
Practical C/C++ programming

Part II

Feng Chen

IT Analyst 3

Louisiana State University

2/26/2014 Practical C/C++ programming II 1

Quick review of Part I

 Introduction to C and C++ language

 Basic syntax and grammar

 Data types, constants and variables:

– Basic types (integer, float, void)

– Derived types (arrays)

 Operators

– Arithmetic

– Logical

– Relational

– Misc (sizeof, “,”, ternary, etc)

 Control Flow

 Functions

 Input/Output control

2/26/2014 Practical C/C++ programming II 2

Things to be covered today

 Pointers in C/C++

– Use in functions

– Use in arrays

– Use in dynamic allocation

 User defined type

– struct

 Introduction to C++

– Changes from C to C++

– C++ class and objects

 Introduction to common C++ libraries

2/26/2014 Practical C/C++ programming II 3

Pointers

2/26/2014 Practical C/C++ programming II 4

 Pointers are a very important part of the C programming language.

They are used in many ways, such as:

– Array operations (e.g., while parsing strings)

– Dynamic memory allocation

– Sending function arguments by reference

– Generic access to several similar variables

– Malloc data structures of all kinds, especially trees and linked lists

– Efficient, by-reference “copies” of arrays and structures, especially as

function parameters

 Necessary to understand memory and address...and the C

programming language.

What is a pointer?

 A pointer is essentially a variable whose value is the address of

another variable.

 Since it is a variable, it must be declared before use.

 Pointer “points” to a specific part of the memory.

 How to define pointers?
/* type: pointer's base type
 var-name: name of the pointer variable.
 asterisk *:designate a variable as a pointer */
type *pointer_var_name;

 Examples
int *i_ptr; /* pointer to an integer */

double *d_ptr; /* pointer to a double */

float *f_ptr; /* pointer to a float */

char *ch_ptr; /* pointer to a character */

int **p_ptr; /* pointer to an integer pointer */

2/26/2014 Practical C/C++ programming II 5

Pointer rules

 There are two prefix unary operators to work with pointers.

& /* "address of" operator */

* /* "dereferencing" operator */

 Use ampersand “&” in front of a variable to access it's address, this

can be stored in a pointer variable.

 Use asterisk “*” in front of a pointer you will access the value at the

memory address pointed to (dereference the pointer).

 Examples:

int a = 6;

int *p;

/* point p to a */

p = &a;

/* dereference pointer p */

*p = 10;

2/26/2014 Practical C/C++ programming II 6

Part of symbol table:

var_name var_address var_value

a 0x22aac4 6

p 0x22aac0 0x22aac4

Pointer to variables and dereference pointer

/* pointer_rules.c */

#include <stdio.h>

int main() {

 int a = 6, b = 10;

 int *p;

 printf("\nInitial values:\n\tthe value of a is %d, value of b is %d\n", a, b);

 printf("the address of a is : %p, address of b is : %p\n", &a, &b);

 p = &a; /* point p to a */

 printf("\nafter \"p = &a\":\n");

 printf("\tthe value of p is %p, value at that address is %d\n", p, *p);

 p = &b; /* point p to b */

 printf("\nafter \"p = &b\":\n");

 printf("\tthe value of p is %p, value at that address is %d\n", p, *p);

 /* dereference pointer p */

 *p = 6, p = &a, *p = 10;

 printf("\nafter dereferencing the pointer:\n");

 printf("\tthe value of a is %d, value of b is %d\n", a, b);

 return 0;

}

2/26/2014 Practical C/C++ programming II 7

Never dereference an uninitialized pointer!

 In order to dereference the pointer, pointer must have a valid value

(address).

 What is the problem for the following code?

int *ptr;

*ptr=3;

 Again, you will have **undefined behavior** at runtime, you are

operating on unknown memory space.

 Typically error: “Segmentation fault”, possible illegal memory

operation

 Always initialize your variables before use!

