
Introduction to OpenACC

Alexander B. Pacheco

User Services Consultant
LSU HPC & LONI
sys-help@loni.org

HPC Training Spring 2014
Louisiana State University

Baton Rouge
March 26, 2014

Introduction to OpenACC 1/47

HPC Training: Spring 2014

What is OpenACC?

OpenACC Application Program Interface describes a collection of compiler
directive to specify loops and regions of code in standard C, C++ and Fortran
to be offloaded from a host CPU to an attached accelerator.

provides portability across operating systems, host CPUs and accelerators

Introduction to OpenACC 2/47

HPC Training: Spring 2014

OpenACC I

The Standard for GPU Directives

Simple: Directive are the easy path to accelerate compute intensive
applications

Open: OpenACC is an open GPU directives standard, making GPU
programming straightforwards and portable across parallel and
multi-core processors

Powerful: GPU directives allow complete access to the massive parallel power
of a GPU

Introduction to OpenACC 3/47

HPC Training: Spring 2014

OpenACC II

High Level

Compiler directives to specify parallel regions in C & Fortran
Offload parallel regions
Portable across OSes, host CPUs, accelerators, and compilers

Create high-level heterogenous programs
Without explicit accelerator intialization
Without explicit data or program transfers between host and accelerator

High Level · · · with low-level access

Programming model allows programmers to start simple
Compiler gives additional guidance

Loop mappings, data location and other performance details

Compatible with other GPU languages and libraries
Interoperate between CUDA C/Fortran and GPU libraries
e.g. CUFFT, CUBLAS, CUSPARSE, etc

Introduction to OpenACC 4/47

HPC Training: Spring 2014

Why OpenACC

Directives are easy and powerful.

Avoid restructuring of existing code for production applications.

Focus on expressing parallelism.

OpenACC is not GPU Programming

OpenACC is Expressing Parallelism in your code

Introduction to OpenACC 5/47

HPC Training: Spring 2014

Exercises:

Did you attend/review the trainings on C/C++ or Modern Fortran?
Recall the following three exercises:

1 SAXPY: Generalized vector addition
2 Matrix Multiplication
3 Calculate pi by Numerical Integration

Introduction to OpenACC 6/47

HPC Training: Spring 2014

SAXPY

SAXPY is a common operation in computations with vector processors
included as part of the BLAS routines

y ← αx+ y

Write a SAXPY code to multiply a vector with a scalar.

Algorithm 1 Pseudo Code for SAXPY
program SAXPY

n← some large number
x(1 : n)← some number say, 1
y(1 : n)← some other number say, 2
a← some other number ,say, 3
do i← 1 · · ·n

yi ← yi + a ∗ xi
end do

end program SAXPY

Introduction to OpenACC 7/47

HPC Training: Spring 2014

Matrix Multiplication I

Most Computational code involve matrix operations such as matrix
multiplication.

Consider a matrix C which is a product of two matrices A and B:

Element i,j of C is the dot product of the ith row of A and jth column of B

Write a MATMUL code to multiple two matrices.

Introduction to OpenACC 8/47

HPC Training: Spring 2014

Matrix Multiplication II

Algorithm 2 Pseudo Code for MATMUL
program MATMUL

m,n← some large number ≤ 1000
Define amn, bnm, cmm
aij ← i+ j; bij ← i− j; cij ← 0
do i← 1 · · ·m

do j ← 1 · · ·m
ci,j ←

∑n
k=1 ai,k ∗ bk,j

end do
end do

end program MATMUL

Introduction to OpenACC 9/47

HPC Training: Spring 2014

Calculate pi by Numerical Integration I

We know that∫ 1

0

4.0

(1 + x2)
dx = π

So numerically, we can
approxiate pi as the sum of a
number of rectangles

N∑
i=0

F (xi)∆x ≈ π

Meadows et al, A “hands-on”
introduction to OpenMP, SC09

Introduction to OpenACC 10/47

HPC Training: Spring 2014

Calculate pi by Numerical Integration II

Algorithm 3 Pseudo Code for Calculating Pi
program CALCULATE_PI

step← 1/n
sum← 0
do i← 0 · · ·n

x← (i+ 0.5) ∗ step; sum← sum+ 4/(1 + x2)
end do
pi← sum ∗ step

end program

Introduction to OpenACC 11/47

HPC Training: Spring 2014

Simple Example I

Serial Code

program saxpy

implicit none
integer, parameter :: dp = selected_real_kind(15)
integer, parameter :: ip = selected_int_kind(15)
integer(ip) :: i,n
real(dp),dimension(:),allocatable :: x, y
real(dp) :: a,start_time, end_time

n=5000000
allocate(x(n),y(n))

x = 1.0d0
y = 2.0d0
a = 2.0

call cpu_time(start_time)
do i = 1, n

y(i) = y(i) + a * x(i)
end do
call cpu_time(end_time)
deallocate(x,y)

print ’(a,f8.6)’, ’SAXPY Time: ’, end_time - start_time

end program saxpy

Introduction to OpenACC 12/47

HPC Training: Spring 2014

Simple Example II

OpenMP Code

program saxpy

implicit none
integer, parameter :: dp = selected_real_kind(15)
integer, parameter :: ip = selected_int_kind(15)
integer(ip) :: i,n
real(dp),dimension(:),allocatable :: x, y
real(dp) :: a,start_time, end_time

