Make and Software Installation

Le Yan

User Services
High Performance Computing @ LSU/LONI

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Outline

e Make
— What is “Make”
— How to write a makefile
— How to use the “make” command

e Software installation on HPC clusters

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

What is Make

e Atoolthat

— Controls the generation of executable and other non-source files (libraries
etc.)

— Simplifies (a lot) the management of a program that has multiple source files
* Have many variants

— GNU make (we will focus on it today)

— BSD make
e Other utilities that do similar things

— Cmake

— Zmake

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

What is Make

e Atoolthat

— Controls the generation of executable and other non-source files (libraries
etc.)

— Simplifies (a lot) the management of a program that has multiple source files
* Have many variants

— GNU make (we will focus on it today)

— BSD make
e Other utilities that do similar things

— Cmake

— Zmake

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Why having multiple source files

e Different modules of functionalities should be
kept in different source files, especially for a
large program
— Easier to edit and understand
— Easier version control
— Easier to share with others
— Allow to write a program with different languages

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

From source files to executable

* Two-step process

— The compiler generates the object files from the
source files

— The linker generates the executable from the
object files

e Most compilers do both steps by default
— Use “-c” to suppress linking

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Compiling multiple source files

 Compiling single source file is straightforward
— <compiler> <flags> <source file>

 Compiling multiple source files

— Need to analyze file dependencies to decide the
order of compilation

— Can be done with one command as well
e <compiler> <flags> <source file 1> <source file 2>...

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

A “Hello world” example (1)

main.o adjust.o hello.o

adjust.fo90

hello.f90

Common.mod

Common.f90

Souretle |Pupose

Common.f90 Declares a character variable to store the message

Hello.f90 Prints the message to screen

Adjust.fo0 Modifies the message and prints it to screen
LSI Main.f90 Calls functions in hello.f90 and adjust.f90

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

A “Hello world” example (2)

main.o adjust.o hello.o
Common.mod

Common.f90

[lyanl@eric2 make]$ Is
adjust.fO0 common.f90 hello.f90 main.f90

[lyanl@eric2 make]$ 1fort common.fO0 hello.f90

adjust.f90 main.f90
[lyanl@eric2 make]$./a.out

Hello, world!
u Hello, world!

CENTER FOR COMPUTRATHION
& TECHNOLOGY

4/9/2014

hello.f90

adjust.fo0

LSU HPC Training Series

Command line compilation

e Command line compilation works, but it is

— Cumbersome

e Does not work very well when one has a source tree with
many source files in many sub-directories

— Not flexible

 What if different source files need to be compiled using
different flags?

e Use Make instead!

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

How Make works

* Two parts
— The Makefile

* A text file that describes the dependency and specifies
how source files should be compiled

— The “make” command

e Compile the program using the Makefile

[lyanl@eric2 make]$ Is
adjust.fO0 common.f90 hello.fO0 main.f90

Makefile
[lyanl@eric2 make]$ make
ifort common.f90 hello.f90 adjust.f90 main.f90

[lyanl@eric2 make]$ Is .
Lsu adjust.f90 a.out common.f90 common.mod hello.fOOWN
CENTER FOR COMPUTAT Dmal n.f90 Makefile)

& TECHNOLOGY it W
4/9/2014 LSU HPC Training Series

A Makefile with only one rule

Target Action: shell commands that will be executed
_Jyanl@ericz make]$ cat Makefile l
all:

ifort common.f90 hello.f90 adjust.f90 main.f90

Explicit rule

A mandatory tab

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Exercise 1

e Copy all files under
/home/lyanl/traininglab/make to

your own user space

e Check the Makefile and use it to build the
executable

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Makefile components

e Explicit rules

— Purpose: create a target or re-create a target when
any of prerequisites changes

— Syntax: target: prerequisites
(tab) action

e |Implicit rules
e Variable definition
e Directives

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

How Make Processes a Makefile

e Two phases

— Reads all components of the Makefile (rules,
directives, variables) and constructs the
dependency graph

— Determines which targets need to be built and
invokes the recipes to do so

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Explicit rules (1)

 Multiple rules can exist in the same Makefile
— The “make” command builds the first target by default

— To build other targets, one needs to specify the target name
« make <target name>

A single rule can have multiple targets separated by space
An action (or recipe) can consist of multiple commands

— They can be on multiple lines, or on the same line separated by
semicolons

— Wildcards can be used

— By default all executed commands will be echoed on the screen
e Can be suppressed by adding “@” before the commands

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Explicit rules (2)

* How file dependencies are handled
— Targets and prerequisites are often file names
— A target is considered out-of-date if

e |t does not exist, or
 |tis older than any of the prerequisites

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Describing Dependency in A Makefile

[maino | [adjust.o | (ello.o |

adjust.f90 | Common.mod | hello.f90

Common.f90

all: main.o adjust.o hello.o
ifort main.o adjust.o hello.o
main.o: main.f90
ifort —c main.f90
adjust.o: adjust.f90 common.mod
ifort —c adjust.T90
hello.o: hello.f90 common.mod
ifort —c hello.f90
Lsu common.mod: common.¥f90
CENTER FOR COMPUTATION ifort —c common.f90
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Exercise 2

 Write a Makefile using the template provided on
the previous slide and “make”

 Run “make” again and see what happens

 Modify the message (common.f90) and “make”
again
e Add a new rule “clean” which deletes all but the

source and makefiles (the executable, object files
and common.mod), and try “make clean”