2/26/2014 Practical C/C++ programming II 8

var_name var_address var_value

ptr 0x22aac0 0xXXXX

0xXXXX 3

NULL pointer

 Memory address 0 has special significance, if a pointer contains the

null (zero) value, it is assumed to point to nothing, defined as NULL

in C.

 Set the pointer to NULL if you do not have exact address to assign

to your pointer.

 A pointer that is assigned NULL is called a null pointer.

/* set the pointer to NULL 0 */

 int *ptr = NULL;

 Before using a pointer, ensure that it is not equal to NULL:

if (ptr != NULL) {

 /* make use of pointer1 */

 /* ... */

}

2/26/2014 Practical C/C++ programming II 9

Pointers and Functions (1)

 As we have learned from Part I, In C, arguments are passed by

value to functions: changes of the parameters in functions do **not**

change the parameters in the calling functions.

 Take a look at the below example, what are the values of a and b after we
called swap(a, b);

/* this is the main calling function */

int main() {

 int a = 2;

 int b = 3;

 printf("Before: a = %d and b = %d\n", a, b);

 swap(a, b);

 printf("After: a = %d and b = %d\n", a, b);

}

/* this is function, pass by value */

void swap(int p1, int p2) {

 int t;

 t = p2, p2 = p1, p1 = t;

 printf("Swap: a (p1) = %d and b(p2) = %d\n", p1, p2);

}

 2/26/2014 Practical C/C++ programming II 10

Pointers and Functions (2)

 The values of a and b do not change after calling swap(a,b)

 Pass by value means the called functions' parameter will be a

copy of the callers' passed argument. The value of the caller and

called functions will be the same, but the identity (the variable) is

different - caller and called function each has its own copy of

parameters

 Solution at this point? Using pointers

/* pass by pointer */

void swap_by_reference(int *p1, int *p2) {

 int t;

 t = *p2, *p2 = *p1, *p1 = t;

 printf("Swap: a (p1) = %d and b(p2) = %d\n", *p1, *p2);

}

 /* call by-address function */

 swap_by_reference(&a, &b);

2/26/2014 Practical C/C++ programming II 11

Pointers and Arrays (1)

 The most frequent use of pointers in C is for walking efficiently along

arrays.

 Remember, array name is the first element address of the array (it

is a constant)

int *p=NULL; /* define an integer pointer p*/

/* array name represents the address of the 0th element of the array */

int a[5]={1,2,3,4,5};

/* for 1d array, below 2 statements are equivalent */

p = &a[0]; /* point p to the 1st array element (a[0])'s address */

p = a; /* point p to the 1st array element (a[0])'s address */

(p+1); / access a[1] value */

(p+i); / access a[i] value */

p = a+2; /* p is now pointing at a[2] */

p++; /* p is now at a[3] */

p--; /* p is now back at a[2] */

2/26/2014 Practical C/C++ programming II 12

&a[0]

a 1 2 3 4 5

p

Pointers and Arrays (2)

 Recall 2D array structure: combination of 1D arrays

int a[2][2]={{1,2},{3,4}};

 The 2D array contains 2 1D arrays: array a[0] and array a[1]

 a[0] is the address of a[0][0], i.e:

– a[0]&a[0][0]

– a[1]&a[1][0]

 Array a is then actually an address array composed of a[0], a[1],

i.e. a&a[0]

2/26/2014 Practical C/C++ programming II 13

col 0 col 1

row 0 a[0][0]=1 a[0][1]=2

row 1 a[1][0]=3 a[1][1]=4

array a[0]: a[0][0]=1 a[0][1]=2

array a[1]: a[1][0]=3 a[1][1]=4

array a: a&a[0]

array a[0]: a[0]&a[0][0]

array a[1]: a[1]&a[1][0]

Walk through array with pointer

#include <stdio.h>

const int MAX = 3;

int main () {

 int a_i[] = {10, 20, 30};

 double a_f[] = {0.5, 1.5, 2.5};

 int i;

 int *i_ptr;

 double *f_ptr;

