INTRODUCTION TO CUDA PROGRAMMING

BHUPENDER THAKUR

Outline of the talk

* GPU architecture

* CUDA programming model
* CUDA tools and applications
* Benchmarks

CUDA GPU Roadmap

16 Maxwell

4

14

12

+
R
©
=
_
@
a
v
a
@)
'
™
Q
a
(]

Kepler is the current release.
SuperMike Il has two Fermi 2090 GPU’s on the gpu nodes

Queenbee replacement is expected to have Nvidia Kepler GPUs

http://blogs.nvidia.com/blog/2014/03/25/gpu-roadmap-pascal/

~EMl LS

Large theoretical GFLOPs count

Theoretical
GFLOF/s

4750

4500

4250 +
4000
3750
3500

3250

s=w==NVIDIA GPU Single Precision

s NVIDIA GPU Double Preclsion
==s=wintel CPU Double Precision I
==s==|ntel CPU Single Preclsion I

/

3000

GeForce GTX 680/

2750
2500

/

2250

/

2000

1750 +

GeForce GTX'580

1500
1250

F o LT ARD ,ﬁarmi

1000

750
500 -
250

Apr-0

deForce FX 5800

entium ¢ :
1 Sep-02 Jan-04 May-05 Oct-06 Feb-08

oomfield Westmere ' ' '
Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

http://docs.nvidia.com/cuda/cuda-c-programming-guide/

LS

High Bandwidth

Theoretical GB/ s

300

GeForce GTXTITAN

/

270

240

Teda K20X

210

—-T
e GeForce GPU /

180

s Teda GPU

GeForce GTX 480 GeForce GTX 680

150

120

GeForce GTX 280

90

GeForce 8800 GTX /

60

GeForce 7800 GTX Sandy Bridge

GefForcel

Bloomfield

30
GeForce FX 590

0 -

Woodcrest

Prescott Westmere

Harpertown

Northwood T

2003 2004 2(!)5 2(1)6 2007 2008 2009 2010 2011 2012 2013

http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Notable Data Center products

Tesla Data Center Products

GPU Compute Capability
Tesla K20 3.5
Tesla K10 3.0
Tesla M2050/M2070/M2075/M2090 2.0
Tesla S1070 1.3
Tesla M1060 1.3

Tesla S870 1.0

Compute capabilities

Compute Capability 2.0 21 3.0 35
Threads / Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 64
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 8 8 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
438K 48K 32K 32K

48K 48K

Max X Grid Dimension 2716-1 2A16-1 2A32-1 2A32-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes

* The GPU’s were originally designed primarily for 3D game rendering.

* SM - Streaming multi-processors with multiple processing cores

* Streaming multi-processors with multiple processing cores

* On Fermi, each SM contains 32 processing cores, Kepler SMX has 192

* Execute in a Single Instruction Multiple Thread (SIMT) fashion

* Fermi has up to 16 SMs on a card for a maximum of 512 compute cores

http //www theregister.co.uk/Print/2012/05/18/inside_nvidia_kepler2_gk110 gpu_tesla/

LS

The Difference between a CPU and GPU

i
p—
=

 The GPU’s were originally designed primarily for 3D game rendering.
 SM - Streaming multi-processors with multiple processing cores

* Streaming multi-processors with multiple processing cores

* On Fermi, each SM contains 32 processing cores, Kepler SMX has 192

* Execute in a Single Instruction Multiple Thread (SIMT) fashion

* Fermihas up to 16 SMs on a card for a maximum of 512 compute cores

http://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/

~EMl LS

GPU design

Model GPU design

e Large number of cores
working in SIMD mode

¢ Slow global memory

access, high bandwidth SIMD execution on

e CPU communication
over PCl bus

e Warp scheduling and
fast switching queue
model

Streaming Multiprocessor

Streaming
Multiprocessor

Fermi SM
VS
Kepler SMIX

2

Warp Scheduler

Dispatch Unit Dispatch Unit

3

Warp Scheduler

Dispatch Unit

2z
Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

£

PolyMorph Engine 2.0

Instruction Cache

Dispatch Unit Dispatch Unit

s <z

Warp Scheduler

Dispatch Unit

s

Register File (65,536 x 32-bit)

