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Tutorial Outline

Day 1: Introduction to Fortran Programming
On the first day, we will provide an introduction to the Fortran
90/95 Programming Language. Go to slide 3

Day 2: Advanced Concepts in Fortran Programming
On the second day, we will cover advanced topics such as
modules, derived types, interfaces, etc. Go to slide 101
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Part I

Introduction to Fortran Programming
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Outline of Part I

1 Introduction

2 Basics

3 Program Structure

4 Input and Output

5 Control Constructs

6 Exercise
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What is Fortran?

Fortran is a general-purpose, imperative programming language
that is especially suited to numeric computation and scientific
computing.

Originally developed by IBM for scientific and engineering
applications.

The name Fortran is derived from The IBM Mathematical
Formula Translating System.

It was one of the first widely used "high-level" languages, as well
as the first programming language to be standardized.

It is still the premier language for scientific and engineering
computing applications.
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Many Flavors of Fortran

FORTRAN — first released by IBM in 1956

FORTRAN II — released by IBM in 1958

FORTRAN IV — released in 1962, standardized

FORTRAN 66 — appeared in 1966 as an ANSI standard

FORTRAN 77 — appeared in 1977, structured features

Fortran 90 — 1992 ANSI standard, free form, modules

Fortran 95 — a few extensions

Fortran 2003 — object oriented programming

Fortran 2008 — a few extensions

The correct spelling of Fortran for 1992 ANSI standard and later
(sometimes called Modern Fortran) is "Fortran". Older standards are
spelled as "FORTRAN".
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Why Learn Fortran?

Fortran was designed by, and for, people who wanted raw
number crunching speed.
There’s a great deal of legacy code and numerical libraries
written in Fortran,
attempts to rewrite that code in a more "stylish" language result
in programs that just don’t run as fast.
Fortran is the primary language for some of the most intensive
supercomputing tasks, such as

astronomy,
weather and climate modeling,
numerical linear algebra and libraries,
computational engineering (fluid dynamics),
computational science (chemistry, biology, physics),
computational economics, etc.

How many of you are handed down Fortran code that you are
expected to further develop?

Modern Fortran 7/188

HPC Training: Spring 2014



Why learn Modern Fortran and not FORTRAN?

FORTRAN is a fixed source format dating back to the use of
punch cards.
The coding style was very restrictive

Max 72 columns in a line with
first column reserved for comments indicated by a character such
as c or *,
the second through fifth columns reserved for statement labels,
the sixth column for continuation indicator, and
columns 7 through 72 for statements.
Variable names can consists of up to 6 alphanumeric characters
(a-z,0-9)

Cannot process arrays as a whole, need to do it element by
element.

Cannot allocate memory dynamically.
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FORTRAN 77 Example

SAXPY Code

C234567890123456789012345678901234567890123456789012345678901234567890
program test
integer n
parameter(n=100)
real alpha, x(n), y(n)

alpha = 2.0
do 10 i = 1,n

x(i) = 1.0
y(i) = 2.0

10 continue

call saxpy(n,alpha,x,y)

return
end

subroutine saxpy(n, alpha, x, y)
integer n
real alpha, x(*), y(*)

c
c Saxpy: Compute y := alpha*x + y,
c where x and y are vectors of length n (at least).
c

do 20 i = 1, n
y(i) = alpha*x(i) + y(i)

20 continue

return
end

Modern Fortran 9/188

HPC Training: Spring 2014



Why Learn Modern Fortran?

Free-format source code with a maximum of 132 characters per
line,

Variable names can consists of up to 31 alphanumeric characters
(a-z,0-9) and underscores ( _ ),

Dynamic memory allocation and Ability to operate on arrays (or
array sections) as a whole,

generic names for procedures, optional arguments, calls with
keywords, and many other procedure call options,

Recursive procedures and Operator overloading,

Structured data or derived types,

Object Oriented Programming.

See http://en.wikipedia.org/wiki/Fortran#
Obsolescence_and_deletions for obsolete and deleted
FORTRAN 77 features in newer standards.
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FORTRAN 90 Example

SAXPY Code

program test

implicit none
integer, parameter :: n = 100
real :: alpha, x(n), y(n)

alpha = 2.0
x = 1.0
y = 2.0

call saxpy(n,alpha,x,y)

end program test

subroutine saxpy(n, alpha, x, y)
implicit none
integer :: n
real :: alpha, x(*), y(*)

!
! Saxpy: Compute y := alpha*x + y,
! where x and y are vectors of length n (at least).
!

y(1:n) = alpha*x(1:n) + y(1:n)

end subroutine saxpy
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Major Differences with C

No standard libraries: No specific libraries have to be loaded
explicitly for I/O and math.

Implicit type declaration: In Fortran, variables of type real and
integer may be declared implicitly, based on their first letter. This
behaviour is not recommended in Modern Fortran.

Arrays vs Pointers: Multi-dimension arrays are supported
(arrays in C are one-dimensional) and therefore no vector or
array of pointers to rows of a matrices have to be constructed.

Call by reference: Parameters in function and subroutine calls
are all passed by reference. When a variable from the parameter
list is manipulated, the data stored at that address is changed, not
the address itself. Therefore there is no reason for referencing
and de-referencing of addresses (as commonly seen in C).
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Fortran Source Code I

Fortran source code is in ASCII text and can be written in any
plain-text editor such as vi, emacs, etc.

For readability and visualization use a text editor capable of
syntax highlighting and source code indentation.

Fortran source code is case insensitive i.e. PROGRAM is the
same as Program.

Using mixed case for statements and variables is not considered
a good programming practice. Be considerate to your
collaborators who will be modifying the code.

Some Programmers use uppercase letters for Fortran keywords
with rest of the code in lowercase while others (like me) only use
lower case letters.

Use whatever convention you are comfortable with and be
consistent throughout.
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Fortran Source Code II

The general structure of a Fortran program is as follows
PROGRAM name

IMPLICIT NONE
[specification part]
[execution part]
[subprogram part]

END PROGRAM name

1 A Fortran program starts with the keyword PROGRAM followed by
program name,

2 This is followed by the IMPLICIT NONE statement (avoid use of
implicit type declaration in Fortran 90),

3 Followed by specification statements for various type
declarations,

4 Followed by the actual execution statements for the program,
5 Any optional subprogram, and lastly
6 The END PROGRAM statement
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Fortran Source Code III

A Fortran program consists of one or more program units.
PROGRAM
SUBROUTINE
FUNCTION
MODULE

The unit containing the PROGRAM attribute is often called the main
program or main.

The main program should begin with the PROGRAM keyword. This
is however not required, but it’s use if highly recommended.

A Fortran program should contain only one main program i.e.
one PROGRAM keyword and can contain one or more subprogram
units such as SUBROUTINE, FUNCTION and MODULE.

Every program unit, must end with a END keyword.
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Simple I/O

Any program needs to be able to read input and write output to
be useful and portable.

In Fortran, the print command provides the most simple form
of writing to standard output while,

the read command provides the most simple form of reading
input from standard input

print *, <var1> [, <var2> [, ... ]]

read *, <var1> [, <var2> [, ... ]]

The ∗ indicates that the format of data read/written is
unformatted.

In later sections, we will cover how to read/write formatted data
and file operations.

variables to be read or written should be separated by a comma
(,).
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Your first code in Fortran

Open a text editor and create a file helloworld.f90 containing the
following lines
program hello
print *, ’Hello World!’

end program hello

The standard extension for Fortran source files is .f90, i.e., the
source files are named <name>.f90.

The .f extension implies fixed format source or FORTRAN 77
code.
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Compiling Fortran Code

To execute a Fortran program, you need to compile it to obtain
an executable.

Almost all *NIX system come with GCC compiler installed. You
might need to install the Fortran (gfortran) compiler if its not
present.

Command to compile a fortran program

<compiler> [flags] [-o executable] <source code>

The [...] is optional. If you do not specify an executable, then the
default executable is a.out
altair:Exercise apacheco$ gfortran helloworld.f90
altair:Exercise apacheco$ ./a.out
Hello World!

Other compilers available on our clusters are Intel (ifort),
Portland Group (pgf90) and IBM XL (xlf90) compilers.

ifort -o helloworld helloworld.f90; ./helloworld
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Comments

To improve readability of the code, comments should be used
liberally.

A comment is identified by an exclamation mark or bang (!),
except in a character string.

All characters after ! upto the end of line is a comment.

Comments can be inline and should not have any Fortran
statements following it

program hello
! A simple Hello World code

print *, ’Hello World!’ ! Print Hello World to screen

! This is an incorrect comment if you want Hello World to print
to screen ! print *, ’Hello World!’

end program hello
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Variables I

Variables are the fundamental building blocks of any program.

In Fortran, a variable name may consist of up to 31 alphanumeric
characters and underscores, of which the first character must be a
letter.

There are no reserved words in Fortran.

However, names must begin with a letter and should not contain
a space.

Allowed names: a, compute_force, qed123

Invalid names: 1a, a thing, $sign
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Variables II

Variable Types
Fortran provides five intrinsic data types

INTEGER: exact whole numbers
REAL: real, fractional numbers
COMPLEX: complex, fractional numbers
LOGICAL: boolean values
CHARACTER: strings

and allows users to define additional types.

The REAL type is a single-precision floating-point number.

The COMPLEX type consists of two reals (most compilers also
provide a DOUBLE COMPLEX type).

FORTRAN also provides DOUBLE PRECISION data type for
double precision REAL. This is obsolete but is still found in
several programs.
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Variables III

Explicit and Implicit Typing
For historical reasons, Fortran is capable of implicit typing of
variables.

ABCDEFGH︸ ︷︷ ︸
REAL

INTEGER︷ ︸︸ ︷
IJKLMN OPQRSTUVWXY Z︸ ︷︷ ︸

REAL

You might come across old FORTRAN program containing
IMPLICIT REAL*8(a-h,o-z) or
IMPLICIT DOUBLE PRECISION (a-h,o-z).

It is highly recommended to explicitly declare all variable and
avoid implict typing using the statement IMPLICIT NONE.

The IMPLICIT statement must precede all variable declarations.
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Literal Constants I

Constants are literal representation of a type that are specified by
a programmer.

In Fortran, different constant formats are required for each type.
Integer

Integers are specified by a number without a decimal point,
may contain an optional sign, and
not contain commas
Example
137

-5678

900123
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Literal Constants II

Real

Reals (single precision) may be specified by adding a decimal
point, or by using scientific notation with the letter e indicating
the exponent.
Examples
19.

3.14159

6.023e23

Double precision constants must be specified in the expontent
notation with the letter d indicating the exponent
Examples
23d0

6.626d-34

-3.14159d0
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Literal Constants III

Complex

Complex constants consist of two single-precision constants
enclosed in parenthesis.
The first constant is the real part; the second is the imaginary part.
Example
(1.0,0.0)

(-2.7e4,5.0)

For systems that support double precision complex, the floating
point constants must use the d notation.
(-2.7d-4,5.d0)

Logical

Logical constants can take only the value .True. or .FALSE.
with the periods part of the constant.
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Literal Constants IV

Character

Character constants are specified by enclosing them in single quotes.
Example
’This is a character constant’

’The value of pi is 3.1415’

If an apostrophe is to be part of the constant, it should be represented by
a double quote
’All the world’’s a stage’
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Variable Declarations I

Variables must be declared before they can be used.

In Fortran, variable declarations must precede all executable
statements.

To declare a variable, preface its name by its type.

TYPE Variable

A double colon may follow the type.

TYPE[, attributes] :: Variable

This is the new form and is recommended for all declarations. If
attributes need to be added to the type, the double colon format
must be used.

A variable can be assigned a value at its declaration.
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Variable Declarations II

Numeric Variables:
INTEGER :: i, j = 2
REAL :: a, b = 4.d0
COMPLEX :: x, y

In the above examples, the value of j and b are set at compile
time and can be changed later.

If you want the assigned value to be constant that cannot change
subsequently, add the attribute PARAMETER

INTEGER, PARAMETER :: j = 2
REAL, PARAMETER :: pi = 3.14159265
COMPLEX, PARAMETER :: ci = (0.d0,1.d0)

Logical: Logical variables are declared with the LOGICAL

keyword
LOGICAL :: l, flag=.true.
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Variable Declarations III

Character: Character variables are declared with the CHARACTER

type; the length is supplied via the keyword LEN.

The length is the maximum number of characters (including
space) that will be stored in the character variable.

If the LEN keyword is not specified, then by default LEN=1 and
only the first character is saved in memory.
CHARACTER :: ans = ’yes’ ! stored as y not yes
CHARACTER(LEN=10) :: a

FORTRAN programmers: avoid the use of CHARACTER*10
notation.
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Array Variables

Arrays (or matrices) hold a collection of different values at the
same time.
Individual elements are accessed by subscripting the array.
Arrays are declared by adding the DIMENSION attribute to the
variable type declaration which can be integer, real, complex or
character.
Usage: TYPE, DIMENSION(lbound:ubound):: variable_name

Lower bounds of one can be omitted
INTEGER, DIMENSION(1:106) :: atomic_number
REAL, DIMENSION(3, 0:5, -10:10) :: values
CHARACTER(LEN=3), DIMENSION(12) :: months

In Fortran, arrays can have upto seven dimension.
In contrast to C/C++, Fortran arrays are column major.
We’ll discuss arrays in more details in the Advanced Concepts
Tutorials.
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DATA Statments

In FORTRAN, a DATA statement may be used to initialize a
variable or group of variables.

It causes the compiler to load the initial values into the variables
at compile time i.e. a nonexecutable statment

General form

DATA varlist /varlist/ [, varlist /varlist/]

Example DATA a,b,c /1.,2.,3./

DATA statements can be used in Fortran but it is recommended to
to eliminate this statement by initializing variables in their
declarations.

In Fortran 2003, variables may be initialized with intrinsic
functions (some compilers enable this in Fortran 95)

REAL, PARAMETER :: pi = 4.0*atan(1.0)
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KIND Parameter I

In FORTRAN, types could be specified with the number of bytes
to be used for storing the value:

real*4 - uses 4 bytes, roughly ±10−38 to ±1038.
real*8 - uses 8 bytes, roughly ±10−308 to ±10308.
complex*16 - uses 16 bytes, which is two real*8 numbers.

Fortran 90 introduced kind parameters to parameterize the
selection of different possible machine representations for each
intrinsic data types.

The kind parameter is an integer which is processor dependent.

There are only 2(3) kinds of reals: 4-byte, 8-byte (and 16-byte),
respectively known as single, double (and quadruple) precision.

The corresponding kind numbers are 4, 8 and 16 (most
compilers)
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KIND Parameter II

KIND Size (Bytes) Data Type
1 1 integer, logical, character (default)
2 2 integer, logical
4a 4 integer, real, logical, complex
8 8 integer, real, logical, complex

16 16 real, complex

a
default for all data types except character

You might come across FORTRAN codes with variable
declarations using integer*4, real*8 and complex*16

corresponding to kind=4 (integer) and kind=8 (real and
complex).

