
Introduction to Linux

Alexander B. Pacheco

User Services Consultant
LSU HPC & LONI
sys-help@loni.org

HPC Training Spring 2014
Louisiana State University

Baton Rouge
February 3, 2014

Introduction to Linux 1/83

HPC Training: Spring 2014

Outline

1 What is Linux?

2 Variables

3 Basic Commands

4 Redirection

5 File Permissions

6 Process Management

7 Editors

8 Basic Shell Scripting

9 What is a scripting Language?

10 Writing Scripts

11 HPC Help

Introduction to Linux 2/83

HPC Training: Spring 2014

History I

Unix was conceived and implemented in 1969 at AT&T Bell labs by Ken
Thompson, Dennis Ritchie, Douglas McIlroy, and Joe Ossanna.

First released in 1971 and was written in assembler.

In 1973, Unix was re-written in the programming language C by Dennis
Ritchie (with exceptions to the kernel and I/O).

The availability of an operating system written in a high-level language
allowed easier portability to different computer platforms.

The GNU Project, started in 1983 by Richard Stallman, had the goal of
creating a “complete Unix-compatible software system” composed entirely of
free software.

386BSD released in 1992 and written by Berkeley alumni Lynne Jolitz and
William Jolitz. FreeBSD, NetBSD, OpenBSD and NextStep (Mac OSX)
descended from this

Andrew S. Tanenbaum wrote and released MINIX, an inexpensive minimal
Unix-like operating system, designed for education in computer science

Introduction to Linux 3/83

HPC Training: Spring 2014

History II

Frustated with licensing issues with MINIX, Linus Torvalds, a student at
University of Helsinki began working on his own operating system which
eventually became the "Linux Kernel"

Linus released his kernel for anyone to download and help further
development.

Linus’s message to comp.os.minix on Aug 26, 1991

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and professional like gnu) for 386(486) AT clones. This
has been brewing since april, and is starting to get ready. I’d like any feedback on things people like/dislike in minix, as
my OS resembles it somewhat (same physical layout of the file-system (due to practical reasons) among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies that I’ll get something practical
within a few months, and I’d like to know what features most people would want. Any suggestions are welcome, but I
won’t promise I’ll implement them :-)

Linus (email address)

PS. Yes - it’s free of any minix code, and it has a multi-threaded fs. It is NOT protable (uses 386 task switching etc), and
it probably never will support anything other than AT-harddisks, as that’s all I have :-(.

https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ

Introduction to Linux 4/83

HPC Training: Spring 2014

https://groups.google.com/forum/?fromgroups=#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ

History III

Linux is only the kernel, an Operating System also requires applications that
users can use.

combined with free software available from the GNU project gave birth to a
new Operating System known as "GNU/Linux"

GNU/Linux or simply Linux is released under the GNU Public License: Free
to use, modify and distribute provided you distribute under the GNU Public
License.

Introduction to Linux 5/83

HPC Training: Spring 2014

History IV

http://en.wikipedia.org/wiki/Linux

Introduction to Linux 6/83

HPC Training: Spring 2014

What is Linux?

Linux is an operating system that evolved from a kernel created by Linus
Torvalds when he was a student at the University of Helsinki.

It’s meant to be used as an alternative to other operating systems, Windows,
Mac OS, MS-DOS, Solaris and others.

Linux is the most popular OS used in a Supercomputer

OS Family Count Share %

Linux 482 96.4
Unix 11 2.2

Mixed 4 0.8
Windows 2 0.4

BSD Based 1 0.2

If you are using a Supercomputer for your research, there is a 98% probability
that it will be based on a *nix OS.

http://www.top500.org/statistics/list/

Introduction to Linux 7/83

HPC Training: Spring 2014

http://www.top500.org/statistics/list/

What is Linux?

Many software vendors release their own packaged Linux OS (kernel,
applications) known as distribution

Linux distribution = Linux kernel + GNU system utilities and libraries +
Installation scripts + Management utilities etc.

1 Debian, Ubuntu, Mint
2 Red Hat, Fedora, CentOS
3 Slackware, openSUSE, SLES, SLED
4 Gentoo

Application packages on Linux can be installed from source or from
customized packages

1 deb: Debian based distros e.g. Debian, Ubuntu, Mint
2 rpm: Red Hat based distros, Slackware based distros.

Linux distributions offer a variety of desktop environment.
1 K Desktop Environment (KDE)
2 GNOME
3 Xfce
4 Lightweight X11 Desktop Environment (LXDE)
5 Cinnamon
6 MATE

Introduction to Linux 8/83

HPC Training: Spring 2014

openSUSE KDE Desktop

Introduction to Linux 9/83

HPC Training: Spring 2014

CentOS GNOME Desktop

Introduction to Linux 10/83

HPC Training: Spring 2014

LXDE Desktop

Introduction to Linux 11/83

HPC Training: Spring 2014

Debian MATE Desktop

Introduction to Linux 12/83

HPC Training: Spring 2014

Linux Mint Cinnamon Desktop

Introduction to Linux 13/83

HPC Training: Spring 2014

What is Linux?

Linux distributions are tailored to different requirements such as

1 Server
2 Desktop
3 Workstation
4 Routers
5 Embedded devices
6 Mobile devices (Android is a Linux-based OS)

Almost any software that you use on windows has a roughly equivalent
software on Linux, most often multiple equivalent software

e.g. Microsoft Office equivalents are OpenOffice.org, LibreOffice, KOffice

For complete list, visit http://wiki.linuxquestions.org/wiki/
Linux_software_equivalent_to_Windows_software

Linux offers you freedom, to choose your desktop environment, software.

Introduction to Linux 14/83

HPC Training: Spring 2014

http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software
http://wiki.linuxquestions.org/wiki/Linux_software_equivalent_to_Windows_software

Popularity of Linux Distributions

DistroWatch provides news,
popularity rankings, and other
general information about:

1 various Linux distributions,
2 free software/open source

Unix-like operating
systems such as
OpenSolaris, MINIX and
BSD.

