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Outline

e Make
— What is “Make”
— How to write a makefile
— How to use the “make” command

e Software installation on HPC clusters
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What is Make

e Atoolthat

— Controls the generation of executable and other non-source files (libraries
etc.)

— Simplifies (a lot) the management of a program that has multiple source files
* Have many variants

— GNU make (we will focus on it today)

— BSD make
e Other utilities that do similar things

— Cmake

— Zmake
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Why having multiple source files

e Different modules of functionalities should be
kept in different source files, especially for a
large program
— Easier to edit and understand
— Easier version control
— Easier to share with others
— Allow to write a program with different languages
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From source files to executable

* Two-step process

— The compiler generates the object files from the
source files

— The linker generates the executable from the
object files

e Most compilers do both steps by default
— Use “-c” to suppress linking
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Compiling multiple source files

 Compiling single source file is straightforward
— <compiler> <flags> <source file>

 Compiling multiple source files

— Need to analyze file dependencies to decide the
order of compilation

— Can be done with one command as well
e <compiler> <flags> <source file 1> <source file 2>...
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A “Hello world” example (1)

main.o adjust.o hello.o

adjust.fo90

hello.f90

Common.mod

Common.f90

Souretle |Pupose

Common.f90 Declares a character variable to store the message

Hello.f90 Prints the message to screen

Adjust.fo0 Modifies the message and prints it to screen
LSI Main.f90 Calls functions in hello.f90 and adjust.f90
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A “Hello world” example (2)

main.o adjust.o hello.o
Common.mod

Common.f90

[lyanl@eric2 make]$ Is
adjust.fO0 common.f90 hello.f90 main.f90

[lyanl@eric2 make]$ 1fort common.fO0 hello.f90

adjust.f90 main.f90
[lyanl@eric2 make]$ ./a.out

Hello, world!
u Hello, world!
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Command line compilation

e Command line compilation works, but it is

— Cumbersome

e Does not work very well when one has a source tree with
many source files in many sub-directories

— Not flexible

 What if different source files need to be compiled using
different flags?

e Use Make instead!
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How Make works

* Two parts
— The Makefile

* A text file that describes the dependency and specifies
how source files should be compiled

— The “make” command

e Compile the program using the Makefile

[lyanl@eric2 make]$ Is
adjust.fO0 common.f90 hello.fO0 main.f90

Makefile
[lyanl@eric2 make]$ make
ifort common.f90 hello.f90 adjust.f90 main.f90

[lyanl@eric2 make]$ Is .
Lsu adjust.f90 a.out common.f90 common.mod hello.fOOWN
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A Makefile with only one rule

Target Action: shell commands that will be executed
_Jyanl@ericz make]$ cat Makefile l
all:

ifort common.f90 hello.f90 adjust.f90 main.f90

Explicit rule

A mandatory tab
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Exercise 1

e Copy all files under
/home/lyanl/traininglab/make to

your own user space

e Check the Makefile and use it to build the
executable

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series




Makefile components

e Explicit rules

— Purpose: create a target or re-create a target when
any of prerequisites changes

— Syntax: target: prerequisites
(tab) action

e |Implicit rules
e Variable definition
e Directives
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How Make Processes a Makefile

e Two phases

— Reads all components of the Makefile (rules,
directives, variables) and constructs the
dependency graph

— Determines which targets need to be built and
invokes the recipes to do so
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Explicit rules (1)

 Multiple rules can exist in the same Makefile
— The “make” command builds the first target by default

— To build other targets, one needs to specify the target name
« make <target name>

A single rule can have multiple targets separated by space
An action (or recipe) can consist of multiple commands

— They can be on multiple lines, or on the same line separated by
semicolons

— Wildcards can be used

— By default all executed commands will be echoed on the screen
e Can be suppressed by adding “@” before the commands
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Explicit rules (2)

* How file dependencies are handled
— Targets and prerequisites are often file names
— A target is considered out-of-date if

e |t does not exist, or
 |tis older than any of the prerequisites
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Describing Dependency in A Makefile

[ maino | [ adjust.o | ( ello.o |

adjust.f90 |  Common.mod | hello.f90

Common.f90

all: main.o adjust.o hello.o
ifort main.o adjust.o hello.o
main.o: main.f90
ifort —c main.f90
adjust.o: adjust.f90 common.mod
ifort —c adjust.T90
hello.o: hello.f90 common.mod
ifort —c hello.f90
Lsu common.mod: common.¥f90
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Exercise 2

 Write a Makefile using the template provided on
the previous slide and “make”

 Run “make” again and see what happens

 Modify the message (common.f90) and “make”
again
e Add a new rule “clean” which deletes all but the

source and makefiles (the executable, object files
and common.mod), and try “make clean”