The value of the kind parameter is usually not the number of
decimal digits of precision or range; on many systems, it is the
number of bytes used to represent the value.
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KIND Parameter III

The intrinsic functions selected_int_kind and
selected_real_kind may be used to select an appropriate kind

for a variable or named constant.

selected_int_kind(R) returns the kind value of the smallest
integer type that can represent all values ranging from −10R

(exclusive) to 10R (exclusive)

selected_real_kind(P,R) returns the kind value of a real data
type with decimal precision of at least P digits, exponent range
of at least R. At least one of P and R must be specified, default R
is 308.
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KIND Parameter IV

program kind_function

implicit none
integer,parameter :: dp = selected_real_kind(15)
integer,parameter :: ip = selected_int_kind(15)
integer(kind=4) :: i
integer(kind=8) :: j
integer(ip) :: k
real(kind=4) :: a
real(kind=8) :: b
real(dp) :: c

print ’(a,i2,a,i4)’, ’Kind of i = ’,kind(i), ’ with range =’, range(i)
print ’(a,i2,a,i4)’, ’Kind of j = ’,kind(j), ’ with range =’, range(j)
print ’(a,i2,a,i4)’, ’Kind of k = ’,kind(k), ’ with range =’, range(k)
print ’(a,i2,a,i2,a,i4)’, ’Kind of real a = ’,kind(a),&

’ with precision = ’, precision(a),&
’ and range =’, range(a)

print ’(a,i2,a,i2,a,i4)’, ’Kind of real b = ’,kind(b),&
’ with precision = ’, precision(b),&
’ and range =’, range(b)

print ’(a,i2,a,i2,a,i4)’, ’Kind of real c = ’,kind(c),&
’ with precision = ’, precision(c),&
’ and range =’, range(c)

print *, huge(i),kind(i)
print *, huge(j),kind(j)
print *, huge(k),kind(k)

end program kind_function
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KIND Parameter V

[apacheco@qb4 Exercise] ./kindfns
Kind of i = 4 with range = 9
Kind of j = 8 with range = 18
Kind of k = 8 with range = 18
Kind of real a = 4 with precision = 6 and range = 37
Kind of real b = 8 with precision = 15 and range = 307
Kind of real c = 8 with precision = 15 and range = 307
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Operators and Expressions

Fortran defines a number of operations on each data type.

Arithmetic Operators

+ : addition

- : subtraction

* : multiplication

/ : division

** : exponentiation

Relational Operators (FORTRAN versions)

== : equal to (.eq.)

/= : not equal to (.ne.)

< : less than (.lt.)

<= : less than or equal to (.le.)

> : greater than (.gt.)

>= : greater than or equal to (.ge.)

Logical Expressions

.AND. intersection

.OR. union

.NOT. negation

.EQV. logical equivalence

.NEQV. exclusive or

Character Operators

// : concatenation
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Operator Evaluations I

In Fortran, all operator evaluations on variables is carried out
from left-to-right.

Arithmetic operators have a highest precedence while logical
operators have the lowest precedence

The order of operator precedence can be changed using
parenthesis, ’(’ and ’)’

In Fortran, a user can define his/her own operators.

User defined monadic operator has a higher precedence than
arithmetic operators, while

dyadic operators has a lowest precedence than logical operators.

Modern Fortran 38/188

HPC Training: Spring 2014



Operator Evaluations II

Operator Precedence

Operator Precedence Example
expression in () Highest (a+b)

user-defined monadic - .inverse.a
** - 10**4

* or / - 10*20
monadic + or - - -5
dyadic + or - - 1+5

// - str1//str2
relational operators - a > b

.not. - .not.allocated(a)
.and. - a.and.b
.or. - a.or.b

.eqv. or .neqv. - a.eqv.b
user defined dyadic Lowest x.dot.y
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Expressions

An expression is a combination of one or more operands, zero or
more operators, and zero or more pairs of parentheses.
There are three kinds of expressions:

An arithmetic expression evaluates to a single arithmetic value.
A character expression evaluates to a single value of type
character.
A logical or relational expression evaluates to a single logical
value.

Examples:

x + 1.0
97.4d0
sin(y)
x*aimag(cos(z+w))
a .and. b
’AB’ // ’wxy’
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Statements I

A statement is a complete instruction.

Statements may be classified into two types: executable and
non-executable.

Non-executable statements are those that the compiler uses to
determine various fixed parameters such as module use
statements, variable declarations, function interfaces, and data
loaded at compile time.

Executable statements are those which are executed at runtime.

A statements is normally terminated by the end-of-line marker.

If a statement is too long, it may be continued by the ending the
line with an ampersand (&).
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Statements II

Max number of characters (including spaces) in a line is 132
though it’s standard practice to have a line with up to 80
characters. This makes it easier for file editors to display code or
print code on paper for reading.

Multiple statements can be written on the same line provided the
statements are separated by a semicolon.

Examples:
force = 0d0 ; pener = 0d0
do k = 1, 3

r(k) = coord(i,k) - coord(j,k)

Assignment statements assign an expression to a quantity using
the equals sign (=)

The left hand side of the assignment statement must contain a
single variable.

x+ 1.0 = y is not a valid assignment statement.
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Intrinsic Functions

Fortran provide a large set of intrinsic functions to implement a
wide range of mathematical operations.

In FORTRAN code, you may come across intrinsic functions
which are prefixed with i for integer variables, d for double
precision, c for complex single precision and cd for complex
double precision variables.

In Modern Fortran, these functions are overloaded, i.e. they can
carry out different operations depending on the data type.

For example: the abs function equates to
√
a2 for integer and

real numbers and
√
<2 + =2 for complex numbers.
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Arithmetic Functions

Function Action Example
INT conversion to integer J=INT(X)

REAL
conversion to real X=REAL(J)

return real part of complex number X=REAL(Z)
DBLEa convert to double precision X=DBLE(J)
CMPLX conversion to complex A=CMPLX(X[,Y])
AIMAG return imaginary part of complex number Y=AIMAG(Z)

ABS absolute value Y=ABS(X)
MOD remainder when I divided by J K=MOD(I,J)

CEILING smallest integer ≥ to argument I=CEILING(a)
FLOOR largest integer ≤ to argument I=FLOOR(a)
MAX maximum of list of arguments A=MAX(C,D)
MIN minimum of list of arguments A=MIN(C,D)

SQRT square root Y=SQRT(X)
EXP exponentiation Y=EXP(X)
LOG natural logarithm Y=LOG(X)

LOG10 logarithm to base 10 Y=LOG10(X)

a
use real(x,kind=8) instead
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Trignometric Functions

Function Action Example
SIN sine X=SIN(Y)
COS cosine X=COS(Y)
TAN tangent X=TAN(Y)
ASIN arcsine X=ASIN(Y)
ACOS arccosine X=ACOS(Y)
ATAN arctangent X=ATAN(Y)

ATAN2 arctangent(a/b) X=ATAN2(A,B)
SINH hyperbolic sine X=SINH(Y)
COSH hyperbolic cosine X=COSH(Y)
TANH hyperbolic tangent X=TANH(Y)

hyperbolic functions are not defined for complex argument
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Character Functions

len(c) length
len_trim(c) length of c if it were trimmed
lge(s1,s2) returns .true. if s1 follows or is equal to s2 in lexical order
lgt(s1,s2) returns .true. if s1 follows s1 in lexical order
lle(s1,s2) returns .true. if s2 follows or is equal to s1 in lexical order
llt(s1,s2) returns .true. if s2 follows s1 in lexical order

adjustl(s)
returns string with leading blanks removed and

same number of trailing blanks added

adjustr(s)
returns string with trailing blanks removed and

same number of leading blanks added
repeat(s,n) concatenates string s to itself n times
scan(s,c) returns the integer starting position of string c within string s
trim(c) trim trailing blanks from c
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Array Intrinsic Functions

size(x[,n]) The size of x (along the nth dimension, optional)

sum(x[,n]) The sum of all elements of x (along the nth dimension, optional)

sum(x) =
∑

i,j,k,··· xi,j,k,···

product(x[,n]) The product of all elements of x (along the nth dimension, optional)

prod(x) =
∏

i,j,k,··· xi,j,k,···

transpose(x) Transpose of array x: xi,j ⇒ xj,i

dot_product(x,y) Dot Product of arrays x and y:
∑

i xi ∗ yi
matmul(x,y) Matrix Multiplication of arrays x and y which can be 1 or 2

dimensional arrays: zi,j =
∑

k xi,k ∗ yk,j
conjg(x) Returns the conjugate of x: a+ ıb⇒ a− ıb
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Program Structure I

PROGRAM program-name
IMPLICIT NONE
[specification part]
[execution part]
[subprogram part]

END PROGRAM program-name

All Fortran statements are case insensitive.

Most programmers use lower case letters with upper case letters
reserved for program keywords.
Are you a FORTRAN 77 or older programmer?

Use the IMPLICIT NONE statement, avoid
implicit real*8(a-h,o-z) statement. Get in the habit of
declaring all variables.
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Simple Temperature Conversion Problem

Write a simple program that
1 Converts temperature from celsius to fahrenheit
2 Converts temperature from fahrenheit to celsius

program temp

implicit none
real :: tempC, tempF

! Convert 10C to fahrenheit

tempF = 9 / 5 * 10 + 32

! Convert 40F to celsius

tempC = 5 / 9 * (40 - 32 )

print *, ’10C = ’, tempF, ’F’
print *, ’40F = ’, tempC, ’C’

end program temp

altair:Exercise apacheco$ gfortran simple.f90
altair:Exercise apacheco$ ./a.out
10C = 42.0000000 F
40F = 0.00000000 C

So what went wrong? 10C = 50F and 40F = 4.4C
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Type Conversion I

In computer programming, operations on variables and constants
return a result of the same type.

In the temperature code, 9/5 = 1 and 5/9 = 0. Division
between integers is an integer with the fractional part truncated.

In the case of operations between mixed variable types, the
variable with lower rank is promoted to the highest rank type.

Variable 1 Variable 2 Result
Integer Real Real
Integer Complex Complex
Real Double Precision Double Precision
Real Complex Complex
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Type Conversion II

As a programmer, you need to make sure that the expressions
take type conversion into account

program temp

implicit none
real :: tempC, tempF

! Convert 10C to fahrenhiet

tempF = 9. / 5. * 10 + 32

! Convert 40F to celsius

tempC = 5. / 9. * (40 - 32 )

print *, ’10C = ’, tempF, ’F’
print *, ’40F = ’, tempC, ’C’

end program temp

altair:Exercise apacheco$ gfortran temp.f90
altair:Exercise apacheco$ ./a.out
10C = 50.0000000 F
40F = 4.44444466 C

The above example is not a good programming practice.

10, 40 and 32 should be written as real numbers (10., 40. and
32.) to stay consistent.
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Input and Output Descriptors I

Input and output are accomplished by operations on files.

Files are identified by some form of file handle, in Fortran called
the unit number.

We have already encountered read and write command such as
print *, and read *,

Alternative commands for read and write are

read(unit,*)

write(unit,*)

There is no comma after the ’)’. FORTRAN allowed statements
of the form write(unit,*), which is not supported on some
compilers such as IBM XLF. Please avoid this notation in
FORTRAN programs.

The default unit number 5 is associated with the standard input,
and
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Input and Output Descriptors II

unit number 6 is assigned to standard output.

You can replace unit with ? in which case standard input (5) and
output (6) file descriptors are used.

The second ? in read/write or the one in the print */read *

corresponds to unformatted input/output.

If I/O is formatted, then ? is replaced with

fmt=<format specifier>
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File Operations I

A file may be opened with the statement

OPEN([UNIT=]un, FILE=fname [, options])

Commonly used options for the open statement are:

IOSTAT=ios: This option returns an integer ios; its value is zero
if the statement executed without error, and nonzero if an error
occured.

ERR=label: label is the label of a statement in the same program
unit. In the event of an error, execution is transferred to this
labelled statement.
STATUS=istat: This option indicates the type of file to be
opened. Possible values are:
old : the file specified by the file parameter must exist.

new : the file will be created and must not exist.
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File Operations II

replace : the file will be created if it does not exist or if it exists, the file
will be deleted and created i.e. contents overwritten.

unknown : the file will be created if it doesn’t exist or opened if it exists
without further processing.

scratch : file will exist until the termination of the executing program or
until a close is executed on that unit.

position=todo: This options specifies the position where the
read/write marker should be placed when opened. Possible
values are:

rewind : positions the file at its initial point. Convenient for rereading
data from file such as input parameters.

append : positions the file just before the endfile record. Convenient
while writing to a file that already exists. If the file is new, then
the position is at its initial point.
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File Operations III

The status of a file may be tested at any point in a program by
means of the INQUIRE statement.

INQUIRE([UNIT=]un, options)

OR

INQUIRE(FILE=fname, options)

At least one option must be specified. Options include

IOSTAT=ios: Same use as open statement.

EXIST=lex: Returns whether the file exists in the logical variable
lex

OPENED=Iop: Returns whether the file is open in the logical
variable Iop

NUMBER=num: Returns the unit number associated with the file, or
-1 if no number is assigned to it. Generally used with the second
form of the INQUIRE statement.
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File Operations IV

NAMED=isnamed: Returns whether the file has a name. Generally
used with the first form of the INQUIRE statement.

NAME=fname: Returns the name of the file in the character
variable fname. Used in conjunction with the NAMED option.

READ=rd: Returns a string YES, NO, or UNKNOWN to the character
variable rd depending on whether the file is readable. If status
cannot be determined, it returns UNKNOWN.

WRITE=wrt: Similar to the READ option to test if a file is writable.

READWRITE=rdwrt: Similar to the READ option to test if a file is
both readable and writeable.
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File Operations V

A file may be closed with the statement

CLOSE([UNIT=]un [, options])

Commonly used options for the close statement are:

IOSTAT=ios: Same use as open statement.

ERR=label: Same use as open statement.
STATUS=todo: What actions needs to be performed on the file
while closing it. Possible values are
keep : file will continue to exist after the close statement, default

option except for scratch files.
delete : file will cease to exist after the close statement, default option

for scratch files.
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Reading and Writing Data I

The WRITE statement is used to write to a file.

Syntax for writing a list of variable, varlist, to a file associated
with unit number un

WRITE(un, options)varlist

The most common options for WRITE are:

FMT=label A format statement label specifier.

You can also specify the exact format to write the data to be
discussed in a few slides.

IOSTAT=ios Returns an integer indicating success or failure;
zero if statement executed with no erros and nonzero if an error
occured.

ERR=label The label is a statement label to which the program
should jump if an error occurs.

Modern Fortran 59/188

HPC Training: Spring 2014



Reading and Writing Data II

The READ statement is used to read from a file.