 /* let us have array address in pointer */

 i_ptr = a_i;

 f_ptr = a_f;

 /* use the ++ operator to move to next location */

 for (i=0; i<MAX; i++,i_ptr++,f_ptr++) {

 printf("adr a_i[%d] = %8p\t", i, i_ptr);

 printf("adr a_f[%d] = %8p\n", i, f_ptr);

 printf("val a_i[%d] = %8d\t", i, *i_ptr);

 printf("val a_f[%d] = %8.2f\n", i, *f_ptr);

 }

 return 0;

}

2/26/2014 Practical C/C++ programming II 14

Dynamic memory allocation using pointers

 For situations that the size of an array is unknown, we must use

pointers to dynamically manage storage space.

 C provides several functions for memory allocation and

management.

 Include <stdlib.h> header file to use these functions.

 Function prototype:

/* This function allocates a block of num bytes of memory and return
a pointer to the beginning of the block. */

void *malloc(int num);

/* This function release a block of memory block specified by
address. */

void free(void *address);

2/26/2014 Practical C/C++ programming II 15

Example of 1D dynamic array
/* dynamic_1d_array.c */

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 int n;

 int* i_array; /* define the integer pointer */

 int j;

 /* find out how many integers are required */

 printf("Input the number of elements in the array:\n");

 scanf("%d",&n);

 /* allocate memory space for the array */

 i_array = (int*)malloc(n*sizeof(int));

 /* output the array */

 for (j=0;j<n;j++) {

 i_array[j]=j; /* use the pointer to walk along the array */

 printf("%d ",i_array[j]);

 }

 printf("\n");

 free((void*)i_array); /* free memory after use*/

 return 0;

}

2/26/2014 Practical C/C++ programming II 16

How to make dynamic 2D array?

 Use dynamic 2D array in Exercise 3 (refer to /*dynamic_2d_array.c*/)

– Hint:
/* First malloc a 1D array of pointer to pointers, then for each address,
malloc a 1D array for value storage: */

int** array;

array=(int**)malloc(nrows*sizeof(int*));

for (i=0; i<nrows; i++)

 array[i]=(int*)malloc(ncols*sizeof(int));

/* DO NOT forget to free your memory space */

for (i=0; i<nrows; i++)

 free((void*)array[i]);

free((void*)array);

– Question:

• What is the difference between the dynamic 2D array generated using the

above method and the static 2D one defined using the method in Part 1 slide

(page 45)? (Hint: check whether the memory for the dynamic 2D array is

contiguous by print the address of the pointer array)

• Any solutions to the above method? (This method will be important when

being used in MPI (Message Passing Interface) function calls)

2/26/2014 Practical C/C++ programming II 17

array:

Structures

 User-defined type in C: struct, union and enum

 A C struct is an aggregate of elements of (nearly) arbitrary types.

 Structures are the basic foundation for objects and classes in C++.

 Structures are used for:

– Passing multiple arguments in and out of functions through a single

parameter

– Data structures such as linked lists, binary trees, graph, and more

 Syntax for defining structure:

/* syntax for defining structure */

struct [structure tag] /* tag is optional */

{

 member definition;

 member definition;

 ...

 member definition;

} [one or more structure variables];

2/26/2014 Practical C/C++ programming II 18

How to use struct

 Example of defining a “Point” struct

/* define a structure “Point” */

struct Point {

 int index;

 char tag;

 double x;

 double y;

};

 Define the struct Point type variables:

/* define two struct Point variables */

struct Point p1, p2, p3;

 Here is how we access the struct Point type variables, using the “.”:

p1.index=0; /* access members of p1 with dot “.” operator */

p1.tag = 'a';

p1.x = 0.0;

p1.y = 0.0;

p3 = p1; /* assign struct variable p1 to variable p3 */

2/26/2014 Practical C/C++ programming II 19

Using typedef to define new variables

 C provides a keyword called typedef to name a new variable type

(note that typedef does not create new types).

typedef existing_type new_type_name;