3
Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

1 L3 3 2
LOST SFU Core Core

SFU Core Core

SFU Core Core

SFU Core

SFU Core

SFU Core

SFU Core

SFU Core

SFU Core

SFU Core

SFU Core

SFU Core

Core

Core

Core

Core Core

Texture Cache

ka
Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

64 KB Shared Memory / L1 Cache

Uniform Cache

Ioterconnect Network

3

Instruction Cache
Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit
RS R

Register File (32,768 x 32-bit)

£ £ & £ £
LDI/ST

LD/IST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/IST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST
LD/ST

Core Core Core

Core Core Core

Interconnect Network
64 KB Shared Memory / L1 Cache
Uniform Cache

PolyMorph Engine

[vertxoon | [Tossonmor || forgiers |

Device query (Fermi M2090)

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 2 CUDA Capable device(s)

Device 0: "Tesla M2090"
CUDA Driver Version / Runtime Version
CUDA Capability Major/Minor version number:
Total amount of global memory:
(16) Multiprocessors, (32) CUDA Cores/MP:
GPU Clock rate:
Memory Clock rate:
Memory Bus Width:
L2 Cache Size:
Maximum Texture Dimension Size (x,y,z)
Maximum Layered 1D Texture Size, (num) layers
Maximum Layered 2D Texture Size, (hnum) layers
Total amount of constant memory:
Total amount of shared memory per block:
Total number of registers available per block:
Warp size:

Maximum number of threads per multiprocessor:

Maximum number of threads per block:
Max dimension size of a thread block (x,y,z):
Max dimension size of a grid size (x,y,z):
Maximum memory pitch:

Texture alignment:

Concurrent copy and kernel execution:

Run time limit on kernels:

Integrated GPU sharing Host Memory:
Support host page-locked memory mapping:
Alignment requirement for Surfaces:

Device has ECC support:

Device supports Unified Addressing (UVA):
Device PCl Bus ID / PCl location ID:

Compute Mode:

threads can use ::cudaSetDevice() with device simultaneously) >

5.5/5.5
2.0
5375 MBytes (5636554752 bytes)

512 CUDA Cores

1301 MHz (1.30 GHz)

1848 Mhz

384-bit

786432 bytes

1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
1D=(16384), 2048 layers
2D=(16384, 16384), 2048 layers
65536 bytes

49152 bytes

32768

32

1536

1024

(1024, 1024, 64)

(65535, 65535, 65535)
2147483647 bytes

512 bytes

Yes with 2 copy engine(s)
No

No

Yes

Yes

Enabled

Yes

10/0

Device query (Kepler K20xm)

CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 2 CUDA Capable device(s)

Device 0: "Tesla K20Xm"

CUDA Driver Version / Runtime Version 5.5/5.5

CUDA Capability Major/Minor version number: 3.5

Total amount of global memory: 5760 MBytes (6039339008 bytes)
(14) Multiprocessors, (192) CUDA Cores/MP: 2688 CUDA Cores

GPU Clock rate: 732 MHz (0.73 GHz)

Memory Clock rate: 2600 Mhz

Memory Bus Width: 384-bit

L2 Cache Size: 1572864 bytes

Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 655:

Maximum Layered 1D Texture Size, (hnum) layers ~ 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 laye

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Enabled

Device supports Unified Addressing (UVA): Yes

Device PCl Bus ID / PCl location ID: 42/0

Compute Mode:
faull threads can use ::cudaSetDevice() with device simultaneously) >

Memory hierarchy

Memory Model

Registers

Per thread
Data lifetime = thread lifetime

Local memory: Per thread off-chip
memory (physically in device DRAM)
Data lifetime = thread lifetime

Shared memory

Per thread block on-chip memory
Data lifetime = block lifetime

Global (device) memory

Accessible by all threads as well as host (CPU)
Data lifetime = from allocation to deallocation

Host (CPU) memory
Not directly accessible by CUDA threads

The per-SM L1 cache is configurable to support both
shared memory and caching of local and global memory

operations. The 64 KB memory can be configured as

either 48 KB of Shared memory with 16KB of L1 cache, or
16 KB of Shared memory with 48 KB of L1 cache.