DistroWatch is NOT an
indication of market-share or
quality nor is it an indication
of how many users but it is
clearly an indication of what
users are looking at.

Rank Distribution Hits

1 Mint 3614 N

2 Mageia 2418 H

3 Ubuntu 1906 N

4 Fedora 1558 N

5 OpenSUSE 1349 H

6 Debian 1345 N

7 Arch 1211 H

8 PCLinuxOS 1186 N

9 Snowlinux 877 N

10 Zorin 861 –

Introduction to Linux 15/83

HPC Training: Spring 2014

http://distrowatch.com/

Linux Components I

Linux is made up of two (three) parts:

1 Kernel
2 Shell
3 Applications/Programs

Kernel

Shell

User

Introduction to Linux 16/83

HPC Training: Spring 2014

Linux Components II

What is a kernel

The kernel is the main component of most computer operating systems

It is a bridge between applications and the actual data processing done at the
hardware level.

The kernel’s responsibilities include managing the system’s resources (the
communication between hardware and software components).

provides the lowest-level abstraction layer for the resources (especially
processors and I/O devices) that application software must control to perform
its function.

It typically makes these facilities available to application processes through
inter-process communication mechanisms and system calls.

Introduction to Linux 17/83

HPC Training: Spring 2014

Linux Components III

What is a SHELL

The command line interface is the primary interface to Linux/Unix operating
systems.

Shells are how command-line interfaces are implemented in Linux/Unix.

Each shell has varying capabilities and features and the user should choose the
shell that best suits their needs.

The shell is simply an application running on top of the kernel and provides a
powerful interface to the system.

Introduction to Linux 18/83

HPC Training: Spring 2014

Types of Shell

sh : Bourne Shell

� Developed by Stephen Bourne at AT&T Bell Labs

csh : C Shell

� Developed by Bill Joy at University of California, Berkeley

ksh : Korn Shell
� Developed by David Korn at AT&T Bell Labs
� backward-compatible with the Bourne shell and includes many features of the C

shell

bash : Bourne Again Shell
� Developed by Brian Fox for the GNU Project as a free software replacement for

the Bourne shell (sh).
� Default Shell on Linux and Mac OSX
� The name is also descriptive of what it did, bashing together the features of sh, csh

and ksh

tcsh : TENEX C Shell
� Developed by Ken Greer at Carnegie Mellon University
� It is essentially the C shell with programmable command line completion,

command-line editing, and a few other features.

Introduction to Linux 19/83

HPC Training: Spring 2014

Shell Comparison

Software sh csh ksh bash tcsh

Programming Language 3 3 3 3 3

Shell Variables 3 3 3 3 3

Command alias 7 3 3 3 3

Command history 7 3 3 3 3

Filename completion 7 M M 3 3

Command line editing 7 7 M 3 3

Job control 7 3 3 3 3

3 : Yes

7 : No

M : Yes, not set by default

Ref : http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Introduction to Linux 20/83

HPC Training: Spring 2014

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Files and Processes

Everything in Linux/UNIX is either a file or a process

A File is a collection of data, created by users using text editors, running
compilers, etc.

Examples of Files:

1 document such as collection of ascii text as in report, essay, etc.
2 program written in some high level programming language
3 instructions comprehensible to machine but not a casual user such as

executable, binary file
4 directory containing information about its contents such as subdirectories

or other files

A process is an executing program identified by a unique process identifier or
PID.

Introduction to Linux 21/83

HPC Training: Spring 2014

Directory Structure

All files are arranged in a hierarchial structure, like an inverted tree.

The top of the hierarchy is traditionally called root (written as a slash /)

/

bin boot dev etc home

user1
Desktop

Documents

Downloads

Public
· · ·

user2 · · ·

lib mnt tmp usr

bin lib local

compilers

Intel

GNU
· · ·

packages

amber
python

· · ·

· · ·

include share

var work

user1 user2 · · ·

Introduction to Linux 22/83

HPC Training: Spring 2014

Important Directories

/bin: contains files that are essential for system operation, available for
use by all users.

/lib,/lib64: contains libraries that are essential for system operation, available
for use by all users.

/var: used to store files which change frequently (system level not user
level)

/etc: contains various system configurations

/dev: contains various devices such as hard disk, CD-ROM drive etc

/sbin: same as bin but only accessible by root
/tmp: temporary file storage

/boot: contains bootable kernel and bootloader

/usr: contains user documentations, binaries, libraries etc

/home: contains home directories of all users. This is the directory where
you are at when you login to a Linux/UNIX system.

Installing your own OS: /bin,/lib{64},/etc,/dev and /sbin must be on the same
partition.

Introduction to Linux 23/83

HPC Training: Spring 2014

UNIX like OS’s are designed for multi user environments i.e. multiple users
can exist on the system.

Special user called root is the administrator and has access to all files in the
system.

In *nix, users are organized into groups.

Each user is in alteast one group.

F On LONI systems, you are in one of the following groups: lsuusers,
latechusers, unousers, ullusers, sususers, tulaneusers,
loni or xavierusers

Due to software licensing, you cannot be in more than one of the above groups.

Group membership makes it easier to share files with members of your group
or in the case of LONI systems, with researchers at your university.

Type groups Enter to find your group membership.

All files are case sensitive,

F myfile.txt, Myfile.txt and myfile.TXT are three different files and can exist in
the same directory simultaneously.

Introduction to Linux 24/83

HPC Training: Spring 2014

Relative & Absolute Path

Path means a position in the directory tree.

You can use either the relative path or absolute path

In relative path expression

. (one dot or period) is the current working directory

.. (two dots or periods) is one directory up
You can combine . and .. to navigate the file system hierarchy.
the path is not defined uniquely and does depend on the current path.
../../tmp is unique only if your current working directory is your
home directory.