 Use typedef with struct in the previous example:

typedef struct Point point;

typedef struct Point {/* alternative way to define Point*/

 int index;

 char tag;

 double x;

 double y;

} Point;

 typedef can also used to give alias to existing variable types:

typedef double real; /* typedef float real; easy switch between
precisions*/

 Use the newly defined type to define your variables, e.g.:
real x; /* x is actually double defined above */

Point p1, p2, p3; /* p1, p2 and p3 are struct Point */

 2/26/2014 Practical C/C++ programming II 20

Pointer to struct

 Define pointers to structures in the same way as pointer to any other

basic variables:

Point *ptr_p; /* define a pointer to Point */

 Use the pointer to point to the actual struct variable by: store the

address of a structure variable in the above defined pointer variable

with the address “&” operator:

ptr_p = &p3; /* point prt_p to struct p3 */

 To access struct members with pointer, use the “->” operator

printf("tag=%c\n", ptr_p->tag); /* access the struct member through
pointer */

 Alternatively, use the dereference operator “*” and the “.” operator

printf("tag=%c\n", (*ptr_p).tag); /* access the struct member
through dereference operator */

 The “->” operator will be largely used in the class and object

operations in C++

2/26/2014 Practical C/C++ programming II 21

struct Example - Point struct (1)

 1 /* struct_example.c */

 2 #include <stdio.h>

 3

 4 typedef double real;

 5 /* typedef float real; easy switch between single and double precisions */

 6

 7 typedef struct Point {

 8 int index;

 9 char tag;

 10 real x;

 11 real y;

 12 } Point;

 13

 14 void print_point(struct Point point);

 15

 16 int main() {

 17 /* define two struct Point variables */

 18 /* struct Point p1, p2; */

 19 Point p1, p2, p3;

 20 /* assign values to struct members of p1 */

 21 p1.index=0;

 22 p1.tag = 'a';

 23 p1.x = 0.0;

 24 p1.y = 0.0;

2/26/2014 Practical C/C++ programming II 22

struct Example - Point struct (2)

 25 /* assign values to struct members of p2 */

 26 p2.index=1, p2.tag = 'b', p2.x = 1.0, p2.y = 1.0;

 27 p3 = p1; /* assign struct var p1 to var p3 */

 28 /* output p1 and p2 */

 29 print_point(p1);

 30 print_point(p2);

 31 print_point(p3);

 32 }

 33

 34 void print_point(struct Point point)

 35 {

 36 printf("\npoint %c:\n", point.tag);

 37 printf("\tindex : %d\n", point.index);

 38 printf("\tx = %7.2lf\n", point.x);

 39 printf("\ty = %7.2lf\n", point.y);

 40 printf("\n");

 41 }

2/26/2014 Practical C/C++ programming II 23

From C to C++

 C++ can be considered as a superset of C

 Some minor C++ features over C

– You can use “//” to type a comments

– To use standard C libraries: using namespace std;

– Input from the keyboard and output to the screen can be performed

through cout << (insertion operator) and cin >> (extraction operator)

– Variables can be declared anywhere inside the code (e.g. C++ allows

you to declare a variable to be local to a loop)

– Can use reference for a variable instead of pointer

– Memory manipulation: new and delete

 Major difference: C is function-driven while C++ is object-driven.

C is procedure oriented while C++ is object oriented.

 Will touch these features in the next section.

 To compile a C++ program, change the compiler name to g++ using

the GNU compiler:

$ g++ cpp_features.cpp

 2/26/2014 Practical C/C++ programming II 24

Minor C++ features over C

#include <iostream>

// use standard libraries

using namespace std;

// we are using C++ style comments

int main() {

 int n = 2*3; // Simple declaration of n

 int *a = new int[n]; //use "new" to manage storage

 // C++ style output

 cout << "Hello world with C++" << endl;

 for (int i = 0; i < n ; i++) { // Local declaration of i

 a[i]=i;

 // we are using C++ cout for output

 cout << "a[" << i << "] = " << a[i] << endl;

 }

 delete[] a; // free the memory space we used

 return 0;

}

2/26/2014 Practical C/C++ programming II 25

References in C++

 C++ references allow you to create an alias for the variable which

allows you to treat the reference exactly as though it were the

original variable.

