Lsu TECINOLOGY
I'ECHNOLOGY
SERVICES

Practical C/C++ programming
Part |l

Feng Chen
IT Analyst 3
Louisiana State University

2/26/2014 Practical C/C++ programming Il

INFORMATION
IECHNOLOGY
SERVICES

YV V V

YV V V

2/26/2014

Quick review of Part |

Introduction to C and C++ language

Basic syntax and grammar

Data types, constants and variables:
— Basic types (integer, float, void)

— Derived types (arrays)

Operators

— Arithmetic

— Logical

— Relational

— Misc (sizeof, “,”, ternary, etc)
Control Flow

Functions

Input/Output control

Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

Things to be covered today

» Pointers in C/C++
— Use in functions
— Use in arrays
— Use in dynamic allocation
» User defined type
— struct
» Introduction to C++
— Changes from C to C++
— C++ class and objects

> Introduction to common C++ libraries

2/26/2014 Practical C/C++ programming | 3

I'ECHNOI 5 Y

Pointers

» Pointers are a very important part of the C programming language.
They are used in many ways, such as:

Array operations (e.g., while parsing strings)

Dynamic memory allocation

Sending function arguments by reference

Generic access to several similar variables

Malloc data structures of all kinds, especially trees and linked lists

Efficient, by-reference “copies” of arrays and structures, especially as
function parameters

» Necessary to understand memory and address...and the C
programming language.

2/26/2014

Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

What Is a pointer?

» A pointer is essentially a variable whose value is the address of
another variable.

Since it is a variable, it must be declared before use.
Pointer “points” to a specific part of the memory.

How to define pointers?

/* type: pointer's base type
var-name: name of the pointer variable.
asterisk *:designate a variable as a pointer */

type *pointer_var_name;

» Examples

int *i ptr; /* pointer to an integer */

double *d ptr; /* pointer to a double */

float *f ptr; /* pointer to a float */
char *ch_ptr; /* pointer to a character */

YV V V

int **p ptr; /* pointer to an integer pointer */

2/26/2014 Practical C/C++ programming | 5

INFORMATION
I'ECHNOLOGY
SERVICES

2/26/2014

Pointer rules

There are two prefix unary operators to work with pointers.

& /* "address of" operator

*/

* /* "dereferencing" operator */

Use ampersand “&” in front of a variable to access it's address, this
can be stored in a pointer variable.

Use asterisk “** in front of a pointer you will access the value at the
memory address pointed to (dereference the pointer).

Examples:

int a = 63

int *p;

/* point p to a */

p = &a;

/* dereference pointer p */

*p = 16;

Part of symbol table:

Practical C/C++ programming Il

var_name |var_address | var _value
a Ox22aac4 | 6
p Ox22aacO | Ox22aac4

INFORMATION
TECHNOLOGY
SERVICES

/* pointer rules.c */
#include <stdio.h>

int main() {
int a = 6, b = 10;
int *p;
printf("\nInitial values:\n\tthe value of a is %d, value of b is %d\n", a, b);
printf("the address of a is : %p, address of b is : %p\n", &a, &b);
p = &; /* point p to a */
printf("\nafter \"p = &a\":\n");
printf("\tthe value of p is %p, value at that address is %d\n", p, *p);
p = &b; /* point p to b */
printf("\nafter \"p = &b\":\n");
printf("\tthe value of p is %p, value at that address is %d\n", p, *p);
/* dereference pointer p */
*p = 6, p = &a, *p = 10;
printf("\nafter dereferencing the pointer:\n");
printf("\tthe value of a is %d, value of b is %d\n", a, b);
return O;

2/26/2014 Practical C/C++ programming | 7

LS~ -
Never dereference an uninitialized pointer!

> In order to dereference the pointer, pointer must have a valid value
(address).

» What is the problem for the following code?
int *ptr;
*ptr=3;

» Again, you will have *undefined behavior** at runtime, you are
operating on unknown memory space.