In absolute path expression

the path is defined uniquely and does not depend on the current path
/tmp is unique since /tmp is the abolute path

Introduction to Linux 25/83

HPC Training: Spring 2014

Variables I

*nix also permits the use of variables, similar to any programming language
such as C, C++, Fortran etc

A variable is a named object that contains data used by one or more
applications.

There are two types of variables, Environment and User Defined and can
contain a number, character or a string of characters.

Environment Variables provides a simple way to share configuration settings
between multiple applications and processes in Linux.

By Convention, enviromental variables are often named using all uppercase
letters

e.g. PATH, LD_LIBRARY_PATH, LD_INCLUDE_PATH, TEXINPUTS, etc

To reference a variable (environment or user defined) prepend $ to the name of
the variable

e.g. $PATH, $LD_LIBRARY_PATH

Introduction to Linux 26/83

HPC Training: Spring 2014

Variables II

The command printenv list the current environmental variables.

F Type printenv on your command prompt to list all environment variables in
your current session.

The command env is used to either print a list of environment variables or run
another utility in an altered environment without having to modify the
currently existing environment.

F Type env SHELL=/bin/tcsh xterm to start an xterm session in tcsh

� To execute the above command successfully, you need to be in GUI mode on
the virtual OS or logged into a remote systems with X-Forwarding enabled.

Introduction to Linux 27/83

HPC Training: Spring 2014

Variables III

PATH: A list of directory paths.

HOME: indicate where a user’s home directory is located in the file system.

PWD: contains path to current working directory.

OLDPWD: contains path to previous working directory.

TERM: specifies the type of computer terminal or terminal emulator being
used

SHELL: contains name of the running, interactive shell.

PS1: default command prompt

PS2: secondary command prompt

LD_LIBRARY_PATH: colon-separated set of directories where libraries should be
searched for first

HOSTNAME: The systems host name

USER: Current logged in user’s name

DISPLAY: Network name of the X11 display to connect to, if available.

Introduction to Linux 28/83

HPC Training: Spring 2014

Variables IV

You can edit the environment variables.

Command to do this depends on the shell

F To add your bin directory to the PATH variable

sh/ksh/bash: export PATH=${HOME}/bin:${PATH}

csh/tcsh: setenv PATH ${HOME}/bin:${PATH}

F Note the syntax for the above commands

F sh/ksh/bash: no spaces except between export and PATH

F csh,tcsh: no = sign, just a space between PATH and the absolute path

F all shells: colon(:) to separate different paths and the variable that is
appended to

Yes, the order matters. If you have a customized version of a software say
perl in your home directory, if you append the perl path to PATH at the end,
your program will use the system wide perl not your locally installed version.

Introduction to Linux 29/83

HPC Training: Spring 2014

Variables V

Rules for Variable Names
1 Variable names must start with a letter or underscore
2 Number can be used anywhere else
3 DO NOT USE special characters such as @, #, %, $
4 Case sensitive
5 Examples

Allowed: VARIABLE, VAR1234able, var_name, _VAR
Not Allowed: 1VARIABLE, %NAME, $myvar, VAR@NAME

Assigning value to a variable

Type sh,ksh,bash csh,tcsh

Shell name=value set name = value
Environment export name=value setenv name value

sh,ksh,bash THERE IS NO SPACE ON EITHER SIDE OF =

csh,tcsh space on either side of = is allowed for the set command

csh,tcsh There is no = in the setenv command

Introduction to Linux 30/83

HPC Training: Spring 2014

Variables VI

Exercise

Create two shell variables containing

1 your name
e.g. MYNAME=Alex

2 a standard greeting
e.g. Greet=Hello

We’ll make use of this variables in a few slides when we learn some basic
commands.

Introduction to Linux 31/83

HPC Training: Spring 2014

Basic Commands

What is a command and how do you use it?

command is a directive to a computer program acting as an interpreter of some
kind, in order to perform a specific task.

command prompt (or just prompt) is a sequence of (one or more) characters
used in a command-line interface to indicate readiness to accept commands.

Its intent is to literally prompt the user to take action.

A prompt usually ends with one of the characters $, %, #, :, > and often
includes other information, such as the path of the current working directory.

F Virtual Image: [user@localhost ~]$

F Mac OSX in tcsh: [c8-bc-c8-ee-b8-9e:~] apacheco%

Each command consists of three parts: name, options, arguments

[user@localhost ~]$ command options arguments

Introduction to Linux 32/83

HPC Training: Spring 2014

How to get more information with Linux

man shows the manual for a command or program.

The manual is a file that shows you how to use the command and list the
different options for the command in question.

Usage: man [command]

Example: man ls Enter

apropos shows you all of the man pages that may shed some light on a
certain command.

Usage: appropos [keyword]

Example: appropos editor Enter

Introduction to Linux 33/83

HPC Training: Spring 2014

Input & Output Commands I

The basis I/O statements are echo for displaying output to screen and read
for reading input from screen/keyboard/prompt

The read statement takes all characters typed until the Enter key is
pressed and stores them into a variable.

Usage: read <variable name>

Example: read name Enter

Alex Pacheco Enter

In the above example, the name that you enter in stored in the variable name.

The echo arguments command will print arguments to screen or
standard output.

arguments can be a (single or multiple) variable, string of characters or
numbers.

Introduction to Linux 34/83

HPC Training: Spring 2014

Input & Output Commands II

Examples:

1 echo $LD_LIBRARY_PATH $LD_INCLUDE_PATH Enter
2 echo Welcome to HPC Training Enter

By default, echo eliminates redundant whitespace (multiple spaces and tabs)
and replaces it with a single whitespace between arguments.

To include redundant whitespace, enclose the arguments within double quotes

e.g. echo "Welcome to HPC Training" Enter

Introduction to Linux 35/83

HPC Training: Spring 2014

Input & Output Commands III

Exercise

Print out the variable you created a few slides back

echo $MYNAME Enter

echo $Greet Enter

Read a variable for greeting message

read message Enter

Welcome to HPC Enter

Combine and print your name, the greeting and the message

echo $Greet $MYNAME $message Enter

What is the output of the following command?

echo $Greet $MYNAME, $message Training Enter

Introduction to Linux 36/83

HPC Training: Spring 2014

Commands: pwd & cd

pwd command prints the current working directory.

