
Practical C/C++ programming

Part II

Feng Chen

IT Analyst 3

Louisiana State University

2/26/2014 Practical C/C++ programming II 1

Quick review of Part I

 Introduction to C and C++ language

 Basic syntax and grammar

 Data types, constants and variables:

– Basic types (integer, float, void)

– Derived types (arrays)

 Operators

– Arithmetic

– Logical

– Relational

– Misc (sizeof, “,”, ternary, etc)

 Control Flow

 Functions

 Input/Output control

2/26/2014 Practical C/C++ programming II 2

Things to be covered today

 Pointers in C/C++

– Use in functions

– Use in arrays

– Use in dynamic allocation

 User defined type

– struct

 Introduction to C++

– Changes from C to C++

– C++ class and objects

 Introduction to common C++ libraries

2/26/2014 Practical C/C++ programming II 3

Pointers

2/26/2014 Practical C/C++ programming II 4

 Pointers are a very important part of the C programming language.

They are used in many ways, such as:

– Array operations (e.g., while parsing strings)

– Dynamic memory allocation

– Sending function arguments by reference

– Generic access to several similar variables

– Malloc data structures of all kinds, especially trees and linked lists

– Efficient, by-reference “copies” of arrays and structures, especially as

function parameters

 Necessary to understand memory and address...and the C

programming language.

What is a pointer?

 A pointer is essentially a variable whose value is the address of

another variable.

 Since it is a variable, it must be declared before use.

 Pointer “points” to a specific part of the memory.

 How to define pointers?
/* type: pointer's base type
 var-name: name of the pointer variable.
 asterisk *:designate a variable as a pointer */
type *pointer_var_name;

 Examples
int *i_ptr; /* pointer to an integer */

double *d_ptr; /* pointer to a double */

float *f_ptr; /* pointer to a float */

char *ch_ptr; /* pointer to a character */

int **p_ptr; /* pointer to an integer pointer */

2/26/2014 Practical C/C++ programming II 5

Pointer rules

 There are two prefix unary operators to work with pointers.

& /* "address of" operator */

* /* "dereferencing" operator */

 Use ampersand “&” in front of a variable to access it's address, this

can be stored in a pointer variable.

 Use asterisk “*” in front of a pointer you will access the value at the

memory address pointed to (dereference the pointer).

 Examples:

int a = 6;

int *p;

/* point p to a */

p = &a;

/* dereference pointer p */

*p = 10;

2/26/2014 Practical C/C++ programming II 6

Part of symbol table:

var_name var_address var_value

a 0x22aac4 6

p 0x22aac0 0x22aac4

Pointer to variables and dereference pointer

/* pointer_rules.c */

#include <stdio.h>

int main() {

 int a = 6, b = 10;

 int *p;

 printf("\nInitial values:\n\tthe value of a is %d, value of b is %d\n", a, b);

 printf("the address of a is : %p, address of b is : %p\n", &a, &b);

 p = &a; /* point p to a */

 printf("\nafter \"p = &a\":\n");

 printf("\tthe value of p is %p, value at that address is %d\n", p, *p);

 p = &b; /* point p to b */

 printf("\nafter \"p = &b\":\n");

 printf("\tthe value of p is %p, value at that address is %d\n", p, *p);

 /* dereference pointer p */

 *p = 6, p = &a, *p = 10;

 printf("\nafter dereferencing the pointer:\n");

 printf("\tthe value of a is %d, value of b is %d\n", a, b);

 return 0;

}

2/26/2014 Practical C/C++ programming II 7

Never dereference an uninitialized pointer!

 In order to dereference the pointer, pointer must have a valid value

(address).

 What is the problem for the following code?

int *ptr;

*ptr=3;

 Again, you will have **undefined behavior** at runtime, you are

operating on unknown memory space.

 Typically error: “Segmentation fault”, possible illegal memory

operation

 Always initialize your variables before use!