Fermi Memory Hierarchy
Thread

Shared Memory

L2 Cache

Memory hierarchy

Memory on/off chip Cached Access Scope Lifetime
Register On n/a R/W 1 thread Thread

Local Off t R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off T R/W All threads + host Host allocation
Constant Off Yes R All threads + host Host allocation
Texture Off Yes R All threads + host Host allocation

" Cached only on devices of compute capability 2.x.

Programming model follows the architecture

Programming model:

Allocate device resource
Transfer data

Parallel execution of device code
Copy results back to host thread

B wnN e

General considerations:

* Minimize data transfers between host and
device

* Avoid serialization of device code:
branching, divergence, low occupancy,
non-strided memory access

* Datareuse

Data In

SIMD mode:

Threads and blocks
H Bl

Gather,
Deallocate

Variable declaration Memory Scope
__device___local__ int LocalVar;
__device___shared__ int SharedVar;
__device__ int GlobalVar;

__device___constant__ int ConstantVar; constant

Variable declaration

Lifetime
thread
block
application

application

Memory allocation

// Device memory allocation
cudaMalloc(void **pointer, size_t nbytes)

// Initialization
cudaMemset(void *pointer, int value, size_t count)

// Device memory Release
cudaFree(void *pointer)

int n =1024;
int nbytes = n*sizeof(int);

cudaMalloc((void**)&a_d, nbytes);
cudaMemset(a_d, O, nbytes);

cudaFree(a_d);

Memory copy to/from device

// Copy data to/from GPU
cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

direction specifies locations (host or device) of src and dst
Blocks CPU thread: returns after the copy is complete
Doesn’t start copying until previous CUDA calls complete

// Direction of copy is specified by:
enum cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

Executing code on the GPU(kernels)

// Kernels
Kernels are C functions with some restrictions
Can only access GPU memory
Must have void return type
No variable number of arguments (“varargs”)
Not recursive
No static variables

// Launching kernels
Modified C function call syntax Execution Configuration (“<<< >>>"):

// Allocate and copy data to GPU
kernel<<<dim3 grid, dim3 block>>>(...)
// Copy data back

E.g:
kernel<<<grid, block>>>(...);
kernel<<<32, 512>>>(...);

Kernel configuration

Kernel configuration Thread
* Threads/ local,shared mem S [per-Thread Private
Local Memory
* Threadblocks
e Grid of threadblocks Thread Block
é g é per-Block
i S Shared Memory
Grid 0
S le—>
per-
Application
Grid 1 %",::f:
- Memory
e | [S| namng
$ 3 R

CUDA Hierarchy of threads, blocks, and grids, with corresponding
per-thread private, per-block shared, and per-application global

memory spaces.

Executing code on the GPU(kernels)

// Built in variables
blockldx.x, blockldx.y, blockldx.z are built-in variables that returns the block ID
in the x-axis, y-axis, and z-axis of the block that is executing the given block of code.

threadidx.x, threadldx.y, threadldx.z are built-in variables that return the
thread ID in the x-axis, y-axis, and z-axis of the thread that is being executed by this stream
processor in this particular block.

blockDim.x, blockDim.y, blockDim.z are built-in variables that return the “block
dimension” (i.e., the number of threads in a block in the x-axis, y-axis, and z-axis).

Executing code on the GPU(kernels)

// Built in variables
blockldx.x, blockldx.y, blockldx.z are built-in variables that returns the block ID
in the x-axis, y-axis, and z-axis of the block that is executing the given block of code.

threadldx.x, threadldx.y, threadldx.z are built-in variables that return the
thread ID in the x-axis, y-axis, and z-axis of the thread that is being executed by this stream
processor in this particular block.

blockDim.x, blockDim.y, blockDim.z are built-in variables that return the “block
dimension” (i.e., the number of threads in a block in the x-axis, y-axis, and z-axis).