Usage: pwd

Example: pwd Enter

cd command allows one to change directory

argument is the path (relative or absolute) of the directory you want to change
to

Usage: cd [destination]

Example: cd /tmp Enter

The default destination directory is your home directory.

i.e. If you type cd Enter , you will end up in your home directory.

If you want to go back to the previous directory, type cd - Enter

Introduction to Linux 37/83

HPC Training: Spring 2014

Command: ls

ls command lists the contents of a directory.

Usage: ls <options> <path>

Example: ls Enter

The current working directory is the default path.

To list contents of another directory specify the path, relative or absolute

Common options to the ls command

-l: show long listing format

-a: show hidden files

-r: reverse order while sorting

-t: show modification times

-h: use file sizes in SI units (bytes, kilobytes, megabytes etc) default is bytes

Introduction to Linux 38/83

HPC Training: Spring 2014

Command: alias

alias is a command to create a shortcut to another command or name to
execute a long string.

Usage

bash/sh/ksh: alias <name>="<actual command>"

csh/tcsh: alias <name> "<actual command>"

Example:

bash/sh/ksh: alias lla="ls -al"

csh/tcsh: alias lls "ls -al"

The alias command is very useful tool to create shortcuts to other commands
and is most often used by paranoid users to prevent accidental deletion of files.

unalias is a command to remove an alias.

Usage: unalias <name>

Example: unalias lla will remove the shortcut to ls -al

Introduction to Linux 39/83

HPC Training: Spring 2014

Command: mkdir

mkdir is a command to create a directory

Usage: mkdir <options> <directoryname>

Example: mkdir -p $HOME/test/testagain Enter

By default, the directory is created in the current directory or in a path relative
to the current directory

The -p option will create intermediate directories if they do not exist.

e.g. If the directory test does not exist in $HOME, then

mkdir $HOME/test/testagain will fail.

The -p option will create the test directory within $HOME and then create
testagain within the newly created test directory

Introduction to Linux 40/83

HPC Training: Spring 2014

Command: cp

cp is a command to copy a file or directory

Usage: cp <options> <source(s)> <destination>

Example: cp $HOME/.bashrc ../../tmp Enter

Common options to cp command:

-r: copy recursively, required when copying directories.

-i: prompt if file exists on destination and can be copied over.

-p: preserve file access times, ownership etc.

If there are more than one source files, then the destination (i.e. last entry or
file) must be a directory.

If the source(s) is(are) a file(s) and the destination is a directory, then the file(s)
will be copied into the directory

e.g. cp file1 file2 dir1 Enter

dir1 will contain the files file1 and file2

If dir1 is a file, then the above command will fail

Introduction to Linux 41/83

HPC Training: Spring 2014

Command: rm

rm command removes or deletes a file or directory

Usage: rm <options> <file or directory>

Example: rm $HOME/tmpfile Enter

Common options to rm command:

-r: remove recursively, required when copying directories.

-i: prompt if file really needs to be deleted

-f: force remove overrides the -i option

BE CAREFUL WHILE USING THE rm COMMAND,
DELETED FILES CANNOT BE RECOVERED

To be on the safe side, create an alias to the rm command and only use the
-f option only if you are sure you want to delete the file or directory

sh/ksh/bash: alias rm="rm -i"

csh/tcsh : alias rm ’rm -i’

delete empty directories using the rmdir command.

Introduction to Linux 42/83

HPC Training: Spring 2014

Command: mv

mv command moves or renames a file or directory

Usage: mv <options> <source> <destination>

Example: mv test test1

If there are more than one source file, then the last file is the destination and
must be a directory.

Use the -i option to prompt if a file or directory will be overwritten.

If the source(s) is(are) a file(s) and the destination is a directory, then the file(s)
will be copied into the directory.

e.g. mv file1 file2 dir1 Enter

dir1 will contain the files file1 and file2

If dir1 is a file, then the above command will fail

Introduction to Linux 43/83

HPC Training: Spring 2014

Pager Commands

To display a file to screen, *nix provides three commands at your disposal

cat: Show contents of a file.

more: Display contents one page at a time.

less: Display contents one page at a time but allow forward/backward
scrolling

less > more or less is more, more or less

Usage: cat/more/less <options> <filename>

Example: cat .bashrc

To scroll forward in more or less, use the space bar, CNTRL-f/d or "Page
Down" key.

To scroll backwards in less use CNTRL-b/u or "Page Up".

A rarely used command, tac does the opposite of cat i.e. show contents of a
file in reverse.

Introduction to Linux 44/83

HPC Training: Spring 2014

Other Commands I

passwd: change password (does not work on LSU HPC and LONI systems)

chsh: change default shell (does not work on LSU HPC and LONI systems)

df: report disk space usage by filesystem

du: estimate file space usage - space used under a particular directory or files on a
file system.

sudo: run command as root (only if you have access)

mount: mount file system (root only)

umount: unmount file system (root only)

shutdown: reboot or turn off machine (root only)

top: Produces an ordered list of running processes

free: Display amount of free and used memory in the system

file: Determine file type

touch: change file timestamps or create file if not present

date: display or set date and time

Introduction to Linux 45/83

HPC Training: Spring 2014

Other Commands II

find : Find a file

find /dir/to/search -name file-to-search

wc: Count words, lines and characters in a file

wc -l .bashrc

grep: Find patterns in a file

grep alias .bashrc

awk: File processing and report generating

awk ’{print $1}’ file1

sed: Stream Editor

sed ’s/home/HOME/g’ .bashrc

set: manipulate environment variables

set -o emacs

ln: Link a file to another file

ln -s file1 file2

Introduction to Linux 46/83

HPC Training: Spring 2014

Other Commands III

wait: wait until all backgrounded jobs have completed

which: shows the full path of (shell) commands

whatis: display manual page descriptions

!name: rerun previously executed command with the same arguments as before,
name <args>.