2/26/2014 Practical C/C++ programming II 8

var_name var_address var_value

ptr 0x22aac0 0xXXXX

0xXXXX 3

NULL pointer

 Memory address 0 has special significance, if a pointer contains the

null (zero) value, it is assumed to point to nothing, defined as NULL

in C.

 Set the pointer to NULL if you do not have exact address to assign

to your pointer.

 A pointer that is assigned NULL is called a null pointer.

/* set the pointer to NULL 0 */

 int *ptr = NULL;

 Before using a pointer, ensure that it is not equal to NULL:

if (ptr != NULL) {

 /* make use of pointer1 */

 /* ... */

}

2/26/2014 Practical C/C++ programming II 9

Pointers and Functions (1)

 As we have learned from Part I, In C, arguments are passed by

value to functions: changes of the parameters in functions do **not**

change the parameters in the calling functions.

 Take a look at the below example, what are the values of a and b after we
called swap(a, b);

/* this is the main calling function */

int main() {

 int a = 2;

 int b = 3;

 printf("Before: a = %d and b = %d\n", a, b);

 swap(a, b);

 printf("After: a = %d and b = %d\n", a, b);

}

/* this is function, pass by value */

void swap(int p1, int p2) {

 int t;

 t = p2, p2 = p1, p1 = t;

 printf("Swap: a (p1) = %d and b(p2) = %d\n", p1, p2);

}

 2/26/2014 Practical C/C++ programming II 10

Pointers and Functions (2)

 The values of a and b do not change after calling swap(a,b)

 Pass by value means the called functions' parameter will be a

copy of the callers' passed argument. The value of the caller and

called functions will be the same, but the identity (the variable) is

different - caller and called function each has its own copy of

parameters

 Solution at this point? Using pointers

/* pass by pointer */

void swap_by_reference(int *p1, int *p2) {

 int t;

 t = *p2, *p2 = *p1, *p1 = t;

 printf("Swap: a (p1) = %d and b(p2) = %d\n", *p1, *p2);

}

 /* call by-address function */

 swap_by_reference(&a, &b);

2/26/2014 Practical C/C++ programming II 11

Pointers and Arrays (1)

 The most frequent use of pointers in C is for walking efficiently along

arrays.

 Remember, array name is the first element address of the array (it

is a constant)

int *p=NULL; /* define an integer pointer p*/

/* array name represents the address of the 0th element of the array */

int a[5]={1,2,3,4,5};

/* for 1d array, below 2 statements are equivalent */

p = &a[0]; /* point p to the 1st array element (a[0])'s address */

p = a; /* point p to the 1st array element (a[0])'s address */

(p+1); / access a[1] value */

(p+i); / access a[i] value */

p = a+2; /* p is now pointing at a[2] */

p++; /* p is now at a[3] */

p--; /* p is now back at a[2] */

2/26/2014 Practical C/C++ programming II 12

&a[0]

a 1 2 3 4 5

p

Pointers and Arrays (2)

 Recall 2D array structure: combination of 1D arrays

int a[2][2]={{1,2},{3,4}};

 The 2D array contains 2 1D arrays: array a[0] and array a[1]

 a[0] is the address of a[0][0], i.e:

– a[0]&a[0][0]

– a[1]&a[1][0]

 Array a is then actually an address array composed of a[0], a[1],

i.e. a&a[0]

2/26/2014 Practical C/C++ programming II 13

col 0 col 1

row 0 a[0][0]=1 a[0][1]=2

row 1 a[1][0]=3 a[1][1]=4

array a[0]: a[0][0]=1 a[0][1]=2

array a[1]: a[1][0]=3 a[1][1]=4

array a: a&a[0]

array a[0]: a[0]&a[0][0]

array a[1]: a[1]&a[1][0]

Walk through array with pointer

#include <stdio.h>

const int MAX = 3;

int main () {

 int a_i[] = {10, 20, 30};

 double a_f[] = {0.5, 1.5, 2.5};

 int i;

 int *i_ptr;

 double *f_ptr;

 /* let us have array address in pointer */

 i_ptr = a_i;

 f_ptr = a_f;