» Typically error: “Segmentation fault”, possible illegal memory
operation

» Always initialize your variables before use!

var_name |var_address | var value
ptr Ox22aacO OXXXXX
OXXXXX 3

2/26/2014 Practical C/C++ programming Il

LSl -
NULL pointer

» Memory address 0 has special significance, if a pointer contains the
null (zero) value, it is assumed to point to nothing, defined as NULL
in C.
» Set the pointer to NULL if you do not have exact address to assign
to your pointer.
» A pointer that is assigned NULL is called a null pointer.
/* set the pointer to NULL © */
int *ptr = NULL;
» Before using a pointer, ensure that it is not equal to NULL.:
if (ptr != NULL) {
/* make use of pointerl */
/* .. %/
}

2/26/2014 Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

Pointers and Functions (1)

» As we have learned from Part I, In C, arguments are passed by
value to functions: changes of the parameters in functions do **not**
change the parameters in the calling functions.

» Take alook at the below example, what are the values of a and b after we
called swap(a, b);
/* this is the main calling function */
int main() {
int a = 2;
int b = 33
printf("Before: a = %d and b = %d\n", a, b);
swap(a, b);
printf("After: a = %d and b = %d\n", a, b);
}
/* this is function, pass by value */
void swap(int pl, int p2) {
int t;
t = p2, p2 = p1, pl = t;
printf("Swap: a (pl) = %d and b(p2) = %d\n", pl, p2);

2/26/2014 Practical C/C++ programming Il

Pointers and Functions (2)

» The values of a and b do not change after calling swap(a,b)

» Pass by value means the called functions' parameter will be a
copy of the callers' passed argument. The value of the caller and
called functions will be the same, but the identity (the variable) is
different - caller and called function each has its own copy of
parameters

» Solution at this point? Using pointers
/* pass by pointer */
void swap_by reference(int *pl, int *p2) {
int t;
t = *p2, *p2 = *pl, *pl = t;
printf("Swap: a (pl) = %d and b(p2) = %d\n", *pl, *p2);
}
/* call by-address function */
swap_by reference(&a, &b);

2/26/2014 Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

Pointers and Arrays (1)

» The most frequent use of pointers in C is for walking efficiently along

>

2/26/2014

arrays.

Remember, array name is the first element address of the array (it
IS a constant)

int *p=NULL; /* define an integer pointer p*/

/* array name represents the address of the 0th element of the array */

int a[5]={1,2,3,4,5};
/* for 1d array, below 2 statements are equivalent */

p = &[02]; /* point p to the 1st array element (a[@])'s address */
p = a; /* point p to the 1st array element (a[@])'s address */
(p+1l); / access a[l] value */

(p+i); / access a[i] value */

p = a+2; /* p is now pointing at a[2] */

p++; /* p is now at a[3] */

p--3 $ /* p is now back at a[2] */
am 1 2 3 4 5

Practical C/C++ programming Il

12

INFORMATION
I'ECHNOLOGY
SERVICES

Pointers and Arrays (2)

» Recall 2D array structure: combination of 1D arrays

int a[2][2]={{1,2},{3,4}};
» The 2D array contains 2 1D arrays: array a[0] and array a[1]
» a[0] is the address of a[0][0], i.e:

— a[0]<&a[0][0]
— a[1]©&a[1][0]
» Array ais then actually an address array composed of a[0], a[1],
l.e. a=>&a[0]
col 0 col 1 array a[O] mp| a[0][0]=1 | a[0][1]=2

row O a[0][0]=1 | a[O][1]=2
row 1 Ja[l][O]:B a[1][1]=4 | array a[1]mp| a[1][0]=3 a[l][1]=4

array a: a#&é[O] a: .‘ NN
array a[0]: a[/0)/¢>&a[0][0] o
array a[1]: | a[d]<&a[1][o] N