Note that you do not always have to type the full command name, just the
minimum unique characters (no spaces) of name need to be entered.

If you had entered two commands name <args> and nbme <args>, then
to rerun name, use the command !na Enter .

history: display a list of last executed commands. Optional argument m will list the last
m commands.

All previously executed commands will be listed with a number n.

To rerun a command from history which has number n, run the command
!n Enter

To learn more about these commands, type man command on the command prompt

Introduction to Linux 47/83

HPC Training: Spring 2014

Filename Completion

Filename or Tab completion is a default feature in bash and tcsh.

It allows to a user to automatically complete the file, directory or command
name you are typing upto the next unique characters using the TAB key.

Example: Your home directory contains directories Desktop, Documents
and Downloads.

If you enter the command ls D −−→−−→ , you will be prompted with above
the three directory names.

[user@localhost ~]$ ls D −−→−−→
Desktop/ Documents/ Downloads/

[user@localhost ~]$ ls Do −−→−−→
Documents/ Downloads/
[user@localhost ~]$ ls Do

Introduction to Linux 48/83

HPC Training: Spring 2014

How to Login to Remote Systems?

Most Linux/UNIX systems allow secure shell connections from other systems.

e.g. You need to login using ssh to the LSU HPC and LONI clusters.

Usage: ssh <username>@<remote host>

Example: ssh apacheco@eric.loni.org

If your local machine is a UNIX-like system i.e. Linux, Mac OSX, BSD, AIX,
Solaris etc and your username on the local machine is the same as that of the
remote machine, then

you can omit the <username>@ part of the argument.

i.e. ssh <remote host>

If the remote machine is listening to ssh connections on a non default port (i.e.
different from port 22) add -p <port number> option

i.e. ssh -p <port number> <user>@<remote host>

If you need to forward the display of an application from the remote system to
your local system, add the -X option to ssh

Example: ssh -X apacheco@eric.loni.org

Introduction to Linux 49/83

HPC Training: Spring 2014

File Transfer between two systems I

scp is a command to copy files/directories between two *nix hosts over the
SSH protocol.

Usage:
scp <options> <user>@<host>:/path/to/source/file \

<user>@<host>:/path/to/destination/file/or/directory

e.g. You want to copy files between Eric Loni Cluster and your Linux
Desktop/Laptop

scp apacheco@eric.loni.org:/work/apacheco/somefile .

scp -r Public apacheco@eric.loni.org:/work/apacheco/

You can omit the <user>@ part of the argument if the username is the same
on both systems.

You can omit the <user>@<host>: for your local machine.

Common options are -r and -p, same meaning as cp.

add -P <port number> option for non default ports.

Introduction to Linux 50/83

HPC Training: Spring 2014

File Transfer between two systems II

rsync is another utility that can be used to copy files locally and remotely.

Usage: rsync <option> <source> <destination>

It is famous for its delta-transfer algorithm

i.e. sending only the differences between the source files and the existing files in
the destination.

Rsync is widely used for backups and mirroring and as an improved copy
command for everyday use.
Common options:
-a: archive mode

-r: recurse into directories

-v: increase verbosity

-z: compress file data during the transfer

-u: skip files that are newer on the receiver

-t: preserve modification times

-n: dry-run, perform a trial run with no changes made

Example: rsync -avtzu eric.loni.org:~/* .

Introduction to Linux 51/83

HPC Training: Spring 2014

Compressing and Archiving Files I

Quite often you need to compress and uncompress files to reduce storage usage
or bandwidth while transferring files.

*nix systems have built-in utilities to compress/uncompress files

Compress

gzip, zip, bzip2
gzip README Enter

Uncompress

gunzip, unzip, bunzip2
gunzip README.gz Enter

Gzipped files have an extension .gz,.z or .Z

zipped files have an extension .Zip or .zip

Bzipped files have an extension .bz2, .bz

To compress/uncompress files recursively, use the -r option.

To overwrite files while compressing/uncompressing, use the -f option.

Introduction to Linux 52/83

HPC Training: Spring 2014

Compressing and Archiving Files II

*nix provides the tar package to create and manipulate streaming archive of
files.

Usage: tar <options> <file> <patterns>

file is the name of the tar archive file, usually with extension .tar

patterns are pathnames for files/directories being archived

Common options

-c: create an archive file

-x: extract to disk from archive

-z: filter the archive through gzip (adds/requires extension .gz)

-j: filter the archive through bzip2 (adds/requires extension .bz2)

-t: list contents of archive

-v: verbosely list files processed

e.g. tar -cvzf myhome.tar.gz ${HOME}/*

This becomes useful for creating a backup of your files and directories that you
can store at some storage facility e.g. external disk

Introduction to Linux 53/83

HPC Training: Spring 2014

I/O Redirection

There are three file descriptors for I/O streams

STDIN : Standard Input
STDOUT : Standard Output
STDERR : Standard Error

1 represents STDOUT and 2 represents STDERR

I/O redirection allows users to connect applications

< : connects a file to STDIN of an application
> : connects STDOUT of an application to a file

> > : connects STDOUT of an application by appending to a file
| : connects the STDOUT of an application to STDIN of another

application.

Examples:
1 write STDOUT to file: ls -l > ls-l.out
2 write STDERR to file: ls -l 2> ls-l.err
3 write STDOUT to STDERR: ls -l 1>&2
4 write STDERR to STDOUT: ls -l 2>&1
5 send STDOUT as STDIN: ls -l | wc -l

Introduction to Linux 54/83

HPC Training: Spring 2014

File Permissions I

Since *NIX OS’s are designed for multi user environment, it is necessary to
restrict access of files to other users on the system.