Full global thread ID in x and y dimensions can be computed by:
X = blockldx.x * blockDim.x + threadldx.x;
y = blockldx.y * blockDim.y + threadldx.y;

Executing code on the GPU(kernels)

// Built in variables uint3, dim3

uint3 and dim3 are CUDA-defined structures of unsigned integers: x, y,
and z.
e struct uint3 {x; y; z;};
e struct dim3 {x; y; z;};
® The unsigned structure components are automatically initialized to 1.
* These vector types are mostly used to define grid of blocks and threads.

// Setting dimensions via uint3, dim3
dim3 gridDim -- Grid dimensions, x and y (z not used).
Number of blocks in grid = gridDim.x * gridDim.y

dim3 blockDim -- Size of block dimensions x, y, and z.
Number of threads in a block = blockDim.x * blockDim.y * blockDim.z

dim3 grid(16,16); // grid = 16 x 16 blocks
dim3 block(32,32); // block = 32 x 32 threads
myKernel<<<grid, block>>>(...);

LS

CUDA kernels

Kernels

CUDA C extends C by allowing the
programmer to define C functions,
called kernels, that, when called,
are executed N times in parallel by
N different CUDA threads, as
opposed to only once like regular C
functions.

A kernel is defined using the
__global__ declaration specifier
and the number of CUDA threads
that execute that kernel for a given
kernel call is specified using a new
<<<...>>>execution configuration
syntax

Each thread that executes the
kernel is given a unique thread ID
that is accessible within the kernel
through the built-in threadldx
variable.

// Kernel launch with one block having N threads

__global__ void VecAdd(float* A, float* B, float* C)
{

int i = threadldx.x;
C[i] = A[i] + B[i];

.}

CUDA configurations

// Typical access of a 1D matrix

__global__ void assign(int* d_a, int value)

{

CUDA configurations

// Accessing a flattened 2D matrix

global__ void assign2D(int* d_a, int w, int h, int value)

{
int iy = blockDim.y * blockldx.y + threadldx.y;

CUDA programming model

Thread

Cuda

Subset of C with extensions

Parallel execution using threads
and kernels

CUDA threads are extremely
lightweight Very little creation
overhead Fast switching

CUDA uses 1000s of threads

Data needs to be copied in/out of
GPU

g per-Thread Private
g‘ | Local Memory
Thread Block
=
i (€9)i > Shared Memory
Grid 0
o
per-
Application
. Context
- Memory
P> > | [
S

CUDA Hierarchy of threads, blocks, and grids, with corresponding
per-thread private, per-block shared, and per-application global

memory spaces.

CUDA programming model

Cuda

Threads > Blocks > kernel

A kernel is executed by a grid of
thread blocks

A thread block is a batch of
threads that can cooperate with
each other by:

Sharing data through shared memory
Synchronizing their execution

Threads from different blocks cannot
cooperate

Thread
S per-Thread Private
g‘ | Local Memory
Thread Block
é gggé per-Block
i "); > Shared Memory
Grid 0
> |[e—>
L per—
Application
. Context
Grid 1 Global
" Memory
< > | [
‘ﬁ L I) >

CUDA Hierarchy of threads, blocks, and grids, with corresponding

per-thread private, per-block shared, and per-application global
memory spaces.

LS

CUDA programming model

Copy data | [
Execute ——

Copy data | [[[[
Execute I N N

* Asynchronous memory transfers can overlap data copy with kernel
execution

CUDA programming model

Synchronization:

* Thereis no global synchronization/barrier
e Barrier within a threadblock exists and can be called by
__syncthreads();

CUDA programming model

addresses from a warp

WY 1

0 32 64 96 128 160 192 224 1256 288 320 352 384

* Data from global memory is fetched in warps of 32 threads. Non-aligned or
random fetches serialize the calls or render them very inefficient.

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

There are two levels for the runtime API.

The C API (cuda_runtime_api.h) is a C-style interface that does not require
compiling with nvcc.
The C++ APl (cuda_runtime.h) is a C++-style interface built on top of the C API.