Syntax for reading a list of variable, varlist, to a file associated
with unit number un

READ(un, options)varlist

Options to the READ statement are the same as that of the WRITE

statement with one additional option,

END=label The label is a statement label to which the program
should jump if the end of file is detected.
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List-Directed I/O I

The simplest method of getting data into and out of a program is
list-directed I/O.

The data is read or written as a stream into or from specified
variables either from standard input or output or from a file.

The unit number associate with standard input is 5 while
standard output is 6.
If data is read/written from/to standard input/output, then

the unit number, un can also be replaced with ∗,
use alternate form for reading and writing i.e. the read *, and
print *, covered in an earlier slide.
If data is unformatted i.e. plain ASCII characters, the option to
write and read command is ∗

Example of list-directed output to standard output or to a file
associated with unit number 8
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List-Directed I/O II

print *, a, b, c, arr
write(*,*) a, b, arr
write(6,*) a, b, c, arr
write(8,*) a, b, c, &

arr

Unlike C/C++, Fortran always writes an end-of-line marker at
the end of the list of item for any print or write statements.

Printing a long line with many variables may thus require
continuations.

Example of list-directed input from standard output or to a file
associated with unit number 8
read *, a, b, c, arr
read(*,*) a, b, c, arr
read(5,*) a, b, c, arr
read(8,*) a, b, c, arr
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List-Directed I/O III

When reading from standard input, the program will wait for a
response from the console.

Unless explicitly told to do so, no prompts to enter data will be
printed. Very often programmers use a print statement to let you
know that a response is expected.
print *, ’Please enter a value for the variable inp’
read *, inp
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Formatted Input/Output I

List-directed I/O does not always print the results in a
particularly readable form.

For example, a long list of variable printed to a file or console
may be broken up into multiple lines.

In such cases it is desirable to have more control over the format
of the data to be read or written.

Formatted I/O requires that the programmer control the layout of
the data.

The type of data and the number of characters that each element
may occupy must be specified.
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Formatted Input/Output II

A formatted data description must adhere to the generic form,

nCw.d

where
n is an integer constant that specifies the number of repititions
(default 1 can be omitted),
C is a letter indicating the type of the data variable to be written or
read,
w is the total number of spaces allocated to this variable, and,
d is the number of spaces allocated to the fractional part of the
variable. Integers are padded with zeros for a total width of w
provided d ≤ w.
The decimal (.) and d designator are not used for integers,
characters or logical data types. Note that d designator has a
different meaning for integers and is usually referred to as m to
avoid confusion.

Collectively, these designators are called edit descriptors.
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Formatted Input/Output III

The space occupied by an item of data or variable is called field.
Data Type Edit Descriptor Examples Result

Integer nIw[.m] I5.5 00010
Reala (floating point) nFw.d F12.6 10.123456

Real (exponential) Ew.d[en]b E15.8 0.12345678E1
Real (engineering) ESw.dc ES12.3 50.123E-3

Character nAw A12 Fortran

a
For complex variables, use two appropriate real edit descriptors

b
en is used when you need more than 2 digits in the exponent as in 100. E15.7e4 to represent 2.3 × 101021

c
data is printed in multiples of 1000

Control descriptors alter the input or output by addings blanks,
new lines and tabs.

Space nX add n spaces

Tabs
tn tab to position n
tln tab left n positions
trn tab right n positions

New Line / Create a new line record
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Format Statements I

Edit descriptors must be used in conjunction with a PRINT,
WRITE or READ statement.

In the simplest form, the format is enclosed in single quotes and
parentheses as as argument to the keyword.
print ’(I5,5F12.6)’, i, a, b, c, z ! complex z
write(6,’(2E15.8)’) arr1, arr2
read(5,’(2a)’) firstname, lastname

If the same format is to be used repeatedly or it is complicated,
the FORMAT statement can be used.

The FORMAT statement must be labeled and the label is used in
the input/output statement to reference it
label FORMAT(formlist)
PRINT label, varlist
WRITE(un, label) varlist
READ(un, label) varlist
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Format Statements II

The FORMAT statements can occur anywhere in the same program
unit. Most programmers list all FORMAT statements immediately
after the type declarations before any executable statements.
10 FORMAT(I5,5F12.6)
20 FORMAT(2E15.8)
100 FORMAT(2a)

print 10, i, a, b, c, z ! complex z
write(6,20) arr1, arr2
read(5,100) firstname, lastname
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Namelist I

Many scientific codes have a large number of input parameters.

Remembering which parameter is which and also the order in
which they are to read, make creating input files very tedious.

Fortran provides NAMELIST input simplify this situation.

In a NAMELIST, parameters are specified by name and value and
can appear in any order.

The NAMELIST is declared as a non-executable statement in the
subprogram that reads the input and the variables that can be
specified in it are listed.
NAMELIST /name/ varlist

Namelists are read with a special form of the READ statement.
READ(un,[nml=]name)
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Namelist II

The input file must follow a particular format:
begin with an ampersand followed by the name of the namelist
(&name) and ends with a slash (/),
variables are specified with an equals sign (=) between the
variable name and its value,
only statis objects may be part of a namelist; i.e. dynamically
allocated arrays, pointers and the like are not permitted

For example, consider a program that declares a namelist as
follows:
namelist/moldyn/natom,npartdim,tempK,nstep,dt

The corresponding input file can take the form
&moldyn
npartdim = 10
tempK = 10d0
nstep = 1000
dt = 1d-3
/
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Namelist III

Note:
parameters may appear in any order in the input file, and
may be omitted if they are not needed i.e. they can take default
values that is specified in the program

The above namelist can be read with a single statement as in
(other options to READ statement can be added if needed)
READ(10, nml=moldyn)

To write the values of a namelist is similar
WRITE(20, nml=moldyn)

Namelist names and variables are case insensitive.

The namelist designator cannot have blanks

Arrays may be namelist variables, but all the values of the array
must be listed after the equals sign following its name

If any variable name is repeated, the final value is taken.
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Namelist IV

Namelist are convenient when you want to read different input
for different types of calculations within the same program.

Amber Molecular Dynamics package uses namelist to read input.
The following is the input file from Amber’s test directory.
&cntrl
ntx=1, imin=5, ipb=1, inp=2, ntb=0,

/
&pb
npbverb=0, istrng=0, epsout=80.0, epsin=1.0, space=0.5,
accept=0.001, sprob=1.6, radiopt=1, dprob=1.6,

/

If multiple variables are listed on the same line, they need to be
separated by a comma (,) not semicolon(;)
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Internal Read and Write I

Fortran allows a programmer to cast numeric types to character
type and vice versa.

The character variable functions as an internal file.

An internal write converts from numeric to character type,
while

an internal read converts from character to numeric type.

This is useful feature particularly for writing output of arrays that
are dynamically allocated.

Example: Convert an integer to a character
CHARACTER(len=10) :: num
INTEGER :: inum
WRITE(NUM,’(A10)’) inum
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Internal Read and Write II

Example: Convert an character to an integer
CHARACTER(len=10) :: num = "435"
INTEGER :: inum
READ(inum,’(I4)’) num

Example: Writing data when parameters are not known at
compile time
CHARACTER(len=23) :: xx
CHARACTER(len=13) :: outfile
INTEGER :: natoms, istep
REAL :: time
REAL, ALLOCATABLE, DIMENSION(:) :: coords

natoms = 100 ; ALLOCATE(coords(natoms*3))

WRITE(xx,’(A,I5,A)’) ’(F12.6,’, 3*natoms, ’(2X,E15.8))’
WRITE(outfile,’(A8,I5.5,A4)’) ’myoutput’, istep, ’.dat’

OPEN(unit = 10, file = outfile)
WRITE(10, xx) time, coords(:)
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Control Constructs

A Fortran program is executed sequentially
program somename
variable declarations
statement 1
statement 2
· · ·

end program somename

Control Constructs change the sequential execution order of the
program

1 Conditionals: IF
2 Loops: DO
3 Switches: SELECT/CASE
4 Branches: GOTO (obsolete in Fortran 95/2003, use CASE instead)
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If Statement

The general form of the if statement

if ( expression )statement

When the if statement is executed, the logical expression is
evaluated.

If the result is true, the statement following the logical
expression is executed; otherwise, it is not executed.

The statement following the logical expression cannot be
another if statement. Use the if-then-else construct instead.

if (value < 0)value = 0
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If-then-else Construct I

The if-then-else construct permits the selection of one of a
number of blocks during execution of a program

The if-then statement is executed by evaluating the logical
expression.

If it is true, the block of statements following it are executed.
Execution of this block completes the execution of the entire if

construct.

If the logical expression is false, the next matching else if,
else or end if statement following the block is executed.
if ( expression 1) then

executable statements
else if ( expression 2 ) then

executable statements
else if · · ·

.

.

.
else

executable statements
end if
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If-then-else Construct II

Examples:
if ( x < 50 ) then
GRADE = ’F’

else if ( x >= 50 .and. x < 60 ) then
GRADE = ’D’

else if ( x >= 60 .and. x < 70 ) then
GRADE = ’C’

else if ( x >= 70 .and. x < 80 ) then
GRADE = ’B’

else
GRADE = ’A’

end if

The else if and else statements and blocks may be omitted.

If else is missing and none of the logical expressions are true,
the if-then-else construct has no effect.

The end if statement must not be omitted.

The if-then-else construct can be nested and named.
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If-then-else Construct III

no else if

[outer_name:] if ( expression ) then
executable statements

else
executable statements
[inner_name:] if ( expression ) then

executable statements
end if [inner_name]

end if [outer_name]

no else

if ( expression ) then
executable statements

else if ( expression ) then
executable statements

else if ( expression ) then
executable statements

end if
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Finding roots of quadratic equation I

program roots_of_quad_eqn

implicit none

real(kind=8) :: a,b,c
real(kind=8) :: roots(2),d

print *, ’============================================’
print *, ’ Program to solve a quadratic equation’
print *, ’ ax^2 + bx + c = 0 ’
print *, ’ If d = b^2 - 4ac >= 0 ’
print *, ’ then solutions are: ’
print *, ’ (-b +/- sqrt(d) )/2a ’
print *, ’============================================’

! read in coefficients a, b, and c
write(*,*) ’Enter coefficients a,b and c’
read(*,*) a,b,c
write(*,*)
write(*,*) ’ Quadratic equation to solve is: ’
write(*,fmt=’(a,f6.3,a,f6.3,a,f6.3,a)’) ’ ’,a,’x^2 + ’,b,’x + ’,c,’ = 0’
write(*,*)

outer: if ( a == 0d0 ) then
middle: if ( b == 0.d0 ) then

inner: if ( c == 0.d0 ) then
write(*,*) ’Input equation is 0 = 0’

else
write(*,*) ’Equation is unsolvable’
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Finding roots of quadratic equation II

write(*,fmt=’(a,f5.3,a)’) ’ ’,c,’ = 0’
end if inner

else
write(*,*) ’Input equation is a Linear equation with ’
write(*,fmt=’(a,f6.3)’) ’ Solution: ’, -c/b

end if middle
else

d = b*b - 4d0*a*c
dis0: if ( d > 0d0 ) then

d = sqrt(d)
roots(1) = -( b + d)/(2d0*a)
roots(2) = -( b - d)/(2d0*a)
write(*,fmt=’(a,2f12.6)’) ’Solution: ’, roots(1),roots(2)

else if ( d == 0.d0 ) then
write(*,fmt=’(a,f12.6)’) ’Both solutions are equal: ’, -b/(2d0*a)

else
write(*,*) ’Solution is not real’
d = sqrt(abs(d))
roots(1) = d/(2d0*a)
roots(2) = -d/(2d0*a)
write(*,fmt=’(a,ss,f6.3,sp,f6.3,a2,a,ss,f6.3,sp,f6.3,a2)’) &

’ (’,-b/(2d0*a),sign(roots(1),roots(1)),’i)’,’ and (’,-b/(2d0*a),sign(
roots(2),roots(2)),’i)’

end if dis0
end if outer

end program roots_of_quad_eqn
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Finding roots of quadratic equation III

[apacheco@qb4 Exercise] ./root.x
============================================
Program to solve a quadratic equation

ax^2 + bx + c = 0
If d = b^2 - 4ac >= 0

then solutions are:
(-b +/- sqrt(d) )/2a

============================================
Enter coefficients a,b and c
1 2 1

Quadratic equation to solve is:
1.000x^2 + 2.000x + 1.000 = 0

Both solutions are equal: -1.000000

[apacheco@qb4 Exercise] ./root.x
============================================
Program to solve a quadratic equation

ax^2 + bx + c = 0
If d = b^2 - 4ac >= 0

then solutions are:
(-b +/- sqrt(d) )/2a

============================================
Enter coefficients a,b and c
0 1 2

Quadratic equation to solve is:
0.000x^2 + 1.000x + 2.000 = 0

Input equation is a Linear equation with
Solution: -2.000

[apacheco@qb4 Exercise] ./root.x
============================================
Program to solve a quadratic equation

ax^2 + bx + c = 0
If d = b^2 - 4ac >= 0
then solutions are:
(-b +/- sqrt(d) )/2a

============================================
Enter coefficients a,b and c

2 1 1

Quadratic equation to solve is:
2.000x^2 + 1.000x + 1.000 = 0

Solution is not real
(-0.250+0.661i) and (-0.250-0.661i)
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Case Construct I

The case construct permits selection of one of a number of
different block of instructions.

The value of the expression in the select case should be an
integer or a character string.
[case_name:] select case ( expression )

case ( selector )
executable statement

case ( selector )
executable statement

case default
executable statement

end select [case_name]

The selector in each case statement is a list of items, where
each item is either a single constant or a range of the same type
as the expression in the select case statement.

A range is two constants separated by a colon and stands for all
the values between and including the two values.
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Case Construct II

The case default statement and its block are optional.
The select case statement is executed as follows:

1 Compare the value of expression with the case selector in each
case. If a match is found, execute the following block of
statements.

2 If no match is found and a case default exists, then execute
those block of statements.

Notes
The values in selector must be unique.

Use case default when possible, since it ensures that there is
something to do in case of error or if no match is found.

case default can be anywhere in the select case construct.
The preferred location is the last location in the case list.
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Case Construct III

Example for character case selector
select case ( traffic_light )

case ( "red" )
print *, "Stop"

case ( "yellow" )
print *, "Caution"

case ( "green" )
print *, "Go"

case default
print *, "Illegal value: ", traffic_light

end select

Example for integer case selector
select case ( score )

case ( 50 : 59 )
GRADE = "D"

case ( 60 : 69 )
GRADE = "C"

case ( 70 : 79 )
GRADE = "B"

case ( 80 : )
GRADE = "A"

case default
GRADE = "F"

end select
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Do Construct I

The looping construct in fortran is the do construct.

The block of statements called the loop body or do construct
body is executed repeatedly as indicated by loop control.