In *NIX OS’s, you have three types of file permissions

1 read (r)
2 write (w)
3 execute (x)

for three types of users

1 user (u)
2 group (g)
3 world (o) i.e. everyone else who has access to the system

Introduction to Linux 55/83

HPC Training: Spring 2014

File Permissions II

[user@localhost ~]$ ls -l
total 44
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Desktop
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Documents
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Downloads
-rwxr-xr-x. 1 user user 32 Sep 11 11:57 hello
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Music
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Pictures
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Public
-rw-rw-r--. 1 user user 3047 Sep 11 11:48 README
drwxr-xr-x. 1 root root 4216 Jan 22 16:17 Shared
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Templates
lrwxrwxrwx. 1 user user 5 Jan 23 08:17 test -> hello
drwxr-xr-x. 2 user user 4096 Jan 28 2013 Videos
[user@localhost ~]$

The first character signifies the type of the file

d for directory

l for symbolic link

- for normal file

Introduction to Linux 56/83

HPC Training: Spring 2014

File Permissions III

The next three characters of first triad signifies what the owner can do

The second triad signifies what group member can do

The third triad signifies what everyone else can do

d rwx︸︷︷︸
u

g︷ ︸︸ ︷
r − x r − x︸ ︷︷ ︸

o

Read carries a weight of 4

Write carries a weight of 2

Execute carries a weight of 1

The weights are added to give a value of 7 (rwx), 6(rw), 5(rx) or 3(wx)
permissions.

chmod is a *NIX command to change permissions on a file

Usage:
chmod <option> <permissions> <file or directory name>

To give user rwx, group rx and world x permission, the command is

chmod 751 filename
Introduction to Linux 57/83

HPC Training: Spring 2014

File Permissions IV

Instead of using numerical permissions you can also use symbolic mode

u/g/o or a user/group/world or all i.e. ugo

+/- Add/remove permission

r/w/x read/write/execute

Give everyone execute permission:

chmod a+x hello.sh

chmod ugo+x hello.sh

Remove group and world read & write permission:

chmod go-rw hello.sh

To change permissions recursively in a directory, use the option -R (can also
be used in the following two commands)

chmod -R 755 ${HOME}/*

What is the permission on ${HOME}?

Introduction to Linux 58/83

HPC Training: Spring 2014

File Permissions V

The chgrp command is used to change the group ownership between two
groups that you are a member of.

Usage:
chgrp <option> <new group> <file or directory name>

e.g. Suppose your default group on LSU HPC is users and your advisor
requested sysadmins to create a group abc for collaborative research among
say 10 researchers.

You can use the chgrp command to change the ownership of your files from
the users group to abc group.

Example: chgrp -R abc collaborative-work-dir

The chown command is used to change the owner of a file.

chown can only be executed by the superuser, to prevent users simply
changing ownership of files that aren’t theirs to access.

Usage:
chown <new owner>[:<group name>] <file or directory name>

Introduction to Linux 59/83

HPC Training: Spring 2014

Processes and Jobs I

A process is an executing program identified by a unique PID

F To see information about your running processes and their PID and status,

ps Enter

A process may be in foreground, background or be suspended.

Processes running in foreground, the command prompt is not returned until the
current process has finished executing.

If a job takes a long time to run, put the job in background in order to obtain
the command prompt back to do some other useful work

There are two ways to send a job into the background:

1 Add an ampersand & to the end of your command to send it into
background directly.
firefox & Enter

2 First suspend the job using Ctrl Z and then type bg at the command
prompt.

3 If you type fg then the job will run in foreground and you will lose the
command prompt.

Introduction to Linux 60/83

HPC Training: Spring 2014

Processes and Jobs II

When a process is running, background or suspended, it will be entered onto a
list along with a job number (not PID)

jobs Enter

To restart a suspended job in foreground or background, type

fg %jobnumber where jobnumber is a number greater than 1, or,

bg %jobnumber

To kill or terminate a process:
1 Job running in foreground: enter Ctrl C
2 Job whose PID you know

kill PID Enter
3 Job whose jobnumber you know (from jobs command)

kill %jobnumber Enter
The kill command can take options specific to UNIX signals

The most common option is -9 for the SIGKILL signal

pstree: display a tree of processes

pkill: kill process by its name, user name, group name, terminal, UID,
EUID, and GID.

Introduction to Linux 61/83

HPC Training: Spring 2014

File Editing

The two most commonly used editors on Linux/Unix systems are:

1 vi or vim (vi improved)
2 emacs

vi/vim is installed by default on Linux/Unix systems and has only a
command line interface (CLI).

emacs has both a CLI and a graphical user interface (GUI).

� If emacs GUI is installed then use emacs -nw to open file in console.

Other editors that you may come across on *nix systems

kate: default editor for KDE.

gedit: default text editor for GNOME desktop environment.

gvim: GUI version of vim

pico: console based plain text editor

nano: GNU.org clone of pico

kwrite: editor by KDE.

Introduction to Linux 62/83

HPC Training: Spring 2014

Editor Cheatsheets I

vi/vim and emacs are the two most popular *nix file editors.

Which one to use is up to you.

vi/vim has two modes:
1 Editing mode
2 Command mode

emacs has only one mode as in any editor that you use.

Insert/Appending Text

insert at cursor

insert at beginning of line

append after cursor

append at end of line

newline after cursor in insert mode

newline before cursor in insert mode

append at end of line

exit insert mode

vi

i

I

a

A

o

O

ea

ESC

Introduction to Linux 63/83

HPC Training: Spring 2014

Editor Cheatsheets II

Cursor Movement

move left

move down

move up

move right

jump to beginning of line

jump to end of line

goto line n

goto top of file

goto end of file

move one page up

move one page down

vi

h

j

k

l

ˆ

$

nG

1G

G

C-u

C-d

emacs

C-b

C-n

C-p

C-f

C-a

C-e

M-x goto-line n

M-<

M->

M-v

C-v

C : Control Key

M : Meta or ESCAPE (ESC) Key

: Enter Key

Introduction to Linux 64/83

HPC Training: Spring 2014

Editor Cheatsheets III

File Manipulation

save file

save file and exit

quit

quit without saving

delete a line

delete n lines

paste deleted line after cursor

paste before cursor

undo edit

delete from cursor to end of line

search forward for patt

search backward for patt

search again forward (backward)

vi

:w

:wq, ZZ

:q

:q!