Device Management

Error Handling

Stream Management

Event Management
Execution Control

Memory Management
Unified Addressing

Peer Device Memory Access
OpenGL Interoperability
Direct3D 9 Interoperability
Direct3D 10 Interoperability
Direct3D 11 Interoperability
VDPAU Interoperability
Graphics Interoperability

Texture Reference Management

CUDA runtime API

Surface Reference Management
Version Management

C++ API Routines

C++-style interface built on fCUDA
runtime API.

Interactions with the CUDA Driver API
Interactions between the CUDA Driver
APl and the CUDA Runtime API.
Profiler Control

Data types used by CUDA Runtime

LS

CUDA runtime API : Device Management

Functions

cudaChooseDevice (int *device, const struct cudaDeviceProp *prop)
Select compute-device which best matches criteria.

cudaDeviceSynchronize (void)
Wait for compute device to finish.

cudaGetDeviceCount (int *count)
Returns the number of compute-capable devices.

CUDA runtime API : Device Management

Device Enumeration

A host system can have multiple devices. The following code sample shows how
to enumerate these devices, query their properties, and determine the number

of CUDA-enabled devices.

int deviceCount;
cudaGetDeviceCount(&deviceCount);

int device;
for (device = 0; device < deviceCount; ++device) {

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp, device);

printf("Device %d has compute capability %d.%d.\n",
device, deviceProp.major, deviceProp.minor);

CUDA runtime API : Error Management

Functions

cudaGetErrorString (cudaError_t error)
Returns the message string from an error code.

cudaGetlastError (void)
Returns the last error from a runtime call.

cudaPeekAtLastError (void)
Returns the last error from a runtime call.

CUDA runtime API : Stream Management

Functions

cudaStreamCreate (cudaStream_t *pStream)
Create an asynchronous stream.

cudaStreamDestroy (cudaStream_t stream)
Destroys and cleans up an asynchronous stream.

cudaStreamQuery (cudaStream_t stream)
Queries an asynchronous stream for completion status.

cudaStreamSynchronize (cudaStream_t stream)
Waits for stream tasks to complete.

cudaStreamWaitEvent (cudaStream_t stream, cudaEvent_t event, unsigned int

flags)
Make a compute stream wait on an event.

LS

¢ Serial

cudaMemcpyAsync(H2D)

® Concurrent - overlap kernel and D2H copy

cudaMemcpyAsync(H2D)

streams

http://on-demand.gputechconf.com/gtc-express/2011/presentations/
StreamsAndConcurrencyWebinar.pdf

&N LSLU

CUDA runtime APl : Memory Management

Functions

cudaFree (void *devPtr)
Frees memory on the device.

cudaMemcpyAsync (void *dst, const void *src, size_t count, enum
cudaMemcpyKind kind, cudaStream_t stream=0)
Copies data between host and device.

cudaHostAlloc (void **pHost, size_t size, unsigned int flags)
Allocates page-locked memory on the host.

cudaMalloc (void **devPtr, size_t size)
Allocate memory on the device.

cudaMemcpyAsync (void *dst, const void *src, size_t count, enum
cudaMemcpyKind kind, cudaStream_t stream=0)
Copies data between host and device.

Examples: Vector add

int main(void) {
int a[n], b[n], c[n];
int *a_d, *b_d, *c_d;
size_t nbytes=n*sizeof(int);

// allocate the memory on the GPU
cudaMalloc((void**)&a_d, nbytes);
cudaMalloc((void**)&b_d, nbytes);
cudaMalloc((void**)&c_d, nbytes) ;

// fill the arrays 'a’ and 'b' on the CPU
for (int i=0; i<n; i++) {
ali] =-1; b[i] =i *i;}

// copy the arrays 'a' and 'b' to the GPU
cudaMemcpy(a_d, a, N*sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(b_d, b, N*sizeof(int), cudaMemcpyHostToDevice);

// launch kernel
add<<<n,1>>>(a_d,b_d,c_d);

// copy the array 'c' back to the CPU
cudaMemcpy(¢, c_d, n*sizeof(int), cudaMemcpyDeviceToHost);