2/26/2014 Practical C/C++ programming Il

LS
Walk through array with pointer

#include <stdio.h>
const int MAX = 3;
int main () {
int a_i[] = {10, 20, 30};
double a f[] = {©.5, 1.5, 2.5};
int 1i;
int *i_ptr;
double *f ptr;
/* let us have array address in pointer */
i ptr = a i;
f ptr = a_f;
/* use the ++ operator to move to next location */
for (i=09; i<MAX; i++,i ptr++,f ptr++) {
printf("adr a i[%d] = %8p\t", i, i_ptr);
printf("adr a f[%d] %8p\n", i, f _ptr);
printf("val a i[%d] = %8d\t", i, *i ptr);
printf(“"val a f[%d] %8.2F\n", i, *f ptr);

}

return O;

2/26/2014I Practical C/C++ programming Il

LSl -)
Dynamic memory allocation using pointers

>

YV VYV

2/26/2014

For situations that the size of an array is unknown, we must use
pointers to dynamically manage storage space.

C provides several functions for memory allocation and
management.

Include <stdlib.h> header file to use these functions.

Function prototype:

/* This function allocates a block of num bytes of memory and return
a pointer to the beginning of the block. */

void *malloc(int num);

/* This function release a block of memory block specified by
address. */

void free(void *address);

Practical C/C++ programming Il

INFORMATION
TECHNOLOGY
SERVICES

/* d
#inc
#inc
int

}
2/26/2014

Example of 1D dynamic array

ynamic_1d array.c */

lude <stdio.h>

lude <stdlib.h>

main(void) {

int n;

int* i _array; /* define the integer pointer */

int j;

/* find out how many integers are required */

printf("Input the number of elements in the array:\n");

scanf("%d",&n);

/* allocate memory space for the array */

i_array = (int*)malloc(n*sizeof(int));

/* output the array */

for (j=0;j<n;j++) {
i_array[jl=3; /* use the pointer to walk along the array */
printf("%d ",i_array[j]);

}

printf(“\n");

free((void*)i_array); /* free memory after use*/

return 0;

Practical C/C++ programming Il

16

LSl |
How to make dynamic 2D array?

» Use dynamic 2D array in Exercise 3 (refer to /*dynamic_2d_array.c*/)
— Hint:

/* First malloc a 1D array of pointer to pointers, then for each address,

malloc a 1D array for value storage: */

int** array; arnay. |@—>| &—>

array=(int**)malloc(nrows*sizeof(int*)); Qo

for (i=0; i<nrows; i++) *
array[i]=(int*)malloc(ncols*sizeof(int));

/* DO NOT forget to free your memory space */ ‘K

for (i=0; i<nrows; i++)
free((void*)array[i]);
free((void*)array);

— Question:

« What is the difference between the dynamic 2D array generated using the
above method and the static 2D one defined using the method in Part 1 slide
(page 45)? (Hint: check whether the memory for the dynamic 2D array is
contiguous by print the address of the pointer array)

* Any solutions to the above method? (This method will be important when
being used in MPI (Message Passing Interface) function calls)

2/26/2014 Practical C/C++ programming | 17

Lsu TECINOLOGY
I'ECHNOLOGY
SERVICES

Structures

» User-defined type in C: struct, union and enum
» A C struct is an aggregate of elements of (nearly) arbitrary types.
» Structures are the basic foundation for objects and classes in C++.

» Structures are used for:

— Passing multiple arguments in and out of functions through a single
parameter

— Data structures such as linked lists, binary trees, graph, and more

» Syntax for defining structure:
/* syntax for defining structure */
struct [structure tag] /* tag is optional */
{
member definition;
member definition;

member definition;
} [one or more structure variables];

2/26/2014 Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

How to use struct

» Example of defining a “Point” struct
/* define a structure “Point” */
struct Point {

int index;

char tag;

double Xx;

double y;
};

» Define the struct Point type variables:
/* define two struct Point variables */
struct Point pl, p2, p3;

“ ",

» Here is how we access the struct Point type variables, using the “.":

pl.index=0; /* access members of pl with dot “.” operator */
pl.tag = 'a’;

pl.x = 5
pl.y = ;
p3 = pl; /* assign struct variable pl to variable p3 */

2/26/2014 Practical C/C++ programming Il

LSl _'
Using typedef to define new variables

» C provides a keyword called typedef to name a new variable type
(note that typedef does not create new types).
typedef existing type new_type name;