 Declaring a variable as a reference by appending an ampersand

“&” to the type name, reference must be initialized at declaration:

int& rx = x;// declare a reference for x

 Example using C++ reference as function parameters (see ref.cpp):
int main() {

 int x,y=4;

 int& rx = x;// declare a reference for x

 rx = 3;// rx is now a reference to x so this sets x to 33

 cout << "before: x=" << x << " y=" << y << endl;

 swap(x,y);

 cout << "after: x=" << x << " y=" << y << endl;

}

void swap (int& a, int& b) {// using reference instead of pointers

 int t;

 t=a,a=b,b=t;

}

2/26/2014 Practical C/C++ programming II 26

Major migration – Class and Object in C++

 Definition of class

– A class is a user-defined type. It is an expanded concept of user-

defined type struct.

 Definition of object

– An object is an instance of a class.

 In terms of variables, a class would be the variable type, and an

object would be the variable.

 In C++, Classes are defined using either keyword class or keyword

struct, with the following syntax:

// syntax for defining a class

class class_name {

 access_specifier_1: // private, public or protected

 member1; // list of class members

 access_specifier_2:

 member2;

 ...

} [object_names]; // object_names is an optional list of this class

2/26/2014 Practical C/C++ programming II 27

More on C++ class definition

 class_name is a valid identifier for the class

 object_names is an optional list of names for objects of this class.

 The body of the declaration can contain members, which can either

be data or function declarations, and optionally access specifiers.

 An access specifier is one of the following three keywords:

private: // accessible only from within class or their "friends"

public: // The members declared as public are accessible from
outside the class through an object of the class

protected: // accessible from outside the class BUT only in a class
derived (derived class) from it.

 By default, all members of a class is private unless access

specifier is used.

 The definition is very similar to plain data struct except that they can

also include functions (methods) with access specifier.

2/26/2014 Practical C/C++ programming II 28

Class example: Point class

 Below is an example rewrite the Point struct to class:
class Point { //define a class Point

private: //list of private members

 int index; // index of the point

 char tag; // name of the point

 real x; // x coordinate, real: typedef double real;

 real y; // y coordinate

public:

 // use this function to set the private members

 void set_values(int,char,real,real);

 // use this function to output the private members

 void print_values();

};

// define the "set_values" method

void Point::set_values(int idx,char tg,real xc,real yc) {

 index=idx, tag=tg, x=xc, y=yc;

}

// define the "print_values" method

void Point::print_values() {

 cout << "point " << tag << ": index = " << index

 << ", x = " << x << ", y = " << y << endl;

}

2/26/2014 Practical C/C++ programming II 29

Some explanation of the Point class

 private members of Point: index, tag, x, y cannot be

accessed from outside the Point class:

– they have private access

– they can only be accessed from within other members of that same

class.

 public members of Point can be accessed as normal functions via

the dot operator “.” between object name and member name.

 The implementation of the member functions can be either inside or

outside the class definition. In the previous slide, the member

function is defined outside the class definition.

 The scope operator “::”, for the function definition is used to

specify that the function being defined is a member of the class

Point and not a regular (non-member) function:

// define the "set_values" method using scope operator "::"

void Point::set_values(int idx,char tg,real xc,real yc) {

 index=idx, tag=tg, x=xc, y=yc; // overuse of comma operator :-)

}

2/26/2014 Practical C/C++ programming II 30

Use class to define objects

 To declare objects of a class, use exactly the same type of

declaration as declaring variables of basic types.