A do construct may have a construct name on its first statement
[do_name:] do loop_control

execution statements
end do [do_name]

There are two types of loop control:
1 Counting: a variable takes on a progression of integer values until

some limit is reached.
� variable = start, end[, stride]
� stride may be positive or negative integer, default is 1 which can be

omitted.
2 General: a loop control is missing
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Do Construct II

Before a do loop starts, the expression start, end and stride are
evaluated. These values are not re-evaluated during the execution
of the do loop.

stride cannot be zero.
If stride is positive, this do counts up.

1 The variable is set to start
2 If variable is less than or equal to end, the block of statements is executed.
3 Then, stride is added to variable and the new variable is compared to end
4 If the value of variable is greater than end, the do loop completes, else repeat

steps 2 and 3

If stride is negative, this do counts down.
1 The variable is set to start
2 If variable is greater than or equal to end, the block of statements is executed.
3 Then, stride is added to variable and the new variable is compared to end
4 If the value of variable is less than end, the do loop completes, else repeat steps 2

and 3
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Do Construct III

program factorial1

implicit none
integer, parameter :: dp = selected_int_kind(15)
integer(dp) :: i,n,factorial

print *, ’Enter an integer < 15 ’
read *, n

factorial = n
do i = n-1,1,-1

factorial = factorial * i
end do
write(*,’(i4,a,i15)’) n,’!=’,factorial

end program factorial1

program factorial2

implicit none
integer, parameter :: &

dp = selected_int_kind(15)
integer(dp) :: i,n,start,factorial

print *, ’Enter an integer < 15 ’
read *, n

if ( (n/2)*2 == n ) then
start = 2 ! n is even

else
start = 1 ! n is odd

endif
factorial = 1_dp
do i = start,n,2

factorial = factorial * i
end do
write(*,’(i4,a,i15)’) n,’!!=’,factorial

end program factorial2

[apacheco@qb4 Exercise] ./fact1
Enter an integer < 15

10
10!= 3628800

[apacheco@qb4 Exercise] ./fact2
Enter an integer < 15

10
10!!= 3840
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Do Construct: Nested I

The exit statement causes termination of execution of a loop.

If the keyword exit is followed by the name of a do construct,
that named loop (and all active loops nested within it) is exited
and statements following the named loop is executed.

The cycle statement causes termination of the execution of one
iteration of a loop.

The do body is terminated, the do variable (if present) is updated,
and control is transferred back to the beginning of the block of
statements that comprise the do body.

If the keyword cycle is followed by the name of a construct, all
active loops nested within that named loop are exited and control
is transferred back to the beginning of the block of statements
that comprise the named do construct.
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Do Construct: Nested II

program nested_doloop

implicit none
integer,parameter :: dp = selected_real_kind(15)
integer :: i,j
real(dp) :: x,y,z,pi

pi = 4d0*atan(1.d0)

outer: do i = 0,180,45
inner: do j = 0,180,45

x = real(i)*pi/180d0
y = real(j)*pi/180d0
if ( j == 90 ) cycle inner
z = sin(x) / cos(y)
print ’(2i6,3f12.6)’, i,j,x,y,z

end do inner
end do outer

end program nested_doloop

[apacheco@qb4 Exercise] ./nested
0 0 0.000000 0.000000 0.000000
0 45 0.000000 0.785398 0.000000
0 135 0.000000 2.356194 -0.000000
0 180 0.000000 3.141593 -0.000000

45 0 0.785398 0.000000 0.707107
45 45 0.785398 0.785398 1.000000
45 135 0.785398 2.356194 -1.000000
45 180 0.785398 3.141593 -0.707107
90 0 1.570796 0.000000 1.000000
90 45 1.570796 0.785398 1.414214
90 135 1.570796 2.356194 -1.414214
90 180 1.570796 3.141593 -1.000000
135 0 2.356194 0.000000 0.707107
135 45 2.356194 0.785398 1.000000
135 135 2.356194 2.356194 -1.000000
135 180 2.356194 3.141593 -0.707107
180 0 3.141593 0.000000 0.000000
180 45 3.141593 0.785398 0.000000
180 135 3.141593 2.356194 -0.000000
180 180 3.141593 3.141593 -0.000000
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Do Construct: General

The General form of a do construct is
[do_name:] do

executable statements
end do [do_name]

The executable statements will be executed indefinitly.

To exit the do loop, use the exit or cycle statement.

The exit statement causes termination of execution of a loop.

The cycle statement causes termination of the execution of one
iteration of a loop.
finite: do

i = i + 1
inner: if ( i < 10 ) then

print *, i
cycle finite

end if inner
if ( i > 100 ) exit finite

end do finite
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Do While Construct

If a condition is to be tested at the top of a loop, a do ... while

loop can be used
[do_name:] do while ( expression )
executable statements

end do [do_name]

The loop only executes if the logical expression evaluates to
.true.

finite: do while ( i <= 100 )
i = i + 1
inner: if ( i < 10 ) then

print *, i
end if inner

end do finite

finite: do
i = i + 1
inner: if ( i < 10 ) then

print *, i
cycle finite

end if inner
if ( i > 100 ) exit finite

end do finite
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End of Day 1

Thats all for Day 1

Any Question?
In the second part of the tutorial we will cover advanced topics:

1 Arrays: Dynamic Arrays, Array Conformation concepts, Array
declarations and Operations, etc.

2 Procedures: Modules, Subroutines, Functions, etc.
3 Object Oriented Concepts: Derived Type Data, Generic

Procedures and Operator Overloading.
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Additional Help

Online Courses: http://moodle.hpc.lsu.edu
Contact us
� Email ticket system: sys-help@loni.org
� Telephone Help Desk: 225-578-0900
� Instant Messenger (AIM, Yahoo Messenger, Google Talk)

F Add "lsuhpchelp"
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Calculate pi by Numerical Integration I

We know that∫ 1

0

4.0

(1 + x2)
dx = π

So numerically, we can
approxiate pi as the sum of
a number of rectangles

N∑
i=0

F (xi)∆x ≈ π

Meadows et al, A
“hands-on” introduction to
OpenMP, SC09
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Calculate pi by Numerical Integration II

Algorithm 1 Pseudo Code for Calculating Pi
program CALCULATE_PI

step← 1/n
sum← 0
do i← 0 · · ·n

x← (i+ 0.5) ∗ step; sum← sum+ 4/(1 + x2)
end do
pi← sum ∗ step

end program
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SAXPY

SAXPY is a common operation in computations with vector
processors included as part of the BLAS routines
y ← αx+ y

Write a SAXPY code to multiply a vector with a scalar.

Algorithm 2 Pseudo Code for SAXPY
program SAXPY

n← some large number
x(1 : n)← some number say, 1
y(1 : n)← some other number say, 2
a← some other number ,say, 3
do i← 1 · · ·n

yi ← yi + a ∗ xi
end do

end program SAXPY
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Matrix Multiplication I

Most Computational code involve matrix operations such as
matrix multiplication.

Consider a matrix C which is a product of two matrices A and B:

Element i,j of C is the dot product of the ith row of A and jth

column of B
Write a MATMUL code to multiple two matrices.
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Matrix Multiplication II

Algorithm 3 Pseudo Code for MATMUL
program MATMUL

m,n← some large number ≤ 1000
Define amn, bnm, cmm

aij ← i+ j; bij ← i− j; cij ← 0
do i← 1 · · ·m

do j ← 1 · · ·m
ci,j ←

∑n
k=1 ai,k ∗ bk,j

end do
end do

end program MATMUL
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Part II

Advanced Concepts in Fortran
Programming
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Outline of Part II

7 Arrays

8 Procedures

9 Derived Types

10 Object Based Programming

11 Exercise
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Arrays

Arrays (or matrices) hold a collection of different values at the
same time.

Individual elements are accessed by subscripting the array.

A 10 element array is visualized as

1 2 3 · · · 8 9 10

while a 4x3 array as

Each array has a type and each element of holds a value of that
type.
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Array Declarations

The dimension attribute declares arrays.

Usage: dimension(lower_bound:upper_bound)

Lower bounds of one (1:) can be omitted

Examples:
integer, dimension(1:106) :: atomic_number
real, dimension(3,0:5,-10:10) :: values
character(len=3),dimension(12) :: months

Alternative form for array declaration
integer :: days_per_week(7), months_per_year(12)
real :: grid(0:100,-100:0,-50:50)
complex :: psi(100,100)

Another alternative form which can be very confusing for readers
integer, dimension(7) :: days_per_week, months_per_year(12)
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Array Terminology

real :: a(0:20), b(3,0:5,-10:10)

Rank: Number of dimensions.
a has rank 1 and b has rank 3

Bounds: upper and lower limits of each dimension of the array.
a has bounds 0:20 and b has bounds 1:3, 0:5 and -10:10

Extent: Number of element in each dimension
a has extent 21 and b has extents 3,6 and 21

Size: Total number of elements.
a has size 21 and b has 30

Shape: The shape of an array is its rank and extent
a has shape 21 and b has shape (3,6,21)

Arrays are conformable if they share a shape.
The bounds do not have to be the same
c(4:6)= d(1:3)

Modern Fortran 105/188

HPC Training: Spring 2014



Array Visualization

Define arrays a,b,c and d as follows
real,dimension(15) :: a
real,dimension(-4:0,0:2) :: b
real,dimension(5,3) :: c
real,dimension(4:8,2:4) :: d
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Array Conformance

Array or sub-arrays must conform with all other objects in an
expression

1 a scalar conforms to an array of any shape with the same value for
every element
c = 1.0 is the same as c(:,:)= 1.0

2 two array references must conform in their shape.
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Array Element Ordering

Fortran is a column major form i.e. elements are added to the
columns seqeuntially. This ordering can be changed using the
reshape intrinsic.
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Array Constructors I

Used to give arrays or sections of arrays specific values
implicit none
integer :: i
integer, dimension(10) :: ints
character(len=5),dimension(3) :: colors
real, dimension(4) :: height
height = (/5.10, 5.4, 6.3, 4.5 /)
colors = (/’red ’, ’green’, ’blue ’ /)
ints = (/ 30, (i = 1, 8), 40 /)

constructors and array sections must conform.
ints = (/ 30, (i = 1, 10), 40/) is invalid
strings should be padded so that character variables have correct
length.
use reshape intrinsic for arrays for higher ranks
(i = 1, 8) is an implied do.
You can also specify a stride in the implied do.
ints = (/ 30, (i = 1, 16, 2), 40/)

There should be no space between / and ( or )
Modern Fortran 109/188

HPC Training: Spring 2014



Array Constructors II

reshape(source, shape, pad, order) constructs an array
with a specified shape shape starting from the elements in a
given array source.

If pad is not included then the size of source has to be at least
product (shape).

If pad is included it has to have the same type as source.

If order is included, it has to be an integer array with the same
shape as shape and the values must be a permutation of
(1,2,3,...,N), where N (max value is 7) is the number of elements
in shape.


0 0 0
0 a a
a 0 a
a a 0


rcell = reshape( (/ &

0.d0, 0.d0, a, a, &
0.d0, a, 0.d0, a, &
0.d0, a, a, 0.d0 &
/),(/4,3/) )

rcell = reshape( (/ &
0.d0, 0.d0, 0.d0 &
0.d0, a , a &
a, 0.d0, a &
a, a, 0.d0 &
/),(/4,3/),order=(/2,1/)

)
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Array Constructors III

In Fortran, for a multidimensional array, the first dimension has
the fastest index while the last dimension has the slowest index
i.e. memory locations are continuous for the last dimension.

The order statement allows the programmer to change this
order. The last example above sets the memory location order
which is consistent to that in C/C++.

Arrays can be initialized as follows during variable declaration

integer, dimension(4) :: imatrix = (/ 2, 4, 6, 8/)
character(len=*),dimension(3) :: colors = (/’red ’, ’green’, ’blue ’/)}
! All strings must be the same length}
real, dimension(4) :: height = (/5.10, 5.4, 6.3, 4.5/)
integer, dimension(10) :: ints = (/ 30, (i = 1, 8), 40/)
real, dimension(4,3), parameter :: rcell = reshape( (/0.d0, 0.d0, 0.d0, 0.d0,\&

a, a, a,0.d0, a, a, a, 0.d0 /),(/4,3/),order=(/2,1/))
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Array Syntax

Arrays can be treated as a single variable when performing
operations

1 set whole array to a constant: a = 0.0
2 can use intrinsic operators between conformable arrays (or

sections)
b = c * d + b**2

this is equivalent to

b(-4,0) = c(1,1) * d(4,2) + b(-4,0)**2
b(-3,0) = c(2,1) * d(5,2) + b(-3,0)**2
· · ·
b(-4,0) = c(1,1) * d(4,2) + b(-4,0)**2
b(-4,1) = c(1,2) * d(4,3) + b(-4,1)**2
· · ·
b(-3,2) = c(4,3) * d(7,4) + b(-3,2)**2
b(-4,2) = c(5,3) * d(8,4) + b(-4,2)**2

3 elemental intrinsic functions can be used:
b = sin(c)+ cos(d)

4 All operations/functions are applied element by element
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Array Sections I

real, dimension(6:6):: a

a(1:3,1:3)= a(1:6:2,2:6:2) and

a(1:3,1:3)= 1.0 are valid

a(2:5,5)= a(2:5,1:6:2) and

a(2:5,1:6:2)= a(1:6:2,2:6:2) are not

a(2:5,5) is a 1D section while

a(2:5,1:6:2) is a 2D section

The general form for specifying sub-arrays or sections is

[<bound1>]:[<bound2>][:<stride>]

The section starts at <bound1> and ends at or before <bound2>.

<stride> is the increment by which the locations are selected, by default stride=1

<bound1>, <bound2>, <stride> must all be scalar integer expressions.
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Array Sections II

real, dimension(1:20) :: a
integer :: m,n,k

a(:) the whole array
a(3:9) elements 3 to 9 in increments of 1
a(3:9:1) as above
a(m:n) elements m through n
a(m:n:k) elements m through n in increments of k
a(15:3:-2) elements 15 through 3 in increments of -2
a(15:3) zero size array
a(m:) elements m through 20, default upper bound
a(:n) elements 1, default lower bound through n
a(::2) all elements from lower to upper bound in increments of 2
a(m:m) 1 element section
a(m) array element not a section
are valid sections.
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Array I/O I

real,dimension(4,4):: a

Arrays are printed in the order that they appear in memory

print *, a

would produce on output

a(1,1),a(2,1),a(3,1),a(4,1),a(1,2),a(2,2),· · ·,a(3,4),a(4,4)

read *, a

would read from input and assign array elements in the same
order as above

The order of array I/O can be changed using intrinsic functions
such as reshape, transpose or cshift.
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Array I/O II

Example: consider a 3x3 matrix
1 4 7
2 5 8
3 6 9

The following print statements
print *, ’array element = ’,a(3,3)
print *, ’array section = ’,a(:,2)
print *, ’sub-array = ’,a(:3,:2)
print *, ’whole array = ’,a
print *, ’array transpose = ’,transpose(a)

would produce the following output
array element = 9
array section = 4 5 6
sub-array = 1 2 3 4 5 6
whole array = 1 2 3 4 5 6 7 8 9
array transpose = 1 4 7 2 5 8 3 6 9
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Array Intrinsic Functions I

size(x[,n]) The size of x (along the nth dimension, optional)

shape(x) The shape of x

lbound(x[,n]) The lower bound of x

ubound(x[,n]) The upper bound of x

minval(x) The minimum of all values of x

maxval(x) The maximum of all values of x

minloc(x) The indices of the minimum value of x

maxloc(x) The indices of the maximum value of x

sum(x[,n]) The sum of all elements of x (along the nth dimension,
optional)

sum(x) =
∑

i,j,k,··· xi,j,k,···
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Array Intrinsic Functions II

product(x[,n]) The product of all elements of x (along the nth

dimension, optional)

prod(x) =
∏

i,j,k,··· xi,j,k,···

transpose(x) Transpose of array x: xi,j ⇒ xj,i

dot_product(x,y) Dot Product of arrays x and y:
∑

i xi ∗ yi
matmul(x,y) Matrix Multiplication of arrays x and y which can be 1

or 2 dimensional arrays: zi,j =
∑

k xi,k ∗ yk,j
conjg(x) Returns the conjugate of x: a+ ıb⇒ a− ıb

cshift(ARRAY, SHIFT, dim) perform a circular shift by SHIFT
positions to the left on array ARRAY along the dimth

dimension
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Allocatable Arrays I

Why?