 /* use the ++ operator to move to next location */

 for (i=0; i<MAX; i++,i_ptr++,f_ptr++) {

 printf("adr a_i[%d] = %8p\t", i, i_ptr);

 printf("adr a_f[%d] = %8p\n", i, f_ptr);

 printf("val a_i[%d] = %8d\t", i, *i_ptr);

 printf("val a_f[%d] = %8.2f\n", i, *f_ptr);

 }

 return 0;

}

2/26/2014 Practical C/C++ programming II 14

Dynamic memory allocation using pointers

 For situations that the size of an array is unknown, we must use

pointers to dynamically manage storage space.

 C provides several functions for memory allocation and

management.

 Include <stdlib.h> header file to use these functions.

 Function prototype:

/* This function allocates a block of num bytes of memory and return
a pointer to the beginning of the block. */

void *malloc(int num);

/* This function release a block of memory block specified by
address. */

void free(void *address);

2/26/2014 Practical C/C++ programming II 15

Example of 1D dynamic array
/* dynamic_1d_array.c */

#include <stdio.h>

#include <stdlib.h>

int main(void) {

 int n;

 int* i_array; /* define the integer pointer */

 int j;

 /* find out how many integers are required */

 printf("Input the number of elements in the array:\n");

 scanf("%d",&n);

 /* allocate memory space for the array */

 i_array = (int*)malloc(n*sizeof(int));

 /* output the array */

 for (j=0;j<n;j++) {

 i_array[j]=j; /* use the pointer to walk along the array */

 printf("%d ",i_array[j]);

 }

 printf("\n");

 free((void*)i_array); /* free memory after use*/

 return 0;

}

2/26/2014 Practical C/C++ programming II 16

How to make dynamic 2D array?

 Use dynamic 2D array in Exercise 3 (refer to /*dynamic_2d_array.c*/)

– Hint:
/* First malloc a 1D array of pointer to pointers, then for each address,
malloc a 1D array for value storage: */

int** array;

array=(int**)malloc(nrows*sizeof(int*));

for (i=0; i<nrows; i++)

 array[i]=(int*)malloc(ncols*sizeof(int));

/* DO NOT forget to free your memory space */

for (i=0; i<nrows; i++)

 free((void*)array[i]);

free((void*)array);

– Question:

• What is the difference between the dynamic 2D array generated using the

above method and the static 2D one defined using the method in Part 1 slide

(page 45)? (Hint: check whether the memory for the dynamic 2D array is

contiguous by print the address of the pointer array)

• Any solutions to the above method? (This method will be important when

being used in MPI (Message Passing Interface) function calls)

2/26/2014 Practical C/C++ programming II 17

array:

Structures

 User-defined type in C: struct, union and enum

 A C struct is an aggregate of elements of (nearly) arbitrary types.

 Structures are the basic foundation for objects and classes in C++.

 Structures are used for:

– Passing multiple arguments in and out of functions through a single

parameter

– Data structures such as linked lists, binary trees, graph, and more

 Syntax for defining structure:

/* syntax for defining structure */

struct [structure tag] /* tag is optional */

{

 member definition;

 member definition;

 ...

 member definition;

} [one or more structure variables];

2/26/2014 Practical C/C++ programming II 18

How to use struct

 Example of defining a “Point” struct

/* define a structure “Point” */

struct Point {

 int index;

 char tag;

 double x;

 double y;

};

 Define the struct Point type variables:

/* define two struct Point variables */

struct Point p1, p2, p3;

 Here is how we access the struct Point type variables, using the “.”:

p1.index=0; /* access members of p1 with dot “.” operator */

p1.tag = 'a';

p1.x = 0.0;

p1.y = 0.0;

p3 = p1; /* assign struct variable p1 to variable p3 */

2/26/2014 Practical C/C++ programming II 19

Using typedef to define new variables

 C provides a keyword called typedef to name a new variable type

(note that typedef does not create new types).

typedef existing_type new_type_name;