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series




Variables in Makefile (1)

e These kinds of

all: main.o adjust.o hello.o

: - ifort main.o adjust.o hello.o
dupllcathn are main.o: main.f90
error'prOne ifort —c main.f90

adjust.o: adjust.f90 common.mod

ifort —c adjust.f90
e One can SOlve hello.o: hello.f90 common.mod

. ifort —c hello.f90
thlS prOblem by common.mod: common .90

. . ifort —c common.f¥90
using variables
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Variables in Makefile (2)

e Similar to shell variables
— Define once as a string and reuse later

all: main.o adjust.o hello.o

ifort main.o adjust.o hello.o
main.o: main.f90

ifort —c main.f90

Without variables

FC=1fort
OBJ=main.o adjust.o hello.o

With variables all: $(0BJ)
$(FC) $(0BJI)
main.o: main.¥f90

Lsu $(FC) —c main.f90
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Automatic variables

 The values of automatic variables change every time a
rule is executed

e Automatic variables only have values within a rule
e Most frequently used ones

— $@: The name of the current target

— $: The names of all the prerequisites

— $7?: The names of all the prerequisites that are newer than
the target

— $<: The name of the first prerequisite

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series




Implicit rules (1)

e Tells Make system how to build a certain type of targets
— GNU make has a few built-in implicit rules

e Syntax is similar to an explicit rule, except that “%” is used
in the target

— “%” stands for the same thing in the prerequisites as it does in
the target

%.0: %.cC
(tab) action

— There can also be unvarying prerequisites
— Automatic variables can be used here as well
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Implicit rules (2)

CC=icc
CFLAGS=-03

.0 - %.cC
@$(CC) $(CFLAGS) -c —0 $@ $<

data.o: data.h

* |nthis example, any .o target has a corresponding .c file
as an implied prerequisite

e |f atarget needs additional prerequisites, write a action-
less rule with those prerequisites
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Exercise 3

e Rewrite the Makefile from Exercise 2

— Define an implicit rule so that no more than 3
explicit rules are necessary (excluding “clean”)

e Should be able to do with only 2 explicit rules

— Use variables so that no file name appears in the
action section of any rule
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Directives

e Make directives are similar to the C preprocessor
directives

— E.g. include, define, conditionals

e Include directive

— Read the contents of other Makefiles before
proceeding within the current one
— Often used to read

e Top level and common definitions when there are multiple
makefiles
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Command line options of make (1)

o -F <fFile name>
— Specify the name of the file to be used as the makefile

— Default is GNUmakefile, makefile and Makefile (in that
order)

— Multiple makefiles may be useful for compilation on
multiple platforms

¢ -S
— Turn on silent mode (as if all commands start with an “@”)
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Command line options of make (2)

e —J <number of jobs>
— Build multiple targets in parallel

 —1
— Ignore all errors
— A warning message will be printed out for each error

. -k

— Continue as much as possible after an error.
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Software installation

e |nstall from binary distribution

— Pre-compiled files, usually with the form of
 RPMs — need root privilege (in most cases)
e Tarballs with interactive installation scripts

— Easy to install, but the target platform must be similar to the one
where it is compiled

* Install from source distribution

— Users need to compile the source files with their own choice of
compilers, options and libraries

— Most flexible, but choosing the best/right compilers and options can
be a demanding task

— Many packages use GNU build system (autoconf etc.) to produce shell
scripts that handle the configuration and build
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Installation from source

e Configure the package - Choose compilers and options

— With autoconT

* Pass options to the “configure” script, which will generate
Makefiles accordingly

* The “configure” script comes with a “—-help” option which
displays all options acceptable to “configure”

— Without autoconT: need to edit the Makefile (or files
that it includes)

e Make - Compile the source files
e Make install - Copy compiled files to desired location
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Case Study (1): Modflow 2005

e Modflow is a USGS finite-difference flow model
— No autoconf
— The makefile is located in the src directory

— There is no “clean” or “Itnstal 1” target in the
makefile

e |nstallation steps
— Edit Makefile
— Make
— Optional: copy the executable to the desired location
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Case Study (2): SPRNG

e SPRNG stands for Scalable Parallel Random Number
Generator Library

— No autoconT

— The files make . CHOICES and SRC/make . $PLATFORM are
included in the Makefile

e [nstallation steps:
— Edit make .CHOICES and SRC/make . $PLATFORM

* Need to choose the MPI compilers to build the MPI version
— Make
— Optional: run “make test” to test the build
— Optional: copy the files to the desired location
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Autoconf

* Provides a “configure” script which can automatically generate
Makefiles according to the options provided by users

e Usage: ./configure [<option>[=<value>]] <var>=<value>
e Environment variables

— CC, CFLAGS: C compiler command and flags

— FC, FFLAGS: Fortran compiler command and flags

— CXX, CXXFLAGS: C++ compiler command and flags

— LDFLAGS: linker flags
e Most frequently used options

— —-help: display comprehensive help information

— ——prefix=PREFIX: install files in PREFIX
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Case Study (3): FFTW

e FFTW stands for Fast Fourier Transform West
— With autocont

e |nstallation steps

— Run the “configure” script

 Ex: ./configure --
prefix=/home/lyanl/packages/fftw-3.3.2-
intel-11.1 CC=i1cc F77=1fort CXX=icpc

— Make
— Make install
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Exercise 4

e |nstall gnuplot 4.6.0 from source
— Get the source tar ball from gnuplot website
— Extract the contents
— Configure, make and make install
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Questions?
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