At compile time we may not know the size an array needs to be

We may want to change the problem size without recompiling

The molecular dynamics code was written for 4000 atoms. If
you want to run a simulation for 256 and 1024 atoms, do you
need to recompile and create two executables?

Allocatable arrays allow us to set the size at run time.

real, allocatable :: force(:,:)

real, dimension(:), allocatable :: vel

We set the size of the array using the allocate statement.

allocate(force(natoms,3))

We may want to change the lower bound for an array
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Allocatable Arrays II

allocate(grid(-100,100))

We may want to use an array once somewhere in the program,
say during initialization. Using allocatable arrays also us to
dynamically create the array when needed and when not in use,
free up memory using the deallocate statement

deallocate(force,grid)

Sometimes, we want to check whether an array is allocated or
not at a particular part of the code

Fortran provides an intrinsic function, allocated which returns
a scalar logical value reporting the status of an array

if ( allocated(grid))deallocate(grid)

if ( .not. allocated(force))allocate(force(natoms,3)

)
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Masked Array Assignment: Where Statement

Masked array assignment is achieved using the where statement

where ( c < 2)a = b/c

the left hand side of the assignment must be array valued.

the mask (logical expression) and the right hand side of the
assignment must all conform

Fortran 95/2003 introduced the
where ... elsewhere ... end where functionality

where statement cannot be nested

! Apply PBC to coordinates
where ( coord(i,:) > boxl(:) )

coord(i,:) = coord(i,:) - boxl(:)
elsewhere ( coord(i,:) < 0d0 )

coord(i,:) = coord(i,:) + boxl(:)
end where

! Apply PBC to coordinates
do j = 1, 3

if ( coord(i,j) > boxl(j) ) then
coord(i,j) = coord(i,j) - boxl(j)

else if ( coord(i,j) < 0d0 ) then
coord(i,j) = coord(i,j) + boxl(j)

endif
end do
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Program Units I

Most programs are hundreds or more lines of code.

Use similar code in several places.

A single large program is extremely difficult to debug and
maintain.

Solution is to break up code blocks into procedures
Subroutines: Some out-of-line code that is called exactly where

it is coded
Functions: Purpose is to return a result and is called only

when the result is needed
Modules: A module is a program unit that is not executed

directly, but contains data specifications and
procedures that may be utilized by other program
units via the use statement.
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Program Units II

program main

use module1 ! specify which modules to use

implicit none ! implicit typing is not recommended
variable declarations ! declare all variables used in the program

.

.

. ! executable statements in seqeunce

call routine1(arg1,arg2,arg3) ! call subroutine routine1 with arguments

.

.

.
abc = func(arg1,arg2) ! abc is some function of arg1 and arg2

.

.

.

contains ! internal procedures are listed below

subroutine routine1(arg1,arg2) ! subroutine routine1 contents go here

.

.

.
end subroutine routine1 ! all program units must have an end statement

function func(arg1,arg2) ! function func1 contents go here
...

end function func

end program main
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Program Units III

program md

! Molecular Dynamics code for equilibration of Liquid Argon
! Author: Alex Pacheco
! Date : Jan 30, 2014

! This program simulates the equilibration of Liquid Argon
! starting from a FCC crystal structure using Lennard-Jones
! potential and velocity verlet algorithm

! This program should be the starting point to learn Modern
! Fortran.
! This program is hard coded for 4000 atoms equilibrated at
! 10K with a time step of 0.001 time units and 1000 time steps
! Lets assume that time units is femtoseconds, so total simulation
! time is 1 femtosecond

! Your objective for
! Modern Fortran Training:
! Modify this code using the Fortran Concepts learned
! 1. split code into smaller subunits, modules and/or subroutines
! 2. generalize, so that the following parameters can be read from a input file
! a. number of atoms or number of unit cells (you can’t do both)
! b. equilibration temperature
! c. time step
! d. number of time steps i.e. how long in fs do you want the simulation to run
! e. read input parameters using namelists
! You will need to make use allocatable arrays. If you do not know why, review
! training slides or ask
! 3. Can you use Modern Fortran Concepts such as derived types? If yes, program it
! 4. If you use derived types, can you overload operators? If yes, program it
! OpenMP/OpenACC Training
! Lets assume that you have completed upto step 2 from Modern Fortran objective
! Parallelize the code for OpenMP/OpenACC (can also be done from step 3 or 4)
!
! There is no time limit for completing this exercise. This exercise is for measuring
! what have you got from the training.
! Solutions are present in the separate directories for comparison.
! Hints are provided whereever needed

! As an additional exercise, use other potentials such as Morse potential and
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Program Units IV

! read from input file which potential you want to use.
! All Lennard-Jones Potential parameters are set to 1.

! Disclaimer:
! This is code can be used as an introduction to molecular dynamics. There are lot more
! concepts in MD that are not covered here.

! Parameters:
! npartdim : number of unit cells, uniform in all directions. change to nonuniform if you desire
! natom : number of atoms
! nstep : nummber of simulation time steps
! tempK : equilibration temperature
! dt : simulation time steps
! boxl : length of simulation box in all directions
! alat : lattice constant for fcc crystal
! kb : boltzmann constant, set to 1 for simplicity
! mass : mass of Ar atom, set to 1 for simplicity
! epsilon, sigma : LJ parameters, set to 1 for simplicity
! rcell : FCC unit cell
! coord, coord_t0 : nuclear positions for each step, current and initial
! vel, vel_t0 : nuclear velocities for each step
! acc, acc_t0 : nuclear acceleration for each step
! force, pener : force and potential energy at current step
! avtemp : average temperature at current time step
! scale : scaling factor to set current temperature to desired temperature
! gasdev : Returns a normally distributed deviate with zero mean and unit variance from Numerical recipes

implicit none
! Use either kind function or selected_real_kind
integer,parameter :: npartdim = 10
integer,parameter :: natom = 4.d0 * npartdim ** 3
integer,parameter :: nstep = 1000
real*8, parameter :: tempK = 10, dt = 1d-3
integer :: istep
real*8 :: boxl(3), alat
integer :: n, i, j, k, l

! Can you use derived types for coord, vel, acc and force
real*8 :: coord_t0(natom,3), coord(natom,3)
real*8 :: vel_t0(natom,3), vel(natom,3)
real*8 :: acc_t0(natom,3), acc(natom,3)
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Program Units V

real*8 :: force(natom,3), pener, mass

real*8 :: vcm(3), r(3), rr, r2, r6, f
real*8 :: avtemp, ke, kb, epsilon, sigma, rcell(3,4), scale
real*8 :: gasdev

alat = 2d0 ** (2d0/3d0)
! Hint: Array operations
do i = 1, 3

boxl(i) = npartdim * alat
end do
kb = 1.d0
mass = 1.d0
epsilon = 1.d0
sigma = 1.d0

! Create FCC unit cell
! Hint: Simplify unit cell creation, maybe in variable declaration
rcell(1,1) = 0d0
rcell(2,1) = 0d0
rcell(3,1) = 0d0
rcell(1,2) = 0.5d0 * alat
rcell(2,2) = 0.5d0 * alat
rcell(3,2) = 0d0
rcell(1,3) = 0d0
rcell(2,3) = 0.5d0 * alat
rcell(3,3) = 0.5d0 * alat
rcell(1,4) = 0.5d0 * alat
rcell(2,4) = 0d0
rcell(3,4) = 0.5d0 * alat

! Set initial coordinates, velocity and acceleration to zero
! Hint: Use Array operations
do i = 1, natom

do j = 1, 3
coord_t0(i,j) = 0d0
vel_t0(i,j) = 0d0
acc_t0(i,j) = 0d0

end do
end do
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Program Units VI

!=================================================
! Initialize coordinates and random velocities
!=================================================

! Put initialization in a seperate subroutine
! call initialize(coord_t0, vel_t0, ...)
! Create a FCC crystal structure
n = 1
do i = 1, npartdim

do j = 1, npartdim
do k = 1, npartdim

do l = 1, 4
coord_t0(n,1) = alat * dble(i - 1) + rcell(1,l)
coord_t0(n,2) = alat * dble(j - 1) + rcell(2,l)
coord_t0(n,3) = alat * dble(k - 1) + rcell(3,l)
n = n + 1

end do
end do

end do
end do

open(unit=1,file=’atom.xyz’,status=’unknown’)
write(1,’(i8)’) natom
write(1,*)
do i = 1, natom

write(1,’(a2,2x,3f12.6)’) ’Ar’, coord_t0(i,1), coord_t0(i,2), coord_t0(i,3)
end do
close(1)

! Assign initial random velocities
do i = 1, natom

do j = 1, 3
vel_t0(i,j) = gasdev()

end do
end do

! Set Linear Momentum to zero
! Hint: This is needed again below so put in a subroutine
! call linearmom(vel_t0, ...)
! First get center of mass velocity
vcm = 0d0
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Program Units VII

do i = 1, natom
do j = 1, 3

vcm(j) = vcm(j) + vel_t0(i,j)/natom
end do

end do
! Now remove center of mass velocity from all atoms
do i = 1, natom

do j = 1, 3
vel_t0(i,j) = vel_t0(i,j) - vcm(j)

end do
end do

! scale velocity to desired tempearture
! call get_temp( vel_t0, ... ) will be needed again
ke = 0d0
do i = 1, natom

do j = 1, 3
! Hint: Use dot_product function to calculate vel**2
! If using derived types, overload dot_product function
ke = ke + mass * vel_t0(i,j)**2

end do
end do
avtemp = mass * ke / ( 3d0 * kb * ( natom - 1))

print ’(a,2x,1pe15.8)’, ’Initial Average Temperature: ’, avtemp

! scale initial velocity to desired temperature
scale = sqrt( tempK / avtemp )
ke = 0d0
do i = 1, natom

do j = 1, 3
vel_t0(i,j) = vel_t0(i,j) * scale
! See Hint above on dot_product and function overloading
ke = ke + mass * vel_t0(i,j)**2

end do
end do
avtemp = mass * ke / ( 3d0 * kb * ( natom - 1))
print ’(a,2x,1pe15.8)’, ’Initial Scaled Average Temperature: ’, avtemp

!=================================================
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Program Units VIII

! MD Simulation
!=================================================

do istep = 1, nstep

! Set coordinates, velocity, acceleration and force at next time step to zero
! Hint: Use Array properties
do i = 1, natom

do j = 1, 3
coord(i,j) = 0d0
vel(i,j) = 0d0
acc(i,j) = 0d0
force(i,j) = 0d0

end do
end do
pener = 0d0

! Get new atom positions from Velocity Verlet Algorithm
! Hint: create a subroutine to do velocity verlet
! Hint: OpenMP/OpenACC
do i = 1, natom

do j = 1, 3
coord(i,j) = coord_t0(i,j) + vel_t0(i,j) * dt + 0.5d0 * acc_t0(i,j) * dt ** 2
! Apply PBC to coordinates
if ( coord(i,j) > boxl(j) ) then

coord(i,j) = coord(i,j) - boxl(j)
else if ( coord(i,j) < 0d0 ) then

coord(i,j) = coord(i,j) + boxl(j)
endif

end do
end do

! Get force at new atom positions
! Using Lennard Jones Potential
! Hint: you might want to also seperate the potential and force calculation into a separate subroutine
! this will be useful if you want to use other potentials

do i = 1, natom - 1
do j = i + 1, natom

do k = 1, 3
r(k) = coord(i,k) - coord(j,k)
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Program Units IX

! minimum image criterion
! interaction of an atom with another atom or its image within the unit cell
r(k) = r(k) - nint( r(k) / boxl(k) ) * boxl(k)

end do
! Hint: Use dot_product
rr = r(1) ** 2 + r(2) ** 2 + r(3) ** 2
r2 = 1.d0 / rr
r6 = r2 ** 3
! Lennard Jones Potential
! V = 4 * epsilon * [ (sigma/r)**12 - (sigma/r)**6 ]
! = 4 * epsilon * (sigma/r)**6 * [ (sigma/r)**2 - 1 ]
! = 4 * r**(-6) * [ r**(-2) - 1 ] for epsilon=sigma=1
! F_i = 48 * epsilon * (sigma/r)**6 * (1/r**2) * [ ( sigma/r)** 6 - 0.5 ] * i where i = x,y,z
! = 48 * r**(-8) * [ r**(-6) - 0.5 ] * i for epsilon=sigma=1
pener = pener + 4d0 * r6 * ( r6 - 1.d0 )
f = 48d0 * r2 * r6 * ( r6 - 0.5d0 )
do k = 1, 3

! use array function to obtain r(k)*f
force(i,k) = force(i,k) + r(k) * f
force(j,k) = force(j,k) - r(k) * f

end do
end do

end do

! Calculate Acceleration and Velocity at current time step
do i = 1, natom

do j = 1, 3
acc(i,j) = force(i,j) / mass
vel(i,j) = vel_t0(i,j) + 0.5d0 * (acc(i,j) + acc_t0(i,j)) * dt

end do
end do

! Set Linear Momentum to zero
! First get center of mass velocity
! See Hint above on Linear Momentum
vcm = 0d0
do i = 1, natom

do j = 1, 3
vcm(j) = vcm(j) + vel(i,j)/natom

end do
end do
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Program Units X

! Now remove center of mass velocity from all atoms
do i = 1, natom

do j = 1, 3
vel(i,j) = vel(i,j) - vcm(j)

end do
end do

! compute average temperature
! See Hint above on calculating average temperature
ke = 0d0
do i = 1, natom

do j = 1, 3
ke = ke + vel(i,j) ** 2

end do
end do
avtemp = mass * ke / ( 3d0 * kb * ( natom - 1))

print ’(a,2x,i8,2x,1pe15.8,1x,1pe15.8)’, ’Average Temperature: ’ , istep, avtemp, pener

scale = sqrt ( tempk/ avtemp )
! Reset for next time step
! Hint: Use Array properties
do i = 1, natom

do j = 1, 3
acc_t0(i,j) = acc(i,j)
coord_t0(i,j) = coord(i,j)
! scale velocity to desired temperature
vel_t0(i,j) = vel(i,j) * scale

end do
end do

! Write current coordinates to xyz file for visualization
open(unit=1,file=’atom.xyz’,position=’append’)
write(1,’(i8)’) natom
write(1,*)
do i = 1, natom

write(1,’(a2,2x,3f12.6)’) ’Ar’, coord_t0(i,1), coord_t0(i,2), coord_t0(i,3)
end do
close(1)

end do
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Program Units XI

end program md

double precision function gasdev()
implicit none
real*8 :: v1, v2, fac, rsq
real*8, save :: gset
logical, save :: available = .false.

if (available) then
gasdev = gset
available = .false.

else
do

call random_number(v1)
call random_number(v2)
v1 = 2.d0 * v1 - 1.d0
v2 = 2.d0 * v2 - 1.d0
rsq = v1**2 + v2**2
if ( rsq > 0.d0 .and. rsq < 1.d0 ) exit

end do
fac = sqrt(-2.d0 * log(rsq) / rsq)
gasdev = v1 * fac
gset = v2 * fac
available = .true.

end if
end function gasdev
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Subroutines I

Call Statement:
The call statement evaluates its arguments and transfers control
to the subroutine
Upon return, the next statement is executed.