» Use typedef with struct in the previous example:

typedef struct Point point;

typedef struct Point {/* alternative way to define Point*/
int index;
char tag;
double x;
double y;

} Point;

» typedef can also used to give alias to existing variable types:

typedef double real; /* typedef float real; easy switch between
precisions*/

» Use the newly defined type to define your variables, e.q.:

real x; /* x is actually double defined above */
Point pl, p2, p3; /* pl, p2 and p3 are struct Point */

2/26/2014 Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

2/26/2014

Pointer to struct

Define pointers to structures in the same way as pointer to any other
basic variables:

Point *ptr_p; /* define a pointer to Point */

Use the pointer to point to the actual struct variable by: store the
address of a structure variable in the above defined pointer variable
with the address “&” operator:

ptr p = &3; /* point prt p to struct p3 */

To access struct members with pointer, use the “->”’ operator
printf("tag=%c\n", ptr_p->tag); /* access the struct member through
pointer */

Alternatively, use the dereference operator “*”’ and the “.”’ operator

printf(“tag=%c\n", (*ptr_p).tag); /* access the struct member
through dereference operator */

The “->* operator will be largely used in the class and object
operations in C++

Practical C/C++ programming Il

LS
struct Example - Point struct (1)

1 /* struct_example.c */

2 #include <stdio.h>

3

4 typedef double real;

5 /* typedef float real; easy switch between single and double precisions */
6

7 typedef struct Point {

8 int index;

9 char tag;
10 real x;
11 real y;
12 } Point;
13
14 void print_point(struct Point point);
15
16 int main() {
17 /* define two struct Point variables */
18 /* struct Point pl1, p2; */
19 Point pl1, p2, p3;
20 /* assign values to struct members of pl */
21 pl.index=0;
22 pl.tag = 'a’;
23 pl.x = 0.0;
24 pl.y = 0.0;

2/26/2014 Practical C/C++ programming | 22

LS~
struct Example - Point struct (2)

25 /* assign values to struct members of p2 */
26 p2.index=1, p2.tag = 'b', p2.x = 1.0, p2.y = 1.0;
27 p3 = pl; /* assign struct var pl to var p3 */
28 /* output pl and p2 */

29 print_point(pl);

30 print_point(p2);

31 print_point(p3);

32 }

33

34 void print_point(struct Point point)

35 {

36 printf("\npoint %c:\n", point.tag);

37 printf("\tindex : %d\n", point.index);

38 printf("\tx = %7.21f\n", point.x);

39 printf("\ty = %7.21f\n", point.y);

40 printf("\n");

41 '}

2/26/2014 Practical C/C++ programming | 23

su TECITNOLOGY
I I INOI \
SERVICES

From C to C++

» C++ can be considered as a superset of C
» Some minor C++ features over C

You can use “//” to type a comments
To use standard C libraries: using namespace std;

Input from the keyboard and output to the screen can be performed
through cout << (insertion operator) and cin >> (extraction operator)

Variables can be declared anywhere inside the code (e.g. C++ allows
you to declare a variable to be local to a loop)

Can use reference for a variable instead of pointer
Memory manipulation: new and delete

» Major difference: C is function-driven while C++ is object-driven. &
C Is procedure oriented while C++ is object oriented.

> Wil touch these features in the next section.

» To compile a C++ program, change the compiler name to g++ using
the GNU compiler:

$ g++ cpp_features.cpp

2/26/2014

Practical C/C++ programming Il

INFORMATION
TECHNOLOGY
SERVICES

Minor C++ features over C

#include <iostream>
// use standard libraries
using namespace std;
// we are using C++ style comments
int main() {
int n = 2*3; // Simple declaration of n
int *a = new int[n]; //use "new" to manage storage
// C++ style output
cout << "Hello world with C++" << endl;
for (int i = 03 i < n ; i++) { // Local declaration of i

al[i]=i;
// we are using C++ cout for output
cout << "a[" << 1 << "] = " << a[i] << endl;

}

delete[] a; // free the memory space we used

return 0;

}
2/26/2014 Practical C/C++ programming | 25

INFORMATION
IECHNOLOGY
SERVICES

References in C++

» C++ references allow you to create an alias for the variable which
allows you to treat the reference exactly as though it were the
original variable.