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Variables in Makefile (1)

e These kinds of

all: main.o adjust.o hello.o

: - ifort main.o adjust.o hello.o
dupllcathn are main.o: main.f90
error'prOne ifort —c main.f90

adjust.o: adjust.f90 common.mod

ifort —c adjust.f90
e One can SOlve hello.o: hello.f90 common.mod

. ifort —c hello.f90
thlS prOblem by common.mod: common .90

. . ifort —c common.f¥90
using variables

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Variables in Makefile (2)

e Similar to shell variables
— Define once as a string and reuse later

all: main.o adjust.o hello.o

ifort main.o adjust.o hello.o
main.o: main.f90

ifort —c main.f90

Without variables

FC=1fort
OBJ=main.o adjust.o hello.o

With variables all: $(0BJ)
$(FC) $(0BJI)
main.o: main.¥f90

Lsu $(FC) —c main.f90

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Automatic variables

 The values of automatic variables change every time a
rule is executed

e Automatic variables only have values within a rule
e Most frequently used ones

— $@: The name of the current target

— $: The names of all the prerequisites

— $7?: The names of all the prerequisites that are newer than
the target

— $<: The name of the first prerequisite

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Implicit rules (1)

e Tells Make system how to build a certain type of targets
— GNU make has a few built-in implicit rules

e Syntax is similar to an explicit rule, except that “%” is used
in the target

— “%” stands for the same thing in the prerequisites as it does in
the target

%.0: %.cC
(tab) action

— There can also be unvarying prerequisites
— Automatic variables can be used here as well

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Implicit rules (2)

CC=icc
CFLAGS=-03

.0 - %.cC
@$(CC) $(CFLAGS) -c —0 $@ $<

data.o: data.h

* |nthis example, any .o target has a corresponding .c file
as an implied prerequisite

e |f atarget needs additional prerequisites, write a action-
less rule with those prerequisites

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Exercise 3

e Rewrite the Makefile from Exercise 2

— Define an implicit rule so that no more than 3
explicit rules are necessary (excluding “clean”)

e Should be able to do with only 2 explicit rules

— Use variables so that no file name appears in the
action section of any rule

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Directives

e Make directives are similar to the C preprocessor
directives

— E.g. include, define, conditionals

e Include directive

— Read the contents of other Makefiles before
proceeding within the current one
— Often used to read

e Top level and common definitions when there are multiple
makefiles

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Command line options of make (1)

o -F <fFile name>
— Specify the name of the file to be used as the makefile

— Default is GNUmakefile, makefile and Makefile (in that
order)

— Multiple makefiles may be useful for compilation on
multiple platforms

¢ -S
— Turn on silent mode (as if all commands start with an “@”)

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Command line options of make (2)

e —J <number of jobs>
— Build multiple targets in parallel

 —1
— Ignore all errors
— A warning message will be printed out for each error

. -k

— Continue as much as possible after an error.

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Software installation

e |nstall from binary distribution

— Pre-compiled files, usually with the form of
 RPMs — need root privilege (in most cases)
e Tarballs with interactive installation scripts

— Easy to install, but the target platform must be similar to the one
where it is compiled

* Install from source distribution

— Users need to compile the source files with their own choice of
compilers, options and libraries

— Most flexible, but choosing the best/right compilers and options can
be a demanding task

— Many packages use GNU build system (autoconf etc.) to produce shell
scripts that handle the configuration and build

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Installation from source

e Configure the package - Choose compilers and options

— With autoconT

* Pass options to the “configure” script, which will generate
Makefiles accordingly

* The “configure” script comes with a “—-help” option which
displays all options acceptable to “configure”

— Without autoconT: need to edit the Makefile (or files
that it includes)

e Make - Compile the source files
e Make install - Copy compiled files to desired location

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Case Study (1): Modflow 2005

e Modflow is a USGS finite-difference flow model
— No autoconf
— The makefile is located in the src directory

— There is no “clean” or “Itnstal 1” target in the
makefile

e |nstallation steps
— Edit Makefile
— Make
— Optional: copy the executable to the desired location

L5

CENTER FOR COMPUTATION ! °
& TECHNOLOGY —W A,

4/9/2014 LSU HPC Training Series

Case Study (2): SPRNG

e SPRNG stands for Scalable Parallel Random Number
Generator Library

— No autoconT

— The files make . CHOICES and SRC/make . $PLATFORM are
included in the Makefile

e [nstallation steps:
— Edit make .CHOICES and SRC/make . $PLATFORM

* Need to choose the MPI compilers to build the MPI version
— Make
— Optional: run “make test” to test the build
— Optional: copy the files to the desired location

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Autoconf

* Provides a “configure” script which can automatically generate
Makefiles according to the options provided by users

e Usage: ./configure [<option>[=<value>]] <var>=<value>
e Environment variables

— CC, CFLAGS: C compiler command and flags

— FC, FFLAGS: Fortran compiler command and flags

— CXX, CXXFLAGS: C++ compiler command and flags

— LDFLAGS: linker flags
e Most frequently used options

— —-help: display comprehensive help information

— ——prefix=PREFIX: install files in PREFIX

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Case Study (3): FFTW

e FFTW stands for Fast Fourier Transform West
— With autocont

e |nstallation steps

— Run the “configure” script

 Ex: ./configure --
prefix=/home/lyanl/packages/fftw-3.3.2-
intel-11.1 CC=i1cc F77=1fort CXX=icpc

— Make
— Make install

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Exercise 4

e |nstall gnuplot 4.6.0 from source
— Get the source tar ball from gnuplot website
— Extract the contents
— Configure, make and make install

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

Questions?

L5

CENTER FOR COMPUTATION
& TECHNOLOGY

4/9/2014 LSU HPC Training Series