SUBROUTINE Statement:
The subroutine statement declares the procedure and its
arguments.
These are also known as dummy arguments.

The subroutine’s interface is defined by
The subroutine statement itself
The declarations of its dummy arguments
Anything else that the subroutine uses
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Subroutines II

Statement Order
1 A subroutine statement starts a subroutine
2 Any use statements come next
3 implicit none comes next, followed by
4 rest of the declarations,
5 executable statements
6 End with a end subroutine statement

Dummy Arguments
Their names exist only in the procedure and are declared as local
variables.
The dummy arguments are associated with the actual arguments
passed to the subroutines.
The dummy and actual argument lists must match, i.e. the
number of arguments must be the same and each argument must
match in type and rank.
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Subroutines III

subroutine verlet(coord, coord_t0, vel, vel_t0, acc, acc_t0, force, pener
)

use precision
use potential
use param, only : natom, mass, dt, boxl, pot
implicit none
real(dp), dimension(:,:), intent(in) :: coord_t0, vel_t0, acc_t0
real(dp), dimension(:,:), intent(out) :: coord, vel, acc, force
real(dp), intent(out) :: pener
integer(ip) :: i, j, k
real(dp) :: epot
real(dp) :: r(3), f(3)

! Set coordinates, velocity, acceleration and force at next time step
to zero

coord = 0d0 ; vel = 0d0 ; acc = 0d0 ; force = 0d0
pener = 0d0

! Get new atom positions from Velocity Verlet Algorithm
coord = coord_t0 + vel_t0 * dt + 0.5d0 * acc_t0 * dt ** 2
do i = 1, natom

! Apply PBC to coordinates
where ( coord(i,:) > boxl(:) )

coord(i,:) = coord(i,:) - boxl(:)
elsewhere ( coord(i,:) < 0d0 )

coord(i,:) = coord(i,:) + boxl(:)
end where

end do

! Get force at new atom positions
do i = 1, natom - 1

do j = i + 1, natom
r(:) = coord(i,:) - coord(j,:)
! minimum image criterion
r = r - nint( r / boxl ) * boxl
select case(pot)
case(’mp’)

call morse( r, f, epot )
case default

call lennard_jones( r, f, epot )
end select
pener = pener + epot
force(i,:) = force(i,:) + f(:)
force(j,:) = force(j,:) - f(:)

end do
end do

! Calculate Acceleration and Velocity at current time step
acc = force / mass
vel = vel_t0 + 0.5d0 * ( acc + acc_t0 ) * dt

end subroutine verlet

program md

· · ·

real(dp), dimension(:,:), allocatable :: coord_t0, coord
real(dp), dimension(:,:), allocatable :: vel_t0, vel
real(dp), dimension(:,:), allocatable :: acc_t0, acc, force
real(dp) :: pener

interface
· · ·
subroutine verlet(coord, coord_t0, vel_t0, vel, acc_t0, acc, force,

pener)
use precision
implicit none
real(dp), dimension(:,:), intent(in) :: coord_t0, vel_t0, acc_t0
real(dp), dimension(:,:), intent(out) :: coord, vel, acc, force
real(dp), intent(out) :: pener

end subroutine verlet
· · ·

end interface

· · ·

do istep = 1, nstep

! Set coordinates, velocity, acceleration and force at next time
step to zero

coord = 0d0 ; vel = 0d0 ; acc = 0d0
force = 0d0 ; pener = 0d0

! Get new atom positions from Velocity Verlet Algorithm
call verlet(coord, coord_t0, vel_t0, vel, acc_t0, acc, force, pener)

· · ·
end do

! Free up memory
deallocate(coord_t0,vel_t0,acc_t0,coord,vel,acc,force)

end program md
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Internal Procedures

Internal procedures appear just before the last end statement and
are preceeded by the contains statement.

Internal procedures can be either subroutines or functions which
can be accessed only by the program, subroutine or module in
which it is present

Internal procedures have declaration of variables passed on from
the parent program unit

If an internal procedure declares a variable which has the same
name as a variable from the parent program unit then this
supersedes the variable from the outer scope for the length of the
procedure.
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Functions

functions operate on the same principle as subroutines
The only difference is that function returns a value and does not
involve the call statement

module potential
use precision
implicit none
real(dp) :: r2, r6, d2, d
real(dp), parameter :: de = 0.176d0, a = 1.4d0, re = 1d0
real(dp) :: exparre

contains
subroutine lennard_jones(r,f,p)
! Lennard Jones Potential
! V = 4 * epsilon * [ (sigma/r)**12 - (sigma/r)**6 ]
! = 4 * epsilon * (sigma/r)**6 * [ (sigma/r)**2 - 1 ]
! = 4 * r**(-6) * [ r**(-2) - 1 ] for epsilon=sigma=1
! F_i = 48 * epsilon * (sigma/r)**6 * (1/r**2) * [ ( sigma/r)** 6

- 0.5 ] * i where i = x,y,z
! = 48 * r**(-8) * [ r**(-6) - 0.5 ] * i for epsilon=sigma=1

implicit none
implicit none
real(dp), dimension(:), intent(in) :: r
real(dp), dimension(:), intent(out) :: f
real(dp), intent(out) :: p

r2 = 1.d0 / dot_product(r,r)
r6 = r2 ** 3

f = dvdr_lj(r2, r6) * r
p = pot_lj(r2, r6)

end subroutine lennard_jones

subroutine morse(r,f,p)
! Morse Potential
! V = D * [ 1 - exp(-a*(r - re)) ]^2
! F_i = 2*D * [ 1 - exp(-a*(r - re)) ] * a exp(-a*(r-re)) * i / r
implicit none
real(dp), dimension(:), intent(in) :: r
real(dp), dimension(:), intent(out) :: f

real(dp), intent(out) :: p

d2 = dot_product(r,r)
d = sqrt(d2)
exparre = exp( -a * (d - re ))

f = dvdr_mp(exparre) * r
p = pot_mp(exparre)

end subroutine morse

function pot_lj(r2, r6)
implicit none
real(dp), intent(in) :: r2, r6
real(dp) :: pot_lj
pot_lj = 4d0 * r6 * ( r6 - 1.d0 )

end function pot_lj
function pot_mp(exparre)

implicit none
real(dp), intent(in) :: exparre
real(dp) :: pot_mp
pot_mp = de * ( 1d0 - exparre )**2

end function pot_mp

function dvdr_lj(r2,r6)
implicit none
real(dp), intent(in) :: r2, r6
real(dp) :: dvdr_lj
dvdr_lj = 48d0 * r2 * r6 * ( r6 - 0.5d0 )

end function dvdr_lj
function dvdr_mp(exparre)

implicit none
real(dp), intent(in) :: exparre
real(dp) :: dvdr_mp
dvdr_mp = 2d0 * de * a * (1d0 - exparre) * exparre

end function dvdr_mp
end module potential
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Array-valued Functions

function can also return arrays

module potential
use precision
implicit none
real(dp) :: r2, r6, d2, d
real(dp), parameter :: de = 0.176d0, a = 1.4d0, re = 1d0
real(dp) :: exparre

contains
subroutine lennard_jones(r,f,p)

! Lennard Jones Potential
! V = 4 * epsilon * [ (sigma/r)**12 - (sigma/r)**6 ]
! = 4 * epsilon * (sigma/r)**6 * [ (sigma/r)**2 - 1 ]
! = 4 * r**(-6) * [ r**(-2) - 1 ] for epsilon=sigma=1
! F_i = 48 * epsilon * (sigma/r)**6 * (1/r**2) * [ (

sigma/r)** 6 - 0.5 ] * i where i = x,y,z
! = 48 * r**(-8) * [ r**(-6) - 0.5 ] * i for epsilon

=sigma=1 implicit none
implicit none
real(dp), dimension(:), intent(in) :: r
real(dp), dimension(:), intent(out) :: f
real(dp), intent(out) :: p

r2 = 1.d0 / dot_product(r,r)
r6 = r2 ** 3

f = dvdr_lj(r2, r6, r)
p = pot_lj(r2, r6)

end subroutine lennard_jones

subroutine morse(r,f,p)
! Morse Potential
! V = D * [ 1 - exp(-a*(r - re)) ]^2
! F_i = 2*D * [ 1 - exp(-a*(r - re)) ] * a exp(-a*(r-re))

* i / r
implicit none
real(dp), dimension(:), intent(in) :: r
real(dp), dimension(:), intent(out) :: f

real(dp), intent(out) :: p

d2 = dot_product(r,r)
d = sqrt(d2)
exparre = exp( -a * (d - re ))

f = dvdr_mp(exparre,r)
p = pot_mp(exparre)

end subroutine morse

function pot_lj(r2, r6)
implicit none
real(dp), intent(in) :: r2, r6
real(dp) :: pot_lj
pot_lj = 4d0 * r6 * ( r6 - 1.d0 )

end function pot_lj
function pot_mp(exparre)
implicit none
real(dp), intent(in) :: exparre
real(dp) :: pot_mp
pot_mp = de * ( 1d0 - exparre )**2

end function pot_mp

function dvdr_lj(r2,r6,r)
implicit none
real(dp), intent(in) :: r2, r6, r
real(dp), dimension(size(r)) :: dvdr_lj
dvdr_lj = 48d0 * r2 * r6 * ( r6 - 0.5d0 ) * r

end function dvdr_lj
function dvdr_mp(exparre,r)
implicit none
real(dp), intent(in) :: exparre, r
real(dp), dimension(size(r)) :: dvdr_mp
dvdr_mp = 2d0 * de * a * (1d0 - exparre) * exparre * r

end function dvdr_mp
end module potential
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Recursive Procedures

In Fortran 90, recursion is supported as a feature
1 recursive procedures call themselves
2 recursive procedures must be declared explicitly
3 recursive function declarations must contain a result

keyword, and
4 one type of declaration refers to both the function name and the

result variable.

program fact

implicit none
integer :: i
print *, ’enter integer whose factorial you want to calculate

’
read *, i

print ’(i5,a,i20)’, i, ’! = ’, factorial(i)

contains
recursive function factorial(i) result(i_fact)

integer, intent(in) :: i
integer :: i_fact

if ( i > 0 ) then
i_fact = i * factorial(i - 1)

else
i_fact = 1

end if
end function factorial

end program fact

[apacheco@qb4 Exercise] ./factorial
enter integer whose factorial you want to calculate
10

10! = 3628800
[apacheco@qb4 Exercise] ./fact1
Enter an integer < 15
10
10!= 3628800
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Argument Association

Recall from MD code example the invocation

call linearmom(vel_t0)

and the subroutine declaration

subroutine linearmom(vel)

vel_t0 is an actual argument and is associated with the dummy
argument vel

In subroutine linearmom, the name vel is an alias for vel_t0

If the value of a dummy argument changes, then so does the
value of the actual argument

The actual and dummy arguments must correspond in type, kind
and rank.
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Local Objects

In subroutine linearmom,

i and vcm are local objects.
Local Objects
� are created each time a

procedure is invoked
� are destroyed when the

procedure completes
� do not retain their values

between calls
� do not exist in the programs

memory between calls.

Example

subroutine linearmom(vel)
use precision
use param, only : natom
implicit none
real(dp), dimension(:,:), intent(inout) :: vel
integer(ip) :: i
real(dp) :: vcm(3)

! First get center of mass velocity
vcm = 0d0
do i = 1, 3

vcm(i) = sum(vel(:,i))
end do
vcm = vcm / real(natom,dp)

! Now remove center of mass velocity from all atoms
do i = 1, natom

vel(i,:) = vel(i,:) - vcm(:)
end do

end subroutine linearmom
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Optional & Keyword Arguments I

Optional Arguments
allow defaults to be used for missing arguments
make some procedures easier to use

once an argument has been omitted all subsequent arguments
must be keyword arguments
the present intrinsic can be used to check for missing arguments
if used with external procedures then the interface must be
explicit within the procedure in which it is invoked.

subroutine get_temp(vel,boltz)
use precision
use param, only : natom, avtemp, mass, kb
implicit none
real(dp), dimension(:,:), intent(in) :: vel
real(dp), optional :: boltz
integer(ip) :: i
real(dp) :: ke

if (present(boltz))kb = boltz
ke = 0d0
do i = 1, natom

ke = ke + dot_product(vel(i,:),vel(i,:))
end do
avtemp = mass * ke / ( 3d0 * kb * real( natom - 1, dp))

end subroutine get_temp

subroutine initialize(coord_t0, vel_t0, acc_t0)
· · ·
interface

subroutine linearmom(vel)
use precision
implicit none
real(dp), dimension(:,:), intent(inout) :: vel

end subroutine linearmom
subroutine get_temp(vel, boltz)

use precision
implicit none
real(dp), dimension(:,:), intent(in) :: vel
real(dp), optional :: boltz

end subroutine get_temp
end interface

· · ·
call get_temp(vel_t0)

· · ·
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Optional & Keyword Arguments II

Keyword Arguments
allow arguments to be specified in any order
makes it easy to add an extra argument - no need to modify any
calls
helps improve readability of the program
are used when a procedure has optional arguments

once a keyword is used, all subsequent arguments must be
keyword arguments

if used with external procedures then the interface must be
explicit within the procedure in which it is invoked.

subroutine initialize(coord, vel, acc)

...
real(dp),dimension(:,:), intent(out) :: coord, vel

, acc
...