» Declaring a variable as a reference by appending an ampersand
“&” to the type name, reference must be initialized at declaration:
int& rx = x3;// declare a reference for x

» Example using C++ reference as function parameters (see ref.cpp):
int main() {
int x,y=4;
int& rx = x3;// declare a reference for x

rx = 33// rx is now a reference to x so this sets x to 33
cout << "before: x=" << x << " y=" << y << endl;
swap(x,y);
cout << "after: x=" << x << " y=" << y << endl;
}
void swap (int& a, int& b) {// using reference instead of pointers
int t;
t=a,a=b,b=t;
}

2/26/2014

Practical C/C++ programming | 26

LSl e
Major migration — Class and Object in C++

> Definition of class

— A class is a user-defined type. It is an expanded concept of user-
defined type struct.

» Definition of object
— An object is an instance of a class.

> In terms of variables, a class would be the variable type, and an
object would be the variable.

» In C++, Classes are defined using either keyword class or keyword
struct, with the following syntax:
// syntax for defining a class
class class _name {
access_specifier_1: // private, public or protected
memberl; // list of class members
access_specifier 2:
member2;

} [object names]; // object names is an optional list of this class

2/26/2014 Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

YV V V

2/26/2014

More on C++ class definition

class _name is a valid identifier for the class
object_names is an optional list of names for objects of this class.

The body of the declaration can contain members, which can either
be data or function declarations, and optionally access specifiers.

An access specifier is one of the following three keywords:
private: // accessible only from within class or their "friends"”

public: // The members declared as public are accessible from
outside the class through an object of the class

protected: // accessible from outside the class BUT only in a class
derived (derived class) from it.

By default, all members of a class is private unless access
specifier is used.

The definition is very similar to plain data struct except that they can
also include functions (methods) with access specifier.

Practical C/C++ programming Il

28

INFORMATION
I'ECHNOLOGY
SERVICES

Class example: Point class

» Below is an example rewrite the Point struct to class:

class Point { //define a class Point

private: //1ist of private members
int index; // index of the point
char tag; // name of the point

real x; // x coordinate, real: typedef double real;
real y; // y coordinate
public:

// use this function to set the private members
void set_values(int,char,real,real);

// use this function to output the private members
void print_values();

}s

// define the "set values" method
void Point::set_values(int idx,char tg,real xc,real yc) {
index=idx, tag=tg, x=xc, y=yc;

// define the "print_values" method
void Point::print_values() {
cout << "point << tag <«

<« ", x = <« X << ", y = << y << endl;

: index = << index

2/26/2014 Practical C/C++ programming | 29

INFORMATION
TECHNOLOGY

» private members of Point: index, tag, x, y cannot be
accessed from outside the Point class:
— they have private access
— they can only be accessed from within other members of that same
class.

» public members of Point can be accessed as normal functions via
the dot operator “.” between object name and member name.

» The implementation of the member functions can be either inside or
outside the class definition. In the previous slide, the member
function is defined outside the class definition.

» The scope operator “: :*, for the function definition is used to
specify that the function being defined is a member of the class
Point and not a regular (non-member) function:

// define the "set values" method using scope operator "
void Point::set values(int idx,char tg,real xc,real yc) {
index=idx, tag=tg, x=xc, y=yc; // overuse of comma operator :-)

}

2/26/2014 Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

Use class to define objects

» To declare objects of a class, use exactly the same type of
declaration as declaring variables of basic types.

» Following statements declare two objects of class Point, just the
same as we define basic type variables:
Point pl, p2; // define two object of Point

» Then the objects pl and p2 access their member functions:
pl.set values(9, 'a',0,0); // object pl use set values method
p2.set values(l,'b',1,1); // object p2 use set values method

pl.print_values(); // object pl use print_values method
p2.print_values(); // object p2 use print_values method

» We cannot directly access the private members of pl1 and p2:
double x1= pl.x; // compilation error!