dd

ndd

p

P

u

D

\patt
?patt

n

emacs

C-x C-s

C-x C-c

C-a C-k

C-a M-n C-k

C-y

C-_

C-k

C-s patt

C-r patt

C-s(r)

Introduction to Linux 65/83

HPC Training: Spring 2014

Editor Cheatsheets IV

File Manipulation (contd)

replace a character

join next line to current

change a line

change a word

change to end of line

delete a character

delete a word

edit/open file file

insert file file

split window horizontally

split window vertically

switch windows

vi

r

J

cc

cw

c$

x

dw

:e file

:r file

:split or C-ws

:vsplit or C-wv

C-ww

emacs

C-d

M-d

C-x C-f file

C-x i file

C-x 2

C-x 3

C-x o

Introduction to Linux 66/83

HPC Training: Spring 2014

Editor Cheatsheets V

Do a google search for more detailed cheatsheets

vi https://www.google.com/search?q=vi+cheatsheet

emacs https://www.google.com/search?q=emacs+cheatsheet

More on the set -o command

The set -o command can be used to change the command line editor mode
among other things (Do man set Enter to find out more)

1 set -o emacs: emacs style in-line editor for command entry, this
is the default

2 set -o vi: vi style in-line editor for command entry.

Introduction to Linux 67/83

HPC Training: Spring 2014

https://www.google.com/search?q=vi+cheatsheet
https://www.google.com/search?q=emacs+cheatsheet

Start Up Scripts

When you login to a *NIX computer, shell scripts are automatically loaded depending on
your default shell

sh,ksh
1 /etc/profile

2 $HOME/.profile

bash
1 /etc/profile, login terminal only
2 /etc/bashrc or /etc/bash/bashrc
3 $HOME/.bash_profile, login terminal only
4 $HOME/.bashrc

csh,tcsh
1 /etc/csh.cshrc
2 $HOME/.tcshrc

3 $HOME/.cshrc if .tcshrc is not present

The .bashrc, .tcshrc, .cshrc, .bash_profile are script files where
users can define their own aliases, environment variables, modify paths etc.

e.g. the alias command covered earlier can be put in one of these script files depending
on your shell

Introduction to Linux 68/83

HPC Training: Spring 2014

Examples I

.bashrc

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

User specific aliases and functions
alias c="clear"
alias rm="/bin/rm -i"
alias psu="ps -u apacheco"
alias em="emacs -nw"
alias ll="ls -lF"
alias la="ls -al"
export PATH=/home/apacheco/bin:${PATH}
export g09root=/home/apacheco/Software/Gaussian09
export GAUSS_SCRDIR=/home/apacheco/Software/scratch
source $g09root/g09/bsd/g09.profile

export TEXINPUTS=.:/usr/share/texmf//:/home/apacheco/LaTeX//:${
TEXINPUTS}

export BIBINPUTS=.:/home/apacheco/TeX//:${BIBINPUTS}

Introduction to Linux 69/83

HPC Training: Spring 2014

Examples II

.tcshrc

User specific aliases and functions
alias c clear
alias rm "/bin/rm -i"
alias psu "ps -u apacheco"
alias em "emacs -nw"
alias ll "ls -lF"
alias la "ls -al"
setenv PATH "/home/apacheco/bin:${PATH}"
setenv g09root "/home/apacheco/Software/Gaussian09"
setenv GAUSS_SCRDIR "/home/apacheco/Software/scratch"
source $g09root/g09/bsd/g09.login

setenv TEXINPUTS ".:/usr/share/texmf//:/home/apacheco/LaTeX//:${
TEXINPUTS}"

setenv BIBINPUTS ".:/home/apacheco/TeX//:${BIBINPUTS}"

Introduction to Linux 70/83

HPC Training: Spring 2014

What is a Scripting Language?

A scripting language or script language is a programming language that supports the
writing of scripts.

Scripting Languages provide a higher level of abstraction than standard programming
languages.

Compared to programming languages, scripting languages do not distinguish between
data types: integers, real values, strings, etc.

Scripting Languages tend to be good for automating the execution of other programs.

� analyzing data
� running daily backups

They are also good for writing a program that is going to be used only once and then
discarded.

What is a script?

A script is a program written for a software environment that automate the execution of
tasks which could alternatively be executed one-by-one by a human operator.

The majority of script programs are “quick and dirty”, where the main goal is to get the
program written quickly.

Introduction to Linux 71/83

HPC Training: Spring 2014

Writing your first script

1 Write a script
A shell script is a file that contains ASCII text.
Create a file, hello.sh with the following lines

#!/bin/bash
My First Script
echo "Hello World!"

2 Set permissions
apacheco@apacheco:~/Tutorials/BASH/scripts> chmod 755 hello.sh

3 Execute the script
apacheco@apacheco:~/Tutorials/BASH/scripts> ./hello.sh
Hello World!

Introduction to Linux 72/83

HPC Training: Spring 2014

Description of the script

My First Script

#!/bin/bash
My First Script
echo "Hello World!"

The first line is called the "SheBang” line. It tells the OS which interpreter to
use. In the current example, bash

Other options are:
sh : #!/bin/sh

ksh : #!/bin/ksh
csh : #!/bin/csh

tcsh : #!/bin/tcsh

The second line is a comment. All comments begin with "#".

The third line tells the OS to print "Hello World!" to the screen.

Introduction to Linux 73/83

HPC Training: Spring 2014

Special Characters

#: starts a comment.

$: indicates the name of a variable.

\: escape character to display next character literally.

{ }: used to enclose name of variable.

; Command separator [semicolon]. Permits putting two or more
commands on the same line.

;; Terminator in a case option [double semicolon].

. "dot" command [period]. Equivalent to source. This is a bash
builtin.

$? exit status variable.

$$ process ID variable.