 Use typedef with struct in the previous example:

typedef struct Point point;

typedef struct Point {/* alternative way to define Point*/

 int index;

 char tag;

 double x;

 double y;

} Point;

 typedef can also used to give alias to existing variable types:

typedef double real; /* typedef float real; easy switch between
precisions*/

 Use the newly defined type to define your variables, e.g.:
real x; /* x is actually double defined above */

Point p1, p2, p3; /* p1, p2 and p3 are struct Point */

 2/26/2014 Practical C/C++ programming II 20

Pointer to struct

 Define pointers to structures in the same way as pointer to any other

basic variables:

Point *ptr_p; /* define a pointer to Point */

 Use the pointer to point to the actual struct variable by: store the

address of a structure variable in the above defined pointer variable

with the address “&” operator:

ptr_p = &p3; /* point prt_p to struct p3 */

 To access struct members with pointer, use the “->” operator

printf("tag=%c\n", ptr_p->tag); /* access the struct member through
pointer */

 Alternatively, use the dereference operator “*” and the “.” operator

printf("tag=%c\n", (*ptr_p).tag); /* access the struct member
through dereference operator */

 The “->” operator will be largely used in the class and object

operations in C++

2/26/2014 Practical C/C++ programming II 21

struct Example - Point struct (1)

 1 /* struct_example.c */

 2 #include <stdio.h>

 3

 4 typedef double real;

 5 /* typedef float real; easy switch between single and double precisions */

 6

 7 typedef struct Point {

 8 int index;

 9 char tag;

 10 real x;

 11 real y;

 12 } Point;

 13

 14 void print_point(struct Point point);

 15

 16 int main() {

 17 /* define two struct Point variables */

 18 /* struct Point p1, p2; */

 19 Point p1, p2, p3;

 20 /* assign values to struct members of p1 */

 21 p1.index=0;

 22 p1.tag = 'a';

 23 p1.x = 0.0;

 24 p1.y = 0.0;

2/26/2014 Practical C/C++ programming II 22

struct Example - Point struct (2)

 25 /* assign values to struct members of p2 */

 26 p2.index=1, p2.tag = 'b', p2.x = 1.0, p2.y = 1.0;

 27 p3 = p1; /* assign struct var p1 to var p3 */

 28 /* output p1 and p2 */

 29 print_point(p1);

 30 print_point(p2);

 31 print_point(p3);

 32 }

 33

 34 void print_point(struct Point point)

 35 {

 36 printf("\npoint %c:\n", point.tag);

 37 printf("\tindex : %d\n", point.index);

 38 printf("\tx = %7.2lf\n", point.x);

 39 printf("\ty = %7.2lf\n", point.y);

 40 printf("\n");

 41 }

2/26/2014 Practical C/C++ programming II 23

From C to C++

 C++ can be considered as a superset of C

 Some minor C++ features over C

– You can use “//” to type a comments

– To use standard C libraries: using namespace std;

– Input from the keyboard and output to the screen can be performed

through cout << (insertion operator) and cin >> (extraction operator)

– Variables can be declared anywhere inside the code (e.g. C++ allows

you to declare a variable to be local to a loop)

– Can use reference for a variable instead of pointer

– Memory manipulation: new and delete

 Major difference: C is function-driven while C++ is object-driven. 

C is procedure oriented while C++ is object oriented.

 Will touch these features in the next section.

 To compile a C++ program, change the compiler name to g++ using

the GNU compiler:

$ g++ cpp_features.cpp

 2/26/2014 Practical C/C++ programming II 24

Minor C++ features over C

#include <iostream>

// use standard libraries

using namespace std;

// we are using C++ style comments

int main() {

 int n = 2*3; // Simple declaration of n

 int *a = new int[n]; //use "new" to manage storage

 // C++ style output

 cout << "Hello world with C++" << endl;

 for (int i = 0; i < n ; i++) { // Local declaration of i

 a[i]=i;

 // we are using C++ cout for output

 cout << "a[" << i << "] = " << a[i] << endl;

 }

 delete[] a; // free the memory space we used

 return 0;

}

2/26/2014 Practical C/C++ programming II 25

References in C++

 C++ references allow you to create an alias for the variable which

allows you to treat the reference exactly as though it were the

original variable.