» So far, we have got very basic idea about C++ classes and objects.

2/26/2014 Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

Constructor (1)

» In C++ class, a special function, which is automatically called
whenever a new object of this class is created, allowing the object to
initialize member variables or allocate storage is called constructor.

» Constructor function is declared just like a regular member function
with the class name, but without any return type (**not even void**).

» Modify the Point class to use constructor, add the following lines in
the class declaration:
class Point { //define a class Point
private:
//1list of private members ...
public:
// define a constructor to initialize members
Point();
// list of other member functions

}s

2/26/2014 Practical C/C++ programming Il

LSl
Constructor (2)

» Definition of the Point class constructor:
// define a constructor to initialize members
// Note that no return type is used
Point::Point() {
index=0, tag=09, x=0, y=0; //initialize the private members
}

» After defining the constructor, when we define an object variable of
Point, its private members are initialized using the constructor.
Point p3; // what is index, tag, x, y of p3 at this point?

» How do we Iinitialize private members using different values at time
of definition?

// declare another constructor with parameters
Point(int,char,real,real);
// define another constructor with parameters
Point::Point(int idx,char tg,real xc,real yc) {
index=idx, tag=tg, x=xc, y=yc; //initialize with parameters

2/26/2014

Practical C/C++ programming Il

33

LS
Overloaded constructors

» We have seen the Point class can have two constructors:
Point();
Point(int,char,real,real);

» One class can have two functions with the same name, and the
objects of Point can be initialized in either of the two ways.
Point pl, p2; // calling the Point() default constructor
Point p3(9, 'c',0,1); // calling the Point(...) constructor

» The compiler will analyze the types of arguments and matching
them to the types of parameters of different function definitions.

» The above example also introduces a special kind constructor: the
default constructor.
— The default constructor is the constructor that takes no parameters.

— The default constructor is called when an object is declared but is not
initialized with any arguments.

2/26/2014 Practical C/C++ programming Il

34

su TECHNOLOGY
I [ECHNOI 7Y
SERVICES

>

>

>

Destructor

Destructors are usually used to de-allocate memory and do other
cleanup for a class object and its class members when the object is
destroyed. Destructor is considered the inverse of constructor
function.

A destructor will have the same name as the class prefixed with a
tilde (~) and it can neither return a value nor can it take any
parameters.

There is only **one** destructor per class in C++,

» A destructor is called for a class object when that object passes out

2/26/2014

of scope or is explicitly deleted. An example of destructor definition
In Point class:
// declare a destructor in class declaration
~Point();
// define the destructor
Point::~Point() {
cout << "Destructor called.” << endl;

}

Practical C/C++ programming Il

INFORMATION
IECHNOLOGY
SERVICES

new and delete in C++

» In C++, the dynamic memory functions are: new and delete

» The major difference between malloc and free: new and delete
will call the constructor and destructor.

» Using the following constructor and destructor in the Point class:
// define another constructor with parameters
Point::Point() {
cout << "Constructor called."” << endl;

}
Point::~Point() {// define the destructor

cout << "Destructor called." << endl;

}
» What will be the output in the main() function call?

(point_class_new_delete.cpp)
void main(void) {
Point *ptr p = new Point[2];
delete[] ptr_p;
ptr_p =(Point*)malloc(2*sizeof(Point));
free(ptr_p);

2/26/2014 Practical C/C++ programming Il

Lsu TECINOLOGY
I'ECHNOLOGY
SERVICES

Overloading functions

» In C++, two different functions can have the same name either:
— because they have a different number of parameters,
— because any of their parameters are of a different type.

» See we overload the set_values function for the Point class
// define the "set values" method using 4 values
void Point::set _values(int idx,char tg,real xc,real yc) {
index=idx, tag=tg, x=xc, y=ycC;
}
// define the "set values" method using another object
void Point::set_values(Point p) {
index=p.index, tag=p.tag, x=p.X, y=p.y;
}
» Overloading is simply defined as the ability of one function to
perform different tasks.