 Following statements declare two objects of class Point, just the

same as we define basic type variables:

Point p1, p2; // define two object of Point

 Then the objects p1 and p2 access their member functions:

p1.set_values(0,'a',0,0); // object p1 use set_values method

p2.set_values(1,'b',1,1); // object p2 use set_values method

p1.print_values(); // object p1 use print_values method

p2.print_values(); // object p2 use print_values method

 We cannot directly access the private members of p1 and p2:

double x1= p1.x; // compilation error!

 So far, we have got very basic idea about C++ classes and objects.

2/26/2014 Practical C/C++ programming II 31

Constructor (1)

 In C++ class, a special function, which is automatically called

whenever a new object of this class is created, allowing the object to

initialize member variables or allocate storage is called constructor.

 Constructor function is declared just like a regular member function

with the class name, but without any return type (**not even void**).

 Modify the Point class to use constructor, add the following lines in

the class declaration:

class Point { //define a class Point

private:

 //list of private members ...

public:

 // define a constructor to initialize members

 Point();

 // list of other member functions

};

2/26/2014 Practical C/C++ programming II 32

Constructor (2)

 Definition of the Point class constructor:

// define a constructor to initialize members

// Note that no return type is used

Point::Point() {

 index=0, tag=0, x=0, y=0; //initialize the private members

}

 After defining the constructor, when we define an object variable of

Point, its private members are initialized using the constructor.

Point p3; // what is index, tag, x, y of p3 at this point?

 How do we initialize private members using different values at time

of definition?

// declare another constructor with parameters

Point(int,char,real,real);

// define another constructor with parameters

Point::Point(int idx,char tg,real xc,real yc) {

 index=idx, tag=tg, x=xc, y=yc; //initialize with parameters

}

2/26/2014 Practical C/C++ programming II 33

Overloaded constructors

 We have seen the Point class can have two constructors:

Point();

Point(int,char,real,real);

 One class can have two functions with the same name, and the

objects of Point can be initialized in either of the two ways.

Point p1, p2; // calling the Point() default constructor

Point p3(0,'c',0,1); // calling the Point(...) constructor

 The compiler will analyze the types of arguments and matching

them to the types of parameters of different function definitions.

 The above example also introduces a special kind constructor: the

default constructor.

– The default constructor is the constructor that takes no parameters.

– The default constructor is called when an object is declared but is not

initialized with any arguments.

2/26/2014 Practical C/C++ programming II 34

Destructor

 Destructors are usually used to de-allocate memory and do other

cleanup for a class object and its class members when the object is

destroyed. Destructor is considered the inverse of constructor

function.

 A destructor will have the same name as the class prefixed with a

tilde (~) and it can neither return a value nor can it take any

parameters.

 There is only **one** destructor per class in C++.

 A destructor is called for a class object when that object passes out

of scope or is explicitly deleted. An example of destructor definition

in Point class:

// declare a destructor in class declaration

~Point();

// define the destructor

Point::~Point() {

 cout << "Destructor called." << endl;

}

2/26/2014 Practical C/C++ programming II 35

new and delete in C++

 In C++, the dynamic memory functions are: new and delete

 The major difference between malloc and free: new and delete
will call the constructor and destructor.

 Using the following constructor and destructor in the Point class:
// define another constructor with parameters

Point::Point() {

 cout << "Constructor called." << endl;

}

Point::~Point() {// define the destructor

 cout << "Destructor called." << endl;

}

 What will be the output in the main() function call?

(point_class_new_delete.cpp)
void main(void) {

 Point *ptr_p = new Point[2];

 delete[] ptr_p;

 ptr_p =(Point*)malloc(2*sizeof(Point));

 free(ptr_p);

}

2/26/2014 Practical C/C++ programming II 36

Overloading functions

 In C++, two different functions can have the same name either:

– because they have a different number of parameters,

– because any of their parameters are of a different type.

 See we overload the set_values function for the Point class

// define the "set_values" method using 4 values

void Point::set_values(int idx,char tg,real xc,real yc) {

 index=idx, tag=tg, x=xc, y=yc;

}

// define the "set_values" method using another object

void Point::set_values(Point p) {

 index=p.index, tag=p.tag, x=p.x, y=p.y;

}

 Overloading is simply defined as the ability of one function to

perform different tasks.