end subroutine initialize

program md
...

call initialize(coord_t0, vel_t0, acc_t0)
...

end program md
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Optional & Keyword Arguments III

subroutine initialize can be invoked using
1 using the positional argument invocation
2 using keyword arguments

program md
· · ·
interface

subroutine initialize(coord, vel, acc)
use precision
implicit none
real(dp), dimension(:,:), intent(out) :: coord, vel, acc

end subroutine initialize
end interface

· · ·
! All three calls give the same result.
call initialize(coord_t0, vel_t0, acc_t0)
call initialize(coord=coord_t0, acc=acc_t0, vel=vel_t0)
call initialize(coord_t0, acc=acc_t0, vel=vel_t0)

· · ·
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Dummy Array Arguments

There are two main types of dummy array argument:
1 explicit-shape: all bounds specified

real, dimension(4,4), intent(in):: explicit_shape

The actual argument that becomes associated with an explicit
shape dummy must conform in size and shape

2 assumed-shape: no bounds specified, all inherited from the actual
argument
real, dimension(:,:), intent(out):: assumed_shape

An explicit interface must be provided
3 assumed-size: final dimension is specified by ∗

real :: assumed_size(dim1,dim2,*)

Commomly used in FORTRAN, use assumed-shape arrays in
Modern Fortran.

dummy arguments cannot be (unallocated) allocatable arrays.
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Explicit-shape Arrays

program md
use precision
use param
implicit none
integer(ip) :: n, i, j, k, l
real(dp), dimension(:,:), allocatable :: coord_t0, vel_t0, acc_t0
real(dp), dimension(:,:), allocatable :: coord, vel, acc, force
· · ·
! Allocate arrays
allocate(coord(natom,3), coord_t0(natom,3))
allocate(vel(natom,3), vel_t0(natom,3))
allocate(acc(natom,3), acc_t0(natom,3))
allocate(force(natom,3))

!=================================================
! Initialize coordinates and random velocities
!=================================================

call initialize(coord_t0, vel_t0, acc_t0)

· · ·
end program md

subroutine initialize(coord_t0, vel_t0, acc_t0)
use precision
use param, only : natom, npartdim, alat, rcell
implicit none
real(dp), dimension(natom,3) :: coord_t0, vel_t0, acc_t0
integer(ip) :: n, i, j, k, l

! Set initial coordinates, velocity and acceleration to zero
coord_t0 = 0d0 ; vel_t0 = 0d0 ; acc_t0 = 0d0
· · ·

end subroutine initialize
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Assumed-Shape Arrays

program md
use precision
use param
implicit none
integer(ip) :: n, i, j, k, l
real(dp), dimension(:,:), allocatable :: coord_t0, vel_t0, acc_t0
real(dp), dimension(:,:), allocatable :: coord, vel, acc, force
· · ·
interface

subroutine initialize(coord_t0, vel_t0, acc_t0)
use precision
implicit none
real(dp), dimension(:,:), intent(out) :: coord_t0, vel_t0, acc_t0

end subroutine initialize
· · ·

end interface
· · ·
! Allocate arrays
allocate(coord(natom,3), coord_t0(natom,3))
allocate(vel(natom,3), vel_t0(natom,3))
allocate(acc(natom,3), acc_t0(natom,3))
allocate(force(natom,3))

!=================================================
! Initialize coordinates and random velocities
!=================================================

call initialize(coord_t0, vel_t0, acc_t0)
· · ·

end program md

subroutine initialize(coord_t0, vel_t0, acc_t0)
use precision
use param, only : natom, npartdim, alat, rcell
implicit none
real(dp), dimension(:,:), intent(out) :: coord_t0, vel_t0, acc_t0
integer(ip) :: n, i, j, k, l

! Set initial coordinates, velocity and acceleration to zero
coord_t0 = 0d0 ; vel_t0 = 0d0 ; acc_t0 = 0d0
· · ·

end subroutine initialize
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Automatic Arrays

Automatic Arrays: Arrays which depend on dummy arguments
1 their size is determined by dummy arguments
2 they cannot have the save attribute or be initialized.

The size intrinsic or dummy arguments can be used to declare
automatic arrays.
program main

implicit none
integer :: i,j
real, dimension(5,6) :: a

.

.

.
call routine(a,i,j)

.

.

.
contains
subroutine routine(c,m,n)

integer :: m,n
real, dimension(:,:), intent(inout) :: c ! assumed shape array
real :: b1(m,n) ! automatic array
real, dimension(size(c,1),size(c,2)) :: b2 ! automatic array

.

.

.
end subroutine routine

end program main
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Save Attribute and Arrays

Declaring a variable (or array) as save gives it a static storage
memory.
i.e information about variables is retained in memory between
procedure calls.
subroutine something(iarg1)

implicit none
integer, intent(in) :: iarg1
real,dimension(:,:),allocatable,save :: a
real, dimension(:,:),allocatable :: b

.

.

.
if (.not.allocated(a))allocate(a(i,j))
allocate(b(j,i))

.

.

.
deallocate(b)

end subroutine something

Array a is saved when something exits.
Array b is not saved and needs to be allocated every time in
something and deallocated, to free up memory, before
something exits.
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Intent

intent attribute was introduced in Fortran 90 and is
recommended as it

1 allows compilers to check for coding errors
2 facilitates efficient compilation and optimization

Declare if a parameter is
� Input: intent(in)
� Output: intent(out)
� Both: intent(inout)

subroutine verlet(coord, coord_t0, vel_t0, vel, acc_t0, acc, force, pener)
use precision
use param, only : natom, mass, boxl, dt
implicit none
real(dp),dimension(:,:), intent(in) :: coord_t0, vel_t0, acc_t0
real(dp),dimension(:,:), intent(out) :: coord, vel, acc, force
real(dp), intent(out) :: pener

.

.

.
end subroutine verlet

A variable declared as intent(in) in a procedure cannot be
changed during the execution of the procedure (see point 1
above)
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Interfaces I

The interface statement is the first statement in an interface
block.

The interface block is a powerful structure that was introduced
in FORTRAN 90.

When used, it gives a calling procedure the full knowledge of the
types and characteristics of the dummy arguments that are used
inside of the procedure that it references.

This can be a very good thing as it provides a way to execute
some safety checks when compiling the program.

Because the main program knows what argument types should
be sent to the referenced procedure, it can check to see whether
or not this is the case.

If not, the compiler will return an error message when you
attempt to compile the program.
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Interfaces II

subroutine verlet(coord, coord_t0, vel, vel_t0, acc, acc_t0,
force, pener)

use precision
use param, only : natom, mass, dt, boxl, pot
implicit none
real(dp), dimension(:,:), intent(in) :: coord_t0, vel_t0,

acc_t0
real(dp), dimension(:,:), intent(out) :: coord, vel, acc,

force
real(dp), intent(out) :: pener
integer(ip) :: i

interface
subroutine get_pot_force(coord, force, pener)

use precision
implicit none
real(dp), dimension(:,:), intent(in) :: coord
real(dp), dimension(:,:), intent(out) :: force
real(dp), intent(out) :: pener

end subroutine get_pot_force
end interface

! Set coordinates, velocity, acceleration and force at next
time step to zero

coord = 0d0 ; vel = 0d0 ; acc = 0d0

! Get new atom positions from Velocity Verlet Algorithm
coord = coord_t0 + vel_t0 * dt + 0.5d0 * acc_t0 * dt ** 2
do i = 1, natom

! Apply PBC to coordinates
where ( coord(i,:) > boxl(:) )

coord(i,:) = coord(i,:) - boxl(:)
elsewhere ( coord(i,:) < 0d0 )

coord(i,:) = coord(i,:) + boxl(:)
end where

end do

! Get Potential and force at new atom positions
call get_pot_force(coord, force, pener)

! Calculate Acceleration and Velocity at current time step
acc = force / mass
vel = vel_t0 + 0.5d0 * ( acc + acc_t0 ) * dt

end subroutine verlet

subroutine get_pot_force(coord, force, pener)
use precision
use potential
use param, only : natom, boxl
implicit none
real(dp), dimension(:,:), intent(in) :: coord
real(dp), dimension(:,:), intent(out) :: force
real(dp), intent(out) :: pener
integer(ip) :: i, j
real(dp) :: epot
real(dp) :: r(3), f(3)

pener = 0d0
force = 0d0
do i = 1, natom - 1

do j = i + 1, natom
r(:) = coord(i,:) - coord(j,:)
! minimum image criterion
r = r - nint( r / boxl ) * boxl
select case(pot)
case(’mp’)

call morse( r, f, epot )
case default

call lennard_jones( r, f, epot )
end select
pener = pener + epot
force(i,:) = force(i,:) + f(:)
force(j,:) = force(j,:) - f(:)

end do
end do

end subroutine get_pot_force
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Interfaces III

subroutine verlet(coord, coord_t0, vel, vel_t0, acc, acc_t0,
force, pener)

use precision
use param, only : natom, mass, dt, boxl, pot
implicit none
real(dp), dimension(:,:), intent(in) :: coord_t0, vel_t0,

acc_t0
real(dp), dimension(:,:), intent(out) :: coord, vel, acc,

force
real(dp), intent(out) :: pener
integer(ip) :: i

! Set coordinates, velocity, acceleration and force at next
time step to zero

coord = 0d0 ; vel = 0d0 ; acc = 0d0

! Get new atom positions from Velocity Verlet Algorithm
coord = coord_t0 + vel_t0 * dt + 0.5d0 * acc_t0 * dt ** 2
do i = 1, natom

! Apply PBC to coordinates
where ( coord(i,:) > boxl(:) )

coord(i,:) = coord(i,:) - boxl(:)
elsewhere ( coord(i,:) < 0d0 )

coord(i,:) = coord(i,:) + boxl(:)
end where

end do

! Get Potential and force at new atom positions
call get_pot_force(coord, force, pener)

! Calculate Acceleration and Velocity at current time step
acc = force / mass
vel = vel_t0 + 0.5d0 * ( acc + acc_t0 ) * dt

contains
subroutine get_pot_force(coord, force, pener)
use potential
implicit none
real(dp), dimension(:,:), intent(in) :: coord
real(dp), dimension(:,:), intent(out) :: force
real(dp), intent(out) :: pener
integer(ip) :: i, j
real(dp) :: epot
real(dp) :: r(3), f(3)

pener = 0d0
force = 0d0
do i = 1, natom - 1

do j = i + 1, natom
r(:) = coord(i,:) - coord(j,:)
! minimum image criterion
r = r - nint( r / boxl ) * boxl
select case(pot)
case(’mp’)

call morse( r, f, epot )
case default

call lennard_jones( r, f, epot )
end select
pener = pener + epot
force(i,:) = force(i,:) + f(:)
force(j,:) = force(j,:) - f(:)

end do
end do

end subroutine get_pot_force

end subroutine verlet

Here since subroutine get_pot_force is an internal procedure, no
interface is required since it is already implicit and all variable declarations are
carried over from subroutine verlet
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Modules I

Modules were introduced in Fortran 90 and have a wide range of
applications.

Modules allow the user to write object based code.

A module is a program unit whose functionality can be exploited
by other programs which attaches to it via the use statement.
A module can contain the following

1 global object declaration: replaces Fortran 77 COMMON and
INCLUDE statements

2 interface declaration: all external procedures using assumed
shape arrrays, intent and keyword/optional arguments must have
an explicit interface

3 procedure declaration: include procedures such as subroutines or
functions in modules. Since modules already contain explicit
interface, an interface statement is not required
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Modules II

module precision
implicit none
save
integer, parameter :: ip = selected_int_kind(15)
integer, parameter :: dp = selected_real_kind(15)

end module precision

module param
use precision
implicit none

integer(ip) :: npartdim, natom, nstep, istep
real(dp) :: tempK, dt, boxl(3), alat, mass
real(dp) :: avtemp, ke, kb, epsilon, sigma, scale
real(dp),dimension(3,4) :: rcell = reshape( (/ &

0.0D+00, 0.0D+00, 0.0D+00, &
0.5D+00, 0.5D+00, 0.0D+00, &
0.0D+00, 0.5D+00, 0.5D+00, &
0.5D+00, 0.0D+00, 0.5D+00 /), (/ 3, 4 /) )

character(len=2) :: pot
end module param

within a module, functions and subroutines are called module
procedures.
module procedures can contain internal procedures
module objects that retain their values should be given a save

attribute
modules can be used by procedures and other modules, see
module precision.
modules can be compiled separately. They should be compiled
before the program unit that uses them.
Observe that in my examples with all code in single file, the
modules appear before the main program and subroutines.
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Modules III

Visibility of module procedures
By default, all module procedures are public i.e. they can
accessed by program units that use the module using the use

statement

To restrict the visibility of the module procedure only to the
module, use the private statement

In the module potential, all functions which calculate forces
can be declared as private as follows
module potential
use precision
implicit none
real(dp) :: r2, r6, d2, d
real(dp), parameter :: de = 0.176d0, a = 1.4d0, re = 1d0
real(dp) :: exparre
public :: lennard_jones, morse, pot_lj, pot_mp
private :: dvdr_lj, dvdr_mp

contains
· · ·

end module potential
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Modules IV

Program Units in the MD code can directly call
lennard_jones, morse, pot_lj and pot_mp but cannot access
dvdr_lj and dvdr_mp
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Modules V

Using Modules
The use statement names a module whole public definitions are
to be made accessible.
To use all variables from module param in program md:

program md
use param
...

end program md

module entities can be renamed
To rename pot and dt to more user readable variables:

use param, pot => potential, dt => timestep

It’s good programming practice to use only those variables from
modules that are neccessary to avoid name conflicts and
overwrite variables.
For this, use the use <modulename>, only statement

subroutine verlet(coord,force,pener)
use param,only : dp,npart,boxl,tstep
...

end subroutine verlet
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Compiling Modules I

Consider the MD code containing a main program md.f90,
modules precision.f90, param.f90 and
potential.f90 and subroutines initialize.f90,
verlet.f90, linearmom.f90 and get_temp.f90.

In general, the code can be compiled as
ifort -o md md.f90 precision.f90 param.f90 potential.f90 initialize.f90 \

verlet.f90 linearmom.f90 get_temp.f90

Most compilers are restrictive in the order of compilation.
The order in which the sub programs should be compiled is

1 Modules that do not use any other modules.
2 Modules that use one or more of the modules already compiled.
3 Repeat the above step until all modules are compiled and all dependencies are

resolved.
4 Main program followed by all subroutines and functions (if any).