 Declaring a variable as a reference by appending an ampersand

“&” to the type name, reference must be initialized at declaration:

int& rx = x;// declare a reference for x

 Example using C++ reference as function parameters (see ref.cpp):
int main() {

 int x,y=4;

 int& rx = x;// declare a reference for x

 rx = 3;// rx is now a reference to x so this sets x to 33

 cout << "before: x=" << x << " y=" << y << endl;

 swap(x,y);

 cout << "after: x=" << x << " y=" << y << endl;

}

void swap (int& a, int& b) {// using reference instead of pointers

 int t;

 t=a,a=b,b=t;

}

2/26/2014 Practical C/C++ programming II 26

Major migration – Class and Object in C++

 Definition of class

– A class is a user-defined type. It is an expanded concept of user-

defined type struct.

 Definition of object

– An object is an instance of a class.

 In terms of variables, a class would be the variable type, and an

object would be the variable.

 In C++, Classes are defined using either keyword class or keyword

struct, with the following syntax:

// syntax for defining a class

class class_name {

 access_specifier_1: // private, public or protected

 member1; // list of class members

 access_specifier_2:

 member2;

 ...

} [object_names]; // object_names is an optional list of this class

2/26/2014 Practical C/C++ programming II 27

More on C++ class definition

 class_name is a valid identifier for the class

 object_names is an optional list of names for objects of this class.

 The body of the declaration can contain members, which can either

be data or function declarations, and optionally access specifiers.

 An access specifier is one of the following three keywords:

private: // accessible only from within class or their "friends"

public: // The members declared as public are accessible from
outside the class through an object of the class

protected: // accessible from outside the class BUT only in a class
derived (derived class) from it.

 By default, all members of a class is private unless access

specifier is used.

 The definition is very similar to plain data struct except that they can

also include functions (methods) with access specifier.

2/26/2014 Practical C/C++ programming II 28

Class example: Point class

 Below is an example rewrite the Point struct to class:
class Point { //define a class Point

private: //list of private members

 int index; // index of the point

 char tag; // name of the point

 real x; // x coordinate, real: typedef double real;

 real y; // y coordinate

public:

 // use this function to set the private members

 void set_values(int,char,real,real);

 // use this function to output the private members

 void print_values();

};

// define the "set_values" method

void Point::set_values(int idx,char tg,real xc,real yc) {

 index=idx, tag=tg, x=xc, y=yc;

}

// define the "print_values" method

void Point::print_values() {

 cout << "point " << tag << ": index = " << index

 << ", x = " << x << ", y = " << y << endl;

}

2/26/2014 Practical C/C++ programming II 29

Some explanation of the Point class

 private members of Point: index, tag, x, y cannot be

accessed from outside the Point class:

– they have private access

– they can only be accessed from within other members of that same

class.

 public members of Point can be accessed as normal functions via

the dot operator “.” between object name and member name.

 The implementation of the member functions can be either inside or

outside the class definition. In the previous slide, the member

function is defined outside the class definition.

 The scope operator “::”, for the function definition is used to

specify that the function being defined is a member of the class

Point and not a regular (non-member) function:

// define the "set_values" method using scope operator "::"

void Point::set_values(int idx,char tg,real xc,real yc) {

 index=idx, tag=tg, x=xc, y=yc; // overuse of comma operator :-)

}

2/26/2014 Practical C/C++ programming II 30

Use class to define objects

 To declare objects of a class, use exactly the same type of

declaration as declaring variables of basic types.