 In C++, operators (e.g. +, -, *, /, <<, etc.) can also be

overloaded. See training folder for examples (Not covered in this

training).

2/26/2014 Practical C/C++ programming II 37

Pointer to class

 Use the same way as pointer to a struct and to access members of

a pointer to a class with the member access operator “->”

 As with all pointers, pointers must be initialized before using:

 Point p1, p2; // calling the Point() constructor

 Point *ptr_p; //define pointer to class

 ptr_p = &p2; // point prt_p to p2 object

 p1.set_values(0,'a',0,0); // object p1 use set_values method

 p2.set_values(1,'b',1,1); // object p2 use set_values method

 //access the member funtion using pointer ptr_p

 ptr_p->set_values(2,'d',1,0);

 ptr_p->print_values();

 p2.print_values();

 What will be the output? (hint: we used the address of p2)

2/26/2014 Practical C/C++ programming II 38

Derived Class - Inheritance

 Inheritance is one of the most important concepts in object-oriented

programming.

 In C++ new class can inherit the members of an existing class. The

existing class is called the base class, and the new class is called

the derived class.

 A derived class can be derived from multiple base classes.

// syntax for declaring a derived class

class derived_class: access_specifier base_class_list

– Access_specifier: public, protected, private

– base-class is the name list of previously defined classes

– If the access-specifier is not used, it is private by default.

 An example of derived class Particle based on Pointe:

class Particle: public Point {

};

 In order for class Particle to access the members in Point: index,

tag, x, y, the access specifier needs to be changed to protected

2/26/2014 Practical C/C++ programming II 39

Access Control and Inheritance

 Base class members in derived class:

– public Inheritance: public members of the base class become public

members of the derived class and protected members of the base class

become protected members of the derived class. A base class's private

members are not accessible.

– protected Inheritance: public and protected members of the base class

become protected.

– private Inheritance: public and protected members of the base class

become private.

– Protected or private inheritance is rarely used. Most inheritance is

public.

2/26/2014 Practical C/C++ programming II 40

Access public protected private

Within Same class yes yes yes

Derived classes yes yes no

Outside classes yes no no

Implementation of Particle class

 In this example, we attempt to create a Particle class based on

Point, we will add another attribute: mass of the particle.
// declare a derived class Particle based on Point

class Particle: public Point {

 protected:

 real mass;

 public:

 Particle(){ mass=0.0; };

 void set_mass(real);

 real get_mass();

};

// define the set_mass method

void Particle::set_mass(real m){

 mass = m;

}

// define the get_mass method

real Particle::get_mass(){

 return mass;

}

2/26/2014 Practical C/C++ programming II 41

Point

index;

tag;

x;

y;

Particle

mass;

Example using the derived class

 Define an object of Particle class and access its methods:

int main(void) {

 Particle p; // which constructor is called?

 // calls the base class method (function)

 p.set_values(1,'a',0.5,1.0);

 p.print_values();

 // calls the derived class method (function)

 p.set_mass(1.3);

 // read how to control the format using cout

 // http://www.cplusplus.com/reference/ios/ios_base/precision/

 cout << "mass of p = " << fixed << setprecision(3)

 << p.get_mass() << endl;

 return 0;

}

 The output of the above code on a terminal:

$./a.out

point a: index = 1, x = 0.5, y = 1

mass of p = 1.300

 2/26/2014 Practical C/C++ programming II 42

Template and Generic Programming

 Template is a feature of the C++ that allow functions and classes to

operate with generic types. There are two kinds of templates:

function template and class template

 Declare a function template:

// Both expressions have exactly the same meaning behavior.

template <class identifier> function_declaration;

template <typename identifier> function_declaration;

 Example of defining a template function:

// T is a generic "Type"

template<typename T>

T add(T a, T b) {

 return a+b;

}

 C++ provides unique abilities for Generic Programming through

templates.