[] test expression

[[]] test expression, more flexible than []

$[], (()) integer expansion.

||, &&, ! Logical OR, AND and NOT

Introduction to Linux 74/83

HPC Training: Spring 2014

Quotation

Double Quotation " "

Enclosed string is expanded ("$", "/" and "‘")
Example: echo "$myvar" prints the value of myvar

Single Quotation ’ ’

Enclosed string is read literally
Example: echo ’$myvar’ prints $myvar

Back Quotation ‘ ‘

Enclosed string is executed as a command
Example: echo ‘pwd‘ prints the output of the pwd command i.e. print the
current working directory

Introduction to Linux 75/83

HPC Training: Spring 2014

Additional Help

User Guides
� LSU HPC: http://www.hpc.lsu.edu/docs/guides.php#hpc
� LONI: http://www.hpc.lsu.edu/docs/guides.php#loni

Documentation: http://www.hpc.lsu.edu/docs

Online Courses: https://docs.loni.org/moodle

Contact us
� Email ticket system: sys-help@loni.org
� Telephone Help Desk: 225-578-0900
� Instant Messenger (AIM, Yahoo Messenger, Google Talk)

F Add "lsuhpchelp"

Introduction to Linux 76/83

HPC Training: Spring 2014

http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs
https://docs.loni.org/moodle

The End
Any Questions?

Feb 5: HPC User Environment

Introduction to Linux 77/83

HPC Training: Spring 2014

Exercises I

Login to a Linux machine and open a terminal

Enter the following commands or carry out operations asked for.

Understand what you are doing and ask for help if unsure. Some commands
are incorrect or will fail, enter the correct

1 echo hello world Enter
2 pwd Enter
3 whoami Enter
4 cd /tmp Enter
5 cd - Enter
6 mkdir test/testagain Enter
7 cd test/testagain Enter
8 touch file Enter
9 Go back to your home directory.
10 Which shell are you using?
11 Review the commands you have just entered.

Introduction to Linux 78/83

HPC Training: Spring 2014

Exercises II

12 create an alias for removing files which prompt for confirmation and delete the file
that you created.

13 From your home directory get a list of files and directory in long format in reverse
order with file sizes listed in human readable format.

14 Find out the location of vi, emacs, firefox, google-chrome, thunderbird, latex,
pdflatex, gnuplot, python, perl and matlab.

15 Change the permission of the testagain directory to be world writable.
16 open a few applications of choice in foreground one by one and then suspend

them,
17 get a list of suspended jobsr,
18 foreground job 1 and close it,
19 background job 2,
20 kill job 3,
21 put job 2 in foreground and close it,
22 check if you still have any jobs running.

Introduction to Linux 79/83

HPC Training: Spring 2014

Exercises III

1 Exercise courtesy
http://www.doc.ic.ac.uk/~wjk/UnixIntro/Exercise6.html

2 Copy the file mole.txt
wget http://www.doc.ic.ac.uk/~wjk/UnixIntro/mole.txt

3 Go to the end of the document and type in the following paragraph:
Joined the library. Got Care of the Skin, Origin of
the Species, and a book by a woman my mother is always
going on about. It is called Pride and Prejudice, by
a woman called Jane Austen. I could tell the
librarian was impressed. Perhaps she is an
intellectual like me. She didn’t look at my spot, so
perhaps it is getting smaller.

4 Correct the three spelling errors in the first three lines of the first paragraph (one
error per line) and remove the extra "Geography" in the 3rd line of the first
paragraph.

5 Add the words "About time!" to the end of the second paragraph.
6 Delete the sentence "Time flies like an arrow but fruit flies like a banana" and

re-form the paragraph.
7 Replace all occurrences of "is" with "was".
8 Swap the two paragraphs.
9 Save the file and quit.

Introduction to Linux 80/83

HPC Training: Spring 2014

http://www.doc.ic.ac.uk/~wjk/UnixIntro/Exercise6.html
http://www.doc.ic.ac.uk/~wjk/UnixIntro/mole.txt

Exercises IV

Wednesday January 14th
Joined the library. Got Care of the Skin, Origin of the Species, and a book by a woman
my mother was always going on about. It was called Pride and Prejudice, by a woman
called Jane Austen. I could tell the librarian was impressed. Perhaps she was an
intellectual like me. She didn’t look at my spot, so perhaps it was getting smaller.
None of the teachers at school have noticed that I am an intellectual. They will be
sorry when I am famous. There was a new girl in our class. She sits next to me in
Geography. About time! She was all right. Her name was Pandora, but she likes being
called “Box”. Don’t ask me why. I might fall in love with her. It’s time I fell in love,
after all I am 13 3/4 years old.

Introduction to Linux 81/83

HPC Training: Spring 2014

Exercises

Create shell scripts using either vi or emacs to do the following

1 Write a simple hello world script
2 Modify the above script to use a variable
3 Modify the above script to prompt you for your name and then display

your name with a greeting.

The goal of this exercises is three fold

1 Get you comfortable with using vi or emacs
2 Get you started with writing shell scripts
3 Let you play around with the chmod command

Everything that goes into the scripts should have already been done by you on
the command prompt.

In the next training, you will learn what goes into a job submission script.
Familiarize yourself with the vi/emacs editor or you will get left behind in the
next training.

Introduction to Linux 82/83

HPC Training: Spring 2014

Exercise Solution

Exercise 1
#!/bin/bash
My First Script
echo "Hello World!"

Exercise 2
#!/bin/bash

Hello World script using a variable
STR="Hello World!"
echo $STR

Exercise 3
#!/bin/bash

My Second Script

echo Please Enter your name:
read name
echo Please Enter a standard Greeting
read greet
echo "$greet $name"

Introduction to Linux 83/83

HPC Training: Spring 2014

	What is Linux?
	Variables
	Basic Commands
	Redirection
	File Permissions
	Process Management
	Editors
	Basic Shell Scripting
	What is a scripting Language?
	Writing Scripts
	HPC Help