 Following statements declare two objects of class Point, just the

same as we define basic type variables:

Point p1, p2; // define two object of Point

 Then the objects p1 and p2 access their member functions:

p1.set_values(0,'a',0,0); // object p1 use set_values method

p2.set_values(1,'b',1,1); // object p2 use set_values method

p1.print_values(); // object p1 use print_values method

p2.print_values(); // object p2 use print_values method

 We cannot directly access the private members of p1 and p2:

double x1= p1.x; // compilation error!

 So far, we have got very basic idea about C++ classes and objects.

2/26/2014 Practical C/C++ programming II 31

Constructor (1)

 In C++ class, a special function, which is automatically called

whenever a new object of this class is created, allowing the object to

initialize member variables or allocate storage is called constructor.

 Constructor function is declared just like a regular member function

with the class name, but without any return type (**not even void**).

 Modify the Point class to use constructor, add the following lines in

the class declaration:

class Point { //define a class Point

private:

 //list of private members ...

public:

 // define a constructor to initialize members

 Point();

 // list of other member functions

};

2/26/2014 Practical C/C++ programming II 32

Constructor (2)

 Definition of the Point class constructor:

// define a constructor to initialize members

// Note that no return type is used

Point::Point() {

 index=0, tag=0, x=0, y=0; //initialize the private members

}

 After defining the constructor, when we define an object variable of

Point, its private members are initialized using the constructor.

Point p3; // what is index, tag, x, y of p3 at this point?

 How do we initialize private members using different values at time

of definition?

// declare another constructor with parameters

Point(int,char,real,real);

// define another constructor with parameters

Point::Point(int idx,char tg,real xc,real yc) {

 index=idx, tag=tg, x=xc, y=yc; //initialize with parameters

}

2/26/2014 Practical C/C++ programming II 33

Overloaded constructors

 We have seen the Point class can have two constructors:

Point();

Point(int,char,real,real);

 One class can have two functions with the same name, and the

objects of Point can be initialized in either of the two ways.

Point p1, p2; // calling the Point() default constructor

Point p3(0,'c',0,1); // calling the Point(...) constructor

 The compiler will analyze the types of arguments and matching

them to the types of parameters of different function definitions.

 The above example also introduces a special kind constructor: the

default constructor.

– The default constructor is the constructor that takes no parameters.

– The default constructor is called when an object is declared but is not

initialized with any arguments.

2/26/2014 Practical C/C++ programming II 34

Destructor

 Destructors are usually used to de-allocate memory and do other

cleanup for a class object and its class members when the object is

destroyed. Destructor is considered the inverse of constructor

function.

 A destructor will have the same name as the class prefixed with a

tilde (~) and it can neither return a value nor can it take any

parameters.

 There is only **one** destructor per class in C++.

 A destructor is called for a class object when that object passes out

of scope or is explicitly deleted. An example of destructor definition

in Point class:

// declare a destructor in class declaration

~Point();

// define the destructor

Point::~Point() {

 cout << "Destructor called." << endl;

}

2/26/2014 Practical C/C++ programming II 35

new and delete in C++

 In C++, the dynamic memory functions are: new and delete

 The major difference between malloc and free: new and delete
will call the constructor and destructor.

 Using the following constructor and destructor in the Point class:
// define another constructor with parameters

Point::Point() {

 cout << "Constructor called." << endl;

}

Point::~Point() {// define the destructor

 cout << "Destructor called." << endl;

}

 What will be the output in the main() function call?

(point_class_new_delete.cpp)
void main(void) {

 Point *ptr_p = new Point[2];

 delete[] ptr_p;

 ptr_p =(Point*)malloc(2*sizeof(Point));

 free(ptr_p);

}

2/26/2014 Practical C/C++ programming II 36

Overloading functions

 In C++, two different functions can have the same name either:

– because they have a different number of parameters,

– because any of their parameters are of a different type.

 See we overload the set_values function for the Point class

// define the "set_values" method using 4 values

void Point::set_values(int idx,char tg,real xc,real yc) {

 index=idx, tag=tg, x=xc, y=yc;

}

// define the "set_values" method using another object

void Point::set_values(Point p) {

 index=p.index, tag=p.tag, x=p.x, y=p.y;

}

 Overloading is simply defined as the ability of one function to

perform different tasks.