// free the memory allocated on the GPU
cudaFree(a_d); cudaFree(b_d); cudaFree(c_d);
return 0;}

Data In

SIMD mode:

Threads and blocks
H Bl

Gather,
Deallocate

Examples: Vector add

int main(void) {
int a[n], b[n], c[n];
int *a_d, *b_d, *c_d; Data In
size_t nbytes=n*sizeof(int);

// allocate the memory on the GPU Kernel
cudaMalloc((void**)&a_d, nbytes); Launch

cudaMalloc((void**)&b_d, nbytes);
cudaMalloc((void**)&c_d, nbytes) ; /
__global__ void

add(int *a, int *b, int *c)

Pl

N

// fill the arrays 'a’ and 'b' on the CPU
for (int i=0; i<n; i++) {
ali] =-1; b[i] =i *i;}

int tid = blockldx.x*blockDim.x
+threadldx.x;

// copy the arrays 'a' and 'b' to the GPU
cudaMemcpy(a_d, a, N*sizeof(int), cudaMemcpyHostToDevice)

cudaMemcpy(b_d, b, N*sizeof(int), cudaMemcpyHostToDevice);

// launch kernel
add<<<n,1>>>(a_d,b_d,c_d);

// copy the array 'c' back to the CPU
cudaMemcpy(¢, c_d, n*sizeof(int), cudaMemcpyDeviceToHost);

// free the memory allocated on the GPU
cudaFree(a_d); cudaFree(b_d); cudaFree(c_d);
return 0;}

LS

Examples: Matadd

__global__ void gpuadd (int *a_d, int *b_d, int *c_d)
{

Examples: Matmul sdk code walkthrough

http://www.hpcwire.com/hpcwire/2008-10-30/
compilers_and_more_optimizing_gpu_kernels.html

Examples: Reduction 1: Interleaved addressing with divergent branching

Values (shared memory)
Step 1 Thread

Stride 1 IDs
Values
Step 2 Thread
Stride 2 IDs
Values
Step 3 Thread
Stride 4 IDs
Values
Step 4 Thread
Stride 8 IDs

Values

Examples: Reduction 1: Interleaved addressing with divergent branching

__global__ void reducel(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem

unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;

sdata[tid] = g_idatali];

Examples: Reduction 1: Interleaved addressing with divergent branching

__global__ void reducel(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];
// each thread loads one element from global to shared mem

unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;

If statement based on threadid
makes the loop divergent.
Modulo operator on device is
slow

sdata[tid] = g_idatali];

__syncthreads();

Examples: Reduction 2: Interleaved addressing without divergent branching

for (unsigned int s=1; s < blockDim.x; s *= 2)
{if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

ust replace
divergent branch in
inner loop:

With strided index
and non-divergent
branch:

for (unsigned int s=1; s < blockDim.x; s *=
{intindex=2 *s * tid;
if (index < blockDim.x) {

Examples: Reduction 2: Interleaved addressing without divergent branching

Values (shared memory)

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Examples: Reduction 3: Sequential adressing

Values (shared memory)

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread 7

IDs

Values

10

11

21

20

13

1

41

20

13

1

Examples: Reduction 3: Sequential adressing

for (unsigned int s=1; s < blockDim.x; s *= 2)
{ intindex=2 *s * tid;
if (index < blockDim.x) {

Just replace strided
indexing in inner
loop with reversed
loop and threadID-
based indexing

for (unsigned int s=blockDim.x/2; s>0; s>>=1)
{if (tid<s) {

Examples: Reduction

Performance for 16M element reduction
Bandwidth(M2090, Kepler20xm)

Kernel 1: 8.98 GB/s15.1571 GB/s
Kernel 2: 12.3959 GB/s 17.4061 GB/s
Kernel 3: 17.4884 GB/s 53.4588 GB/s

http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Examples: Applications

Exercise 1

1. Modifying vector add code to calculate the norm of avector

2. Matmul program to for matrix multiplication
3. Modify reduction code to use reduction kernel 3
4. Using cuda-memcheck to check for memory errors

5. Using nvprof profiler

x86 based CPU architecture GPU architecture