In the MD code, the module precision does not depend on
any other modules and should be compiled first
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Compiling Modules II

The modules param and potential only depend on
precision and can be compiled in any order

The main program and subroutines can then be compiled
ifort -o md md.f90 precision.f90 param.f90 potential.f90 initialize.f90 \

verlet.f90 linearmom.f90 get_temp.f90

modules are designed to be compiled independently of the main
program and create a .mod files which need to be linked to the
main executable.
ifort -c precision.f90 param.f90 potential.f90

creates precision.mod param.mod potential.mod

The main program can now be compiled as
ifort -o md md.f90 initialize.f90 verlet.f90 linearmom.f90 get_temp.f90 \

-I{path to directory containing the .mod files}

The Makefile tutorial will cover this aspect in more detail.
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Derived Types I

Defined by user (also called structures)

Can include different intrinsic types and other derived types

Components are accessed using the percent operator (%)

Only assignment operator (=) is defined for derived types

Can (re)define operators - see operator overloading

Derived type definitions should be placed in a module.

Previously defined type can be used as components of other
derived types.
type line_type
real :: x1, y1, x2, y2

end type line_type

type(line_type) :: a, b

type vector_type
type(line_type) :: line ! defines x1,y1,x2,y2
integer :: direction ! 0=nodirection, 1=(x1,y1)->(x2,y2)

end type vector_type

type(vector_type) :: c, d
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Derived Types II

values can be assigned to derived types in two ways
1 component by component

individual component may be selected using the % operator
2 as an object

the whole object may be selected and assigned to using a
constructor
a%x1 = 0.0 ; a%x2 = 0.5 ; a%y1 = 0.0 ; a%y2 = 0.5

c%direction = 0
c%line%x1 = 0.0 ; c%line%x2 = 1.0
c%line%y1 = -1.0 ; c%line%y2 = 0.0

b = line_type(0.0, 0.0, 0.5, 0.5)

d%line = line_type(0.0, -1.0, 1.0, 0.0)}
d = vector_type( d%line, 1 )
! or
d = vector_type( line_type(0.0, -1.0, 1.0, 0.0), 1)
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Derived Types III

Assigment between two objects of the same derived type is
intrinsically defined

In the previous example: a = b is allowed but a = c is not.

coord_t0(n)%x = alat * real(i - 1, dp) + rcell(1,l)
coord_t0(n)%y = alat * real(j - 1, dp) + rcell(2,l)
coord_t0(n)%z = alat * real(k - 1, dp) + rcell(3,l)
OR

x = alat * real(i - 1, dp) + rcell(1,l)
y = alat * real(j - 1, dp) + rcell(2,l)
z = alat * real(k - 1, dp) + rcell(3,l)
coord_t0(n) = dynamics( x, y, z )

I/O on Derived Types
Can do normal I/O on derived types
print *, a will produce the result 1.00.51.5
print *, c will produce the result 2.00.00.00.0

Arrays and Derived Types
Can define derived type objects which contain non-allocatable
arrays and arrays of derived type objects
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Derived Types IV

Derived Type Valued Functions
Functions can return results of an arbitrary defined type.

Private Derived Types
A derived type can be wholly private or some of its components
hidden
module data
type :: position
real, private :: x, y, z

end type position
type, private :: acceleration
real, private :: x, y, z

end type acceleration
contains

.

.

.
end module data

Program units that use data have position exported but not it’s
components x,y,z and the derived type acceleration

Modern Fortran 164/188

HPC Training: Spring 2014



Generic Procedures I

In Fortran, most intrinsic functions are generic in that their type
is determined by their argument(s)
For example, the abs(x) intrinsic function comprises of

1 cabs : called when x is complex
2 abs : called when x is real
3 iabs : called when x is integer

These sets of functions are called overload sets

Fortran users may define their own overload sets in an
interface block
interface clear

module procedure clear_real, clear_type, clear_type1D
end interface

The generic name clear is associated with specific names
clear_real, clear_type, clear_type1D
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Generic Procedures II

module dynamic_data
...
type dynamics

real(dp) :: x,y,z
end type dynamics
interface dot_product

module procedure dprod
end interface dot_product
interface clear

module procedure clear_real, clear_type,
clear_type1D

end interface
contains

function dprod(a,b) result(c)
type(dynamics),intent(in) :: a,b
real(dp) :: c
c = a%x * b%x + a%y * b%y + a%z * b%z

end function dprod
subroutine clear_real(a)
real(dp),dimension(:,:),intent(out) :: a
a = 0d0

end subroutine clear_real

subroutine clear_type(a)
type(dynamics),dimension(:),intent(out) ::

a
a%x = 0d0 ; a%y = 0d0 ; a%z = 0d0

end subroutine clear_type

subroutine clear_type1D(a)
type(dynamics),intent(out) :: a
a%x = 0d0 ; a%y = 0d0 ; a%z = 0d0

end subroutine clear_type1D
end module dynamic_data

program md
use dynamic_data
...
type(dynamics),dimension(:),allocatable :: coord,coord

0,vel,force
...
allocate(coord(npart),coord0(npart),vel(npart),force(

npart))
...

do i=1,npart
v2t = v2t + dot_product(vel(i),vel(i))

enddo
...

end program md

subroutine setup(coord,vel,coord0)
...
type(dynamics) :: vt
...
call clear(coord)
call clear(coord0)
call clear(vel)
...
call clear(vt)
...

end subroutine setup

Modern Fortran 166/188

HPC Training: Spring 2014



Generic Procedures III

The dot_product intrinsic function is overloaded to inlcude
derived types

The procedure clear is overloaded to set all components of
derived types and all elements of 2D real arrays to zero.
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Operator Overloading I

Intrinsic operators such as +, -, * and / can be overloaded to
apply to all types of data

Recall, for derived types only the assignment (=) operator is
defined

In the MD code, coord_t(i)= coord_t0(i) is well defined, but
vel_t(i)= vel_t(i)* scalef is not
Operator overloading as follows

1 specify the generic operator symbol in an
interface operator statement

2 specify the overload set in a generic interface
3 declare the module procedures (functions) which define

how the operations are implemented.
4 these functions must have one or two non-optional arguments

with intent(in) which correspond to monadic or dyadic
operators
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Operator Overloading II

module dynamic_data
...
type dynamics

real(dp) :: x,y,z
end type dynamics

interface operator (*)
module procedure scale_tr, scale_rt

end interface operator (*)
interface operator (+)

module procedure add
end interface operator (+)

contains
type(dynamics) function scale_tr(a,b) result(c)
type(dynamics),intent(in)::a
real(dp),intent(in) :: b
type(dynamics) :: c
c%x = a%x * b
c%y = a%y * b

c%z = a%z * b
end function scale_tr
type(dynamics) function scale_rt(b,a) result(c)
type(dynamics),intent(in)::a
real(dp),intent(in) :: b
type(dynamics) :: c
c%x = b * a%x
c%y = b * a%y
c%z = b * a%z

end function scale_rt
type(dynamics) function add(a,b) result(c)
type(dynamics),intent(in) :: a,b
type(dynamics) :: c
c%x = a%x + b%x
c%y = a%y + b%y
c%z = a%z + b%z

end function add
end module dynamic_data

The following operations are now defined for derived types
a,b,c and scalar r
c = a * r
c = r * a
c = a + b
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Operator Overloading III

If operator overloading is not defined, the above operations
would have to be executed as follows whereever needed
c%x = a%x * r
c%y = a%y * r
c%z = a%z * r

c%x = r * a%x
c%y = r * a%y
c%z = r * a%z

c%x = a%x + b%x
c%y = a%y + b%y
c%z = a%z + b%z
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OOP Concepts

Fortran 90 has some Object Oriented facilites such as
1 data abstraction: user defined types (covered)
2 data hiding - private and public attributes (covered)
3 encapsulation - modules and data hiding facilities (covered)
4 inheritance and extensibility - super-types, operator overloading

and generic procedures (covered)
5 polymorphism - user can program his/her own polymorphism by

generic overloading
6 resuability - modules
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Pointers I

In Fortran, a pointer variable or simply a pointer is best
thought of as a “free-floating” name that may be associated with
or “aliased to” some object.

The object may already have one or more other names or it may
be an unnamed object.

The object represent data (a variable, for example) or be a
procedure.

A pointer is any variable that has been given the pointer

attribute.

A variable with the pointer attribute may be used like any
ordinary variable.
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Pointers II

Each pointer is in one of the following three states:
undefined condition of each pointer at the beginning of a program,

unless it has been initialized
null not an alias of any data object

associated it is an alias of some target data object

pointer objects must be declared with the pointer attribute

real, pointer :: p

Any variable aliased or “pointed to” by a pointer must be given
the target attribute

real, target :: r

To make p an alias to r, use the
pointer assignment statement

p => r
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Pointers III

The variable declared as a pointer may be a simple variable as
above, an array or a structure

real, dimension(:), pointer :: v

pointer v declared above can now be aliased to a 1D array of
reals or a row or column of a multi-dimensional array

real, dimension(100,100), target :: a

v => a(5,:)

pointer variables can be used as any other variables

For example, print *, v and print *, a(5,:) are equivalent

v = 0.0 is the same as a(5,:)= 0.0

pointer variables can also be an alias to another pointer
variable
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Pointers IV

Consider the following
example
real, target :: r
real, pointer :: p1, p2
r = 4.7
p1 => r
p2 => r
print *, r, p1, p2
r = 7.4
print *, r, p1, p2

The output on the screen will
be
4.7 4.7 4.7
7.4 7.4 7.4

Changing the value of r to 7.4
causes the value of both p1

and p2 to change to 7.4

Consider the following
example
real, target :: r1, r2
real, pointer :: p1, p2
r1 = 4.7 ; r2 = 7.4
p1 => r1 ; p2 => r2
print *, r1, r2, p1, p2
p1 = p2
print *, r1, r2, p1, p2

The output on the screen will
be
4.7 7.4 4.7 7.4
4.7 4.7 4.7 4.7

The assignment statement
p2= p1 has the same effect of
r2= r1 since p1 is an alias to
r1 and p2 is an alias to r2
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Pointers V

The allocate statement can be used to create space for a value
and cause a pointer to refer to that space.

allocate(p1) creates a space for one real number and makes p1
an alias to that space.

No real value is stored in that space so it is neccessary to assign a
value to p1

p1= 4.7 assigns a value 4.7 to that allocated space

Before a value is assigned to p1, it must either be associated with
an unnamed target using the allocate statement or be aliased
with a target using the pointer assignment statement.

deallocate statement dissociates the pointer from any target
and nullifies it

deallocate(p1)
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Pointer Intrinsic Functions

null intrinsic
pointer variables are undefined unless they are initialized
pointer variable must not be reference to produce a value when
it is undefined.
It is sometime desirable to have a pointer variable in a state of
not pointing to anything
The null intrinsic function nullifies a pointer assignment so that
it is in a state of not pointing to anything
p1=> null()

If the target of p1 and p2 are the same, then nullifying p1 does
not nullify p2

If p1 is null and p2 is pointing to p1, then p2 is also nullified.
associated intrinsic

The associated intrinsic function queries whether a pointer
varibale is pointing to, or is an alias for another object.
associated(p1,r1) and associated(p2,r2) are true, but
associated(p1,r2) and associated(p2,r1) are false
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Extended Data Types I

Recall the derived type example which has as a component
another derived type
type, public :: line_type
real :: x1, y1, x2, y2

end type line_type
type, public :: vector_type
type(line_type) :: line !position of center of sphere
integer :: direction ! 0=no direction, 1=(x1,y1)->(x2,y2)

end type vector_type

An object, c, of type vector_type is referenced as
c%line%x1, c%line%y1, c%line%x2, c%line%y2 and
c%direction which can be cumbersome.
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Extended Data Types II

In Fortran, it is possible to extend the base type line_type to
other types such as vector_type and painted_line_type as
follows
type, public, extends(line_type) :: vector_type

integer :: direction
end type vector_type
type, public, extends(line_type) :: painted_line_type

integer :: r, g, b ! rgb values
end type painted_line_type

An object,c of type vector_type inherits the components of the
type line_type and has components x1,y1,x2,y2 and
direction and is referenced as c%x1, c%y1, c%x1, c%y2 and
c%direction

Similarly, an object, d of type painted_line_type is referenced
as d%x1, d%y2, d%x2, d%y2, d%r, d%g and d%b

Modern Fortran 179/188

HPC Training: Spring 2014



Extended Data Types III

The three derived types constitute a class; the name of the class
is the name of the base type line_type
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unix-courses/Fortran

Scientific Programming in Fortran 2003: A tutorial Including
Object-Oriented Programming, Katherine Holcomb, University
of Virginia.
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Additional Help

Online Courses: http://moodle.hpc.lsu.edu
Contact us
� Email ticket system: sys-help@loni.org
� Telephone Help Desk: 225-578-0900
� Instant Messenger (AIM, Yahoo Messenger, Google Talk)

F Add "lsuhpchelp"
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Hands-On Exercise: Molecular Dynamics

Molecular Dynamics code for melting of solid Argon using
Lennard-Jones Potential.
Your goal is to rewrite the code using Modern Fortran concepts
that you have grasped.
This exercise is more of a "What concepts have I learned of
Modern Fortran?", so there are multiple correct solutions
Code can be obtained from http://www.hpc.lsu.edu/
training/archive/tutorials.php:
md-orig.f90 is the original code that you should begin working
on (this is the same code that was shown in todays slides)
There is no "correct solution", however there are multiple
solutions md-v{1-5}.f90 based on various concepts presented.
It’s entirely up to you to decide which solution you want to arrive
at.
Compare the results of your edited code with that of md-v0.out.
If the results are not the same, debug your code.
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Calculate pi by Numerical Integration I

We know that∫ 1

0

4.0

(1 + x2)
dx = π

So numerically, we can
approxiate pi as the sum of
a number of rectangles

N∑
i=0

F (xi)∆x ≈ π

Meadows et al, A
“hands-on” introduction to
OpenMP, SC09
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Calculate pi by Numerical Integration II

Algorithm 4 Pseudo Code for Calculating Pi
program CALCULATE_PI

step← 1/n
sum← 0
do i← 0 · · ·n

x← (i+ 0.5) ∗ step; sum← sum+ 4/(1 + x2)
end do
pi← sum ∗ step

end program
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SAXPY

SAXPY is a common operation in computations with vector
processors included as part of the BLAS routines
y ← αx+ y

Write a SAXPY code to multiply a vector with a scalar.

Algorithm 5 Pseudo Code for SAXPY
program SAXPY

n← some large number
x(1 : n)← some number say, 1
y(1 : n)← some other number say, 2
a← some other number ,say, 3
do i← 1 · · ·n

yi ← yi + a ∗ xi
end do

end program SAXPY
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Matrix Multiplication I

Most Computational code involve matrix operations such as
matrix multiplication.

Consider a matrix C which is a product of two matrices A and B:

Element i,j of C is the dot product of the ith row of A and jth

column of B
Write a MATMUL code to multiple two matrices.
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Matrix Multiplication II

Algorithm 6 Pseudo Code for MATMUL
program MATMUL

m,n← some large number ≤ 1000
Define amn, bnm, cmm

aij ← i+ j; bij ← i− j; cij ← 0
do i← 1 · · ·m

do j ← 1 · · ·m
ci,j ←

∑n
k=1 ai,k ∗ bk,j

end do
end do

end program MATMUL
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