 Generic Programming achieved its first major success in C++ with

the Standard Template Library

2/26/2014 Practical C/C++ programming II 43

Introduction to STL

(Standard Template Library)
 The Standard Template Library, or STL, is a C++ library of

container classes, algorithms, and iterators.

 It provides many of the basic algorithms and data structures of

computer science.

 STL is a generic library, meaning that its components are heavily

parameterized: almost every component in the STL is a template.

 The STL can be categorized into two parts:

– The Standard Function Library: consists of general-purpose, template

based generic functions.

– The Object Oriented Class Library: a collection of class templates and

associated functions.

 STL is now part of the ANSI/ISO C++ Standard.

 We will touch std::vector and std::list in the training.

 Fortunately, we can use STL without knowing much about how to

write them.

2/26/2014 Practical C/C++ programming II 44

std::vector and std::list

 A std::vector is a collection of objects, all of which have the same

type.

 Similar to arrays, vectors use contiguous storage locations for their

elements, e.g. elements can also be accessed using offsets on

regular pointers to its elements efficiently.

 Unlike arrays, vector can change size dynamically, with their storage

being handled automatically by the container.

 Use of std::vector:

// include the appropriate header with "using" declaration

#include<vector>

using std::vector;

// define the std::vector objects (variables)

vector<int> index_vec; // index_vec holds objects of type int

vector<double> value_vec; // value_vec holds objects of type double

vector<Point> point_vec; // point_vec holds objects of class Point

2/26/2014 Practical C/C++ programming II 45

An example using std::vector

 Below is an example using std::vector to: (1) find a value in an array (2) sort

the array
#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;

// using STL to: (1) find a value in an array (2) sort the array

int main() {

 int arr[]={2,3,1,5,4,6,8,7,9,0};

 int *p = find(arr,arr+10,5); // find number "5" using std::find

 p++;

 cout << "The number after 5 is " << *p << endl;

 vector<int> vec (arr,arr+10); // assign the array values to std::vector

 // now sort the array

 sort(vec.begin(),vec.end());

 for(int i=0; i<vec.size(); i++)

 cout << vec[i]<< " ";

 cout << endl;

 return 0;

}

2/26/2014 Practical C/C++ programming II 46

Other important C++ concepts

 C++ Polymorphism

– A call to a member function will cause a different function to be

executed depending on the type of object that invokes the function

(static polymorphism, dynamic polymorphism)

 C++ Encapsulation

– Mechanism of exposing only the interfaces and hiding the

implementation details from the user. (data hiding)

 C++ Abstraction, etc.

 Refer to C++ text books for further details, e.g.:

 C++ Primer (Stanley B. Lippman, Josée Lajoie, Barbara E. Moo)

 Thinking in C++ (Chuck Allison and Bruce Eckel)

 The C++ Programming Language (Bjarne Stroustrup)

2/26/2014 Practical C/C++ programming II 47

Selected C++ Libraries

 Use existing libraries for your work instead of starting from scratch!

 Generic:

– Boost

 3D Graphics:

– Ogre3D

– OpenGL

 Math:

– BLAS and LAPACK

– UMFPACK

– Eigen

 Computational geometry

– CGAL

 Finite Element Method, Finite Volume Method

– deal.II

– OpenFOAM, Overture

2/26/2014 Practical C/C++ programming II 48

Exercise 2

 Calculate the result of a constant times a vector plus a vector:

where a is a constant, and are one dimensional vectors.

1. Complete the code for the vector addition;

2. Change x and y to dynamic arrays

2/26/2014 Practical C/C++ programming II 49

y ax y

x y

Exercise 3

 Complete the C code for matrix multiplication

 where:

Also complete the following functions for 2d dynamic array:

 allocate_dynamic_2d_array

 free_dynamic_2d_array

2/26/2014 Practical C/C++ programming II 50

A B C

, , ,i j i k k j

k

c a b

,i ja i j

,i jb i j