 In C++, operators (e.g. +, -, *, /, <<, etc.) can also be

overloaded. See training folder for examples (Not covered in this

training).

2/26/2014 Practical C/C++ programming II 37

Pointer to class

 Use the same way as pointer to a struct and to access members of

a pointer to a class with the member access operator “->”

 As with all pointers, pointers must be initialized before using:

 Point p1, p2; // calling the Point() constructor

 Point *ptr_p; //define pointer to class

 ptr_p = &p2; // point prt_p to p2 object

 p1.set_values(0,'a',0,0); // object p1 use set_values method

 p2.set_values(1,'b',1,1); // object p2 use set_values method

 //access the member funtion using pointer ptr_p

 ptr_p->set_values(2,'d',1,0);

 ptr_p->print_values();

 p2.print_values();

 What will be the output? (hint: we used the address of p2)

2/26/2014 Practical C/C++ programming II 38

Derived Class - Inheritance

 Inheritance is one of the most important concepts in object-oriented

programming.

 In C++ new class can inherit the members of an existing class. The

existing class is called the base class, and the new class is called

the derived class.

 A derived class can be derived from multiple base classes.

// syntax for declaring a derived class

class derived_class: access_specifier base_class_list

– Access_specifier: public, protected, private

– base-class is the name list of previously defined classes

– If the access-specifier is not used, it is private by default.

 An example of derived class Particle based on Pointe:

class Particle: public Point {

};

 In order for class Particle to access the members in Point: index,

tag, x, y, the access specifier needs to be changed to protected

2/26/2014 Practical C/C++ programming II 39

Access Control and Inheritance

 Base class members in derived class:

– public Inheritance: public members of the base class become public

members of the derived class and protected members of the base class

become protected members of the derived class. A base class's private

members are not accessible.

– protected Inheritance: public and protected members of the base class

become protected.

– private Inheritance: public and protected members of the base class

become private.

– Protected or private inheritance is rarely used. Most inheritance is

public.

2/26/2014 Practical C/C++ programming II 40

Access public protected private

Within Same class yes yes yes

Derived classes yes yes no

Outside classes yes no no

Implementation of Particle class

 In this example, we attempt to create a Particle class based on

Point, we will add another attribute: mass of the particle.
// declare a derived class Particle based on Point

class Particle: public Point {

 protected:

 real mass;

 public:

 Particle(){ mass=0.0; };

 void set_mass(real);

 real get_mass();

};

// define the set_mass method

void Particle::set_mass(real m){

 mass = m;

}

// define the get_mass method

real Particle::get_mass(){

 return mass;

}

2/26/2014 Practical C/C++ programming II 41

Point

index;

tag;

x;

y;

Particle

mass;

Example using the derived class

 Define an object of Particle class and access its methods:

int main(void) {

 Particle p; // which constructor is called?

 // calls the base class method (function)

 p.set_values(1,'a',0.5,1.0);

 p.print_values();

 // calls the derived class method (function)

 p.set_mass(1.3);

 // read how to control the format using cout

 // http://www.cplusplus.com/reference/ios/ios_base/precision/

 cout << "mass of p = " << fixed << setprecision(3)

 << p.get_mass() << endl;

 return 0;

}

 The output of the above code on a terminal:

$./a.out

point a: index = 1, x = 0.5, y = 1

mass of p = 1.300

 2/26/2014 Practical C/C++ programming II 42

Template and Generic Programming

 Template is a feature of the C++ that allow functions and classes to

operate with generic types. There are two kinds of templates:

function template and class template

 Declare a function template:

// Both expressions have exactly the same meaning behavior.

template <class identifier> function_declaration;

template <typename identifier> function_declaration;

 Example of defining a template function:

// T is a generic "Type"

template<typename T>

T add(T a, T b) {

 return a+b;

}

 C++ provides unique abilities for Generic Programming through

templates.

