWaitEvent (cudaStream_t stream, cudaEvent_t event, unsigned int flags)
Make a compute stream wait on an event.
CUDA runtime API: Stream Management

CUDA runtime API: Memory Management

Functions

cudaFree (void *devPtr)
Frees memory on the device.

cudaMemcpyAsync (void *dst, const void *src, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream=0)
Copies data between host and device.

cudaHostAlloc (void **pHost, size_t size, unsigned int flags)
Allocates page-locked memory on the host.

cudaMalloc (void **devPtr, size_t size)
Allocate memory on the device.

cudaMemcpyAsync (void *dst, const void *src, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream=0)
Copies data between host and device.
int main(void) {
 int a[n], b[n], c[n];
 int *a_d, *b_d, *c_d;
 size_t nbytes=n*sizeof(int);

 // allocate the memory on the GPU
 cudaMalloc((void**)&a_d, nbytes);
 cudaMalloc((void**)&b_d, nbytes);
 cudaMalloc((void**)&c_d, nbytes);

 // fill the arrays 'a' and 'b' on the CPU
 for (int i=0; i<n; i++) {
 a[i] = -i; b[i] = i * i;
 }

 // copy the arrays 'a' and 'b' to the GPU
 cudaMemcpy(a_d, a, N*sizeof(int), cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, b, N*sizeof(int), cudaMemcpyHostToDevice);

 // launch kernel
 add<<<n,1>>>(a_d, b_d, c_d);

 // copy the array 'c' back to the CPU
 cudaMemcpy(c, c_d, n*sizeof(int), cudaMemcpyDeviceToHost);

 // free the memory allocated on the GPU
 cudaFree(a_d); cudaFree(b_d); cudaFree(c_d);
 return 0;}

Examples: Vector add
int main(void) {
 int a[n], b[n], c[n];
 int *a_d, *b_d, *c_d;
 size_t nbytes=n*sizeof(int);

 // allocate the memory on the GPU
 cudaMalloc((void**)&a_d, nbytes);
 cudaMalloc((void**)&b_d, nbytes);
 cudaMalloc((void**)&c_d, nbytes);

 // fill the arrays 'a' and 'b' on the CPU
 for (int i=0; i<n; i++) {
 a[i] = -i; b[i] = i * i;
 }

 // copy the arrays 'a' and 'b' to the GPU
 cudaMemcpy(a_d, a, N*sizeof(int), cudaMemcpyHostToDevice);
 cudaMemcpy(b_d, b, N*sizeof(int), cudaMemcpyHostToDevice);

 // launch kernel
 add<<<n,1>>>(a_d, b_d, c_d);

 // copy the array 'c' back to the CPU
 cudaMemcpy(c, c_d, n*sizeof(int), cudaMemcpyDeviceToHost);

 // free the memory allocated on the GPU
 cudaFree(a_d); cudaFree(b_d); cudaFree(c_d);
 return 0;
}

__global__ void
add(int *a, int *b, int *c)
{
 int tid = blockIdx.x*blockDim.x + threadIdx.x;
 if (tid < N)
 c[tid] = a[tid] + b[tid];
}
Examples: Matadd

```c
__global__ void gpuadd (int *a_d, int *b_d, int *c_d)
{
    int col = blockIdx.x*blockDim.x + threadIdx.x;
    int row = blockIdx.y*blockDim.y + threadIdx.y;
    int itd = row*N+col;
    c_d[itd] = a_d[itd]+b_d[itd];
}
```
Examples: Matmul sdk code walkthrough

http://www.hpcwire.com/hpcwire/2008-10-30/compilers_and_more_optimizing_gpu_kernels.html
Examples: Reduction 1: Interleaved addressing with divergent branching
__global__ void reduce1(int *g_idata, int *g_odata) {
 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 sdata[tid] = g_idata[i];

 __syncthreads();

 // do reduction in shared mem
 for(unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
__global__ void reduce1(int *g_idata, int *g_odata) {

 extern __shared__ int sdata[];

 // each thread loads one element from global to shared mem
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 sdata[tid] = g_idata[i];

 __syncthreads();

 // do reduction in shared mem
 for(unsigned int s=1; s < blockDim.x; s *= 2) {
 if (tid % (2*s) == 0) {
 sdata[tid] += sdata[tid + s];
 }
 __syncthreads();
 }

 // write result for this block to global mem
 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
Examples: Reduction 2: Interleaved addressing without divergent branching

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}
```

Just replace divergent branch in inner loop:
With strided index and non-divergent branch:

```c
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;
    if (index < blockDim.x) {
        sdata[index] += sdata[index + s];
    }
    __syncthreads();
}
```
Examples: Reduction 2: Interleaved addressing without divergent branching

Values (shared memory)

<table>
<thead>
<tr>
<th>Values (shared memory)</th>
<th>10</th>
<th>1</th>
<th>8</th>
<th>-1</th>
<th>0</th>
<th>-2</th>
<th>3</th>
<th>5</th>
<th>-2</th>
<th>-3</th>
<th>2</th>
<th>7</th>
<th>0</th>
<th>11</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
</table>

Step 1
Stride 1

<table>
<thead>
<tr>
<th>Thread IDs</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

| Values | 11 | 1 | 7 | -1 | -2 | -2 | 8 | 5 | -5 | -3 | 9 | 7 | 11 | 11 | 2 | 2 |

Step 2
Stride 2

<table>
<thead>
<tr>
<th>Thread IDs</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>

| Values | 18 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 4 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |

Step 3
Stride 4

<table>
<thead>
<tr>
<th>Thread IDs</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
</table>

| Values | 24 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 17 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |

Step 4
Stride 8

<table>
<thead>
<tr>
<th>Thread IDs</th>
<th>0</th>
</tr>
</thead>
</table>

| Values | 41 | 1 | 7 | -1 | 6 | -2 | 8 | 5 | 17 | -3 | 9 | 7 | 13 | 11 | 2 | 2 |
Examples: Reduction 3: Sequential addressing
Examples: Reduction 3: Sequential addressing

for (unsigned int s=1; s < blockDim.x; s *= 2) {
 int index = 2 * s * tid;
 if (index < blockDim.x) {
 sdata[index] += sdata[index + s];
 } __syncthreads();
}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
 if (tid < s) {
 sdata[tid] += sdata[tid + s];
 } __syncthreads();
}

Just replace strided indexing in inner loop with reversed loop and threadID-based indexing
Examples: Reduction

Performance for 16M element reduction
Bandwidth (M2090, Kepler20xm)

Kernel 1: 8.98 GB/s 15.1571 GB/s
Kernel 2: 12.3959 GB/s 17.4061 GB/s
Kernel 3: 17.4884 GB/s 53.4588 GB/s

Examples: Applications
Exercise 1

1. Modifying vector add code to calculate the norm of a vector

2. Matmul program to for matrix multiplication

3. Modify reduction code to use reduction kernel 3

4. Using cuda-memcheck to check for memory errors

5. Using nvprof profiler
x86 based CPU architecture GPU architecture