» In C++, operators (e.g. +, -, *, /, <<, etc.)can also be
overloaded. See training folder for examples (Not covered in this
training).

2/26/2014 Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

Pointer to class

» Use the same way as pointer to a struct and to access members of
a pointer to a class with the member access operator “->”

» As with all pointers, pointers must be initialized before using:
Point pl1, p2; // calling the Point() constructor
Point *ptr_ p; //define pointer to class
ptr p = &2; // point prt p to p2 object
pl.set values(9,'a',0,0); // object pl use set values method
p2.set values(l,'b',1,1); // object p2 use set values method
//access the member funtion using pointer ptr p
ptr_p->set _values(2,'d",1,0);
ptr_p->print_values();
p2.print_values();

» What will be the output? (hint: we used the address of p2)

2/26/2014 Practical C/C++ programming Il

Derived Class - Inheritance

» Inheritance is one of the most important concepts in object-oriented
programming.

» In C++ new class can inherit the members of an existing class. The
existing class is called the base class, and the new class is called
the derived class.

» A derived class can be derived from multiple base classes.

// syntax for declaring a derived class
class derived class: access _specifier base class list

— Access_specifier: public, protected, private
— base-class is the name list of previously defined classes
— If the access-specifier is not used, it is private by default.

» An example of derived class Particle based on Pointe:
class Particle: public Point {

}s
» In order for class Particle to access the members in Point: index,
tag, X, Yy, the access specifier needs to be changed to protected

2/26/2014 Practical C/C++ programming Il

Access Control and Inheritance

> Base class members in derived class:

- public Inheritance: public members of the base class become public
members of the derived class and protected members of the base class
become protected members of the derived class. A base class's private
members are not accessible.

- protected Inheritance: public and protected members of the base class
become protected.

- private Inheritance: public and protected members of the base class
become private.

— Protected or private inheritance is rarely used. Most inheritance is

public.

Access public protected private
Within Same class | yes yes yes
Derived classes yes yes no
QOutside classes yes no no

2/26/2014 Practical C/C++ programming Il

LSl - |
Implementation of Particle class

» In this example, we attempt to create a Particle class based on

Point, we will add another attribute: mass of the particle.
// declare a derived class Particle based on Point

class Particle: public Point { Point
protected:)
real mass; IndeX;
public: tag;
Particle(){ mass=0.0; }; X,
void set_mass(real); Y,

real get mass();
};

// define the set mass method ;
: : Particle
void Particle::set _mass(real m){
mass = m; mMass,

}
// define the get _mass method

real Particle::get mass(){
return mass;

2/26/2014 Practical C/C++ programming Il

LSl - |
Example using the derived class

» Define an object of Particle class and access its methods:
int main(void) {
Particle p; // which constructor is called?
// calls the base class method (function)
p.set values(l,'a’, ,);
p.print_values();
// calls the derived class method (function)
p.set mass(1.3);
// read how to control the format using cout
// http://www.cplusplus.com/reference/ios/ios _base/precision/

cout << "mass of p = " << fixed << setprecision(3)
<< p.get _mass() << endl;
return 0;
}
» The output of the above code on a terminal:
$./a.out

point a: index =1, x = 0.5, y =1
mass of p = 1.300

2/26/2014 Practical C/C++ programming Il

su TECHNOLOGY
I FECHNOT OGY
TECHNOLOGY

>

>

2/26/2014

Template and Generic Programming

Template is a feature of the C++ that allow functions and classes to
operate with generic types. There are two kinds of templates:
function template and class template

Declare a function template:

// Both expressions have exactly the same meaning behavior.
template <class identifier> function_declaration;
template <typename identifier> function declaration;

Example of defining a template function:
// T is a generic "Type"
template<typename T>
T add(T a, T b) {

return a+b;

}
C++ provides unique abilities for Generic Programming through
templates.

Generic Programming achieved its first major success in C++ with
the Standard Template Library

Practical C/C++ programming Il

43

su TECHNOLOGY
I [ECHNOI 7Y
SERVICES

YV VYV

/
000

2/26/2014

Introduction to STL
(Standard Template Library)

The Standard Template Library, or STL, is a C++ library of
container classes, algorithms, and iterators.