 Generic Programming achieved its first major success in C++ with

the Standard Template Library

2/26/2014 Practical C/C++ programming II 43

Introduction to STL

(Standard Template Library)
 The Standard Template Library, or STL, is a C++ library of

container classes, algorithms, and iterators.

 It provides many of the basic algorithms and data structures of

computer science.

 STL is a generic library, meaning that its components are heavily

parameterized: almost every component in the STL is a template.

 The STL can be categorized into two parts:

– The Standard Function Library: consists of general-purpose, template

based generic functions.

– The Object Oriented Class Library: a collection of class templates and

associated functions.

 STL is now part of the ANSI/ISO C++ Standard.

 We will touch std::vector and std::list in the training.

 Fortunately, we can use STL without knowing much about how to

write them.

2/26/2014 Practical C/C++ programming II 44

std::vector and std::list

 A std::vector is a collection of objects, all of which have the same

type.

 Similar to arrays, vectors use contiguous storage locations for their

elements, e.g. elements can also be accessed using offsets on

regular pointers to its elements efficiently.

 Unlike arrays, vector can change size dynamically, with their storage

being handled automatically by the container.

 Use of std::vector:

// include the appropriate header with "using" declaration

#include<vector>

using std::vector;

// define the std::vector objects (variables)

vector<int> index_vec; // index_vec holds objects of type int

vector<double> value_vec; // value_vec holds objects of type double

vector<Point> point_vec; // point_vec holds objects of class Point

2/26/2014 Practical C/C++ programming II 45

An example using std::vector

 Below is an example using std::vector to: (1) find a value in an array (2) sort

the array
#include <vector>

#include <algorithm>

#include <iostream>

using namespace std;

// using STL to: (1) find a value in an array (2) sort the array

int main() {

 int arr[]={2,3,1,5,4,6,8,7,9,0};

 int *p = find(arr,arr+10,5); // find number "5" using std::find

 p++;

 cout << "The number after 5 is " << *p << endl;

 vector<int> vec (arr,arr+10); // assign the array values to std::vector

 // now sort the array

 sort(vec.begin(),vec.end());

 for(int i=0; i<vec.size(); i++)

 cout << vec[i]<< " ";

 cout << endl;

 return 0;

}

2/26/2014 Practical C/C++ programming II 46

Other important C++ concepts

 C++ Polymorphism

– A call to a member function will cause a different function to be

executed depending on the type of object that invokes the function

(static polymorphism, dynamic polymorphism)

 C++ Encapsulation

– Mechanism of exposing only the interfaces and hiding the

implementation details from the user. (data hiding)

 C++ Abstraction, etc.

 Refer to C++ text books for further details, e.g.:

 C++ Primer (Stanley B. Lippman, Josée Lajoie, Barbara E. Moo)

 Thinking in C++ (Chuck Allison and Bruce Eckel)

 The C++ Programming Language (Bjarne Stroustrup)

2/26/2014 Practical C/C++ programming II 47

Selected C++ Libraries

 Use existing libraries for your work instead of starting from scratch!

 Generic:

– Boost

 3D Graphics:

– Ogre3D

– OpenGL

 Math:

– BLAS and LAPACK

– UMFPACK

– Eigen

 Computational geometry

– CGAL

 Finite Element Method, Finite Volume Method

– deal.II

– OpenFOAM, Overture

2/26/2014 Practical C/C++ programming II 48

Exercise 2

 Calculate the result of a constant times a vector plus a vector:

where a is a constant, and are one dimensional vectors.

1. Complete the code for the vector addition;

2. Change x and y to dynamic arrays

2/26/2014 Practical C/C++ programming II 49

y ax y 

x y

Exercise 3

 Complete the C code for matrix multiplication

 where:

Also complete the following functions for 2d dynamic array:

 allocate_dynamic_2d_array

 free_dynamic_2d_array

2/26/2014 Practical C/C++ programming II 50

A B C 

, , ,i j i k k j

k

c a b 

,i ja i j 

,i jb i j 