It provides many of the basic algorithms and data structures of
computer science.

STL is a generic library, meaning that its components are heavily
parameterized: almost every component in the STL is a template.
The STL can be categorized into two parts:

— The Standard Function Library: consists of general-purpose, template
based generic functions.

— The Object Oriented Class Library: a collection of class templates and
associated functions.

STL is now part of the ANSI/ISO C++ Standard.
We will touch std::vector and std::list in the training.

Fortunately, we can use STL without knowing much about how to
write them.

Practical C/C++ programming Il

44

INFORMATION
I'ECHNOLOGY
SERVICES

2/26/2014

std::vector and std::list

A std::vector is a collection of objects, all of which have the same
type.
Similar to arrays, vectors use contiguous storage locations for their

elements, e.g. elements can also be accessed using offsets on
regular pointers to its elements efficiently.

Unlike arrays, vector can change size dynamically, with their storage
being handled automatically by the container.

Use of std::vector:

// include the appropriate header with "using" declaration
#include<vector>

using std::vector;

// define the std::vector objects (variables)

vector<int> index_ vec; // index _vec holds objects of type int
vector<double> value_vec; // value_vec holds objects of type double
vector<Point» point vec; // point vec holds objects of class Point

Practical C/C++ programming Il

INFORMATION
I'ECHNOLOGY
SERVICES

An example using std::vector

» Below is an example using std::vector to: (1) find a value in an array (2) sort
the array
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
// using STL to: (1) find a value in an array (2) sort the array
int main() {
int arr[]={2,3,1,5,4,6,8,7,9,0};
int *p = find(arr,arr+10,5); // find number "5" using std::find
p++;
cout << "The number after 5 is " << *p << endl;
vector<int> vec (arr,arr+10); // assign the array values to std::vector
// now sort the array
sort(vec.begin(),vec.end());
for(int i=0; i<vec.size(); i++)
cout << vec[i]k< " ";
cout << endl;
return O;

2/26/2014

Practical C/C++ programming | 46

su TECHNOLOGY
I [ECHNOI 7Y
SERVICES

Other important C++ concepts

» C++ Polymorphism

— A call to a member function will cause a different function to be
executed depending on the type of object that invokes the function
(static polymorphism, dynamic polymorphism)
» C++ Encapsulation

— Mechanism of exposing only the interfaces and hiding the
implementation details from the user. (data hiding)

» C++ Abstraction, etc.

% Refer to C++ text books for further details, e.g.:
Q C++ Primer (Stanley B. Lippman, Josée Lajoie, Barbara E. Moo0)
O Thinking in C++ (Chuck Allison and Bruce Eckel)
O The C++ Programming Language (Bjarne Stroustrup)

2/26/2014 Practical C/C++ programming Il

INFORMATION
IECHNOLOGY
SERVICES

Selected C++ Libraries

A\

Use existing libraries for your work instead of starting from scratch!
Generic:
— Boost
» 3D Graphics:
— Ogre3D
— OpenGL
» Math:
— BLAS and LAPACK
— UMFPACK
— Eigen
» Computational geometry
— CGAL
» Finite Element Method, Finite Volume Method
— deal.ll
— OpenFOAM, Overture

A\

2/26/2014 Practical C/C++ programming Il

INFORMATION
TECHNOLOGY
SERVICES

Exercise 2

» Calculate the result of a constant times a vector plus a vector:
where a is a constant, X and Y are one dimensional vectors.
y<ax+y
1. Complete the code for the vector addition;
2. Change x and y to dynamic arrays

2/26/2014 Practical C/C++ programming Il

LS

» Complete the C code for matrix multiplication

A-B=C
where:
ai’j:i+j
bi,j :i'j
G ; :Zai,k 'bk,j
k

Also complete the following functions for 2d dynamic array:

= allocate _dynamic_2d_array
= free_dynamic_2d_array

Practical C/C++ programming Il

2/26/2014