n=500000000
allocate(x(n),y(n))
!$omp parallel sections
!$omp section
x = 1.0
!$omp section
y = 1.0
!$omp end parallel sections
a = 2.0

call cpu_time(start_time)
!$omp parallel do default(shared) private(i)
do i = 1, n

y(i) = y(i) + a * x(i)
end do
!$omp end parallel do
call cpu_time(end_time)
deallocate(x,y)

print ’(a,f8.6)’, ’SAXPY Time: ’, end_time - start_time

end program saxpy

Introduction to OpenACC 13/47

HPC Training: Spring 2014

Simple Example III

OpenACC Code

program saxpy

use omp_lib

implicit none
integer :: i,n
real,dimension(:),allocatable :: x, y
real :: a,start_time, end_time

n=500000000
allocate(x(n),y(n))
a = 2.0
!$acc data create(x,y) copyin(a)
!$acc parallel
x(:) = 1.0
!$acc end parallel
!$acc parallel
y(:) = 1.0
!$acc end parallel

start_time = omp_get_wtime()
!$acc parallel loop
do i = 1, n

y(i) = y(i) + a * x(i)
end do
!$acc end parallel loop
end_time = omp_get_wtime()
!$acc end data
deallocate(x,y)

print ’(a,f15.6,a)’, ’SAXPY Time: ’, end_time - start_time, ’in secs’

end program saxpy

Introduction to OpenACC 14/47

HPC Training: Spring 2014

Simple Example IV

CUDA Fortran Code

module mymodule
contains

attributes(global) subroutine saxpy(n, a, x, y)
real :: x(:), y(:), a
integer :: n, i
attributes(value) :: a, n
i = threadIdx%x+(blockIdx%x-1)*blockDim%x
if (i<=n) y(i) = a*x(i)+y(i)

end subroutine saxpy
end module mymodule

program main
use cudafor; use mymodule
integer, parameter :: n = 100000000
real, device :: x_d(n), y_d(n)
real, device :: a_d
real :: start_time, end_time

x_d = 1.0
y_d = 2.0
a_d = 2.0

call cpu_time(start_time)
call saxpy<<<4096, 256>>>(n, a, x_d, y_d)
call cpu_time(end_time)

print ’(a,f15.6,a)’, ’SAXPY Time: ’, end_time - start_time, ’in secs’
end program main

Introduction to OpenACC 15/47

HPC Training: Spring 2014

Simple Example V

Compile
[apacheco@mike1 2013-LONI]$ pgf90 -o saxpy saxpy.f90
[apacheco@mike1 2013-LONI]$ pgf90 -mp -o saxpy_omp saxpy_omp.f90
[apacheco@mike1 2013-LONI]$ pgf90 -acc -ta=nvidia -o saxpy_acc saxpy_acc.f90
[apacheco@mike1 2013-LONI]$ pgf90 -o saxpy_cuda saxpy.cuf

Speed Up

Algorithm Device Time (s) Speedup
Serial Xeon E5-2670 0.986609 1

OpenMP (8 threads) Xeon E5-2670 0.241465 4.1x
OpenACC M2090 0.059418 16.6x

CUDA M2090 0.005205 189.5x

Introduction to OpenACC 16/47

HPC Training: Spring 2014

OpenACC Execution Model

Application code runs on the CPU (sequential, shared or distributed memory)

OpenACC directives indicate that the following block of compute intensive
code needs to be offloaded to the GPU or accelerator.

!$acc end parallel

!$acc parallel

GPU CPU

Generate GPU code

Allocate GPU memory

copy input data

Execute GPU code

copy output data

Introduction to OpenACC 17/47

HPC Training: Spring 2014

Building Block of OpenACC

Program directives
Syntax

C/C++: #pragma acc <directive> [clause]
Fortran: !$acc <directive> [clause]

Regions
Loops
Synchronization
Data Structure
· · ·

Runtime library routines

Introduction to OpenACC 18/47

HPC Training: Spring 2014

Clauses

if (condition)

async (expression)

data management clauses
copy(· · ·),copyin(· · ·), copyout(· · ·)
create(· · ·), present(· · ·)
present_or_copy{,in,out}(· · ·) or pcopy{,in,out}(· · ·)
present_or_create(· · ·) or pcreate(· · ·)

reduction(operator:list)

Introduction to OpenACC 19/47

HPC Training: Spring 2014

Runtime Libraries

System setup routines
acc_init(acc_device_nvidia)
acc_set_device_type(acc_device_nvidia)
acc_set_device_num(acc_device_nvidia)

Synchronization routines
acc_async_wait(int)
acc_async_wait_all()

Introduction to OpenACC 20/47

HPC Training: Spring 2014

OpenACC kernels directive

C: #pragma acc kernels [clause]

Fortran !$acc kernels [clause]

The kernels directive expresses that a region may
contain parallelism and the compiler determines
what can be safely parallelized.

The compiler breaks code in the kernel region
into a sequence of kernels for execution on the
accelerator device.

For the codes on the right, the compiler identifies
2 parallel loops and generates 2 kernels.

What is a kernel? A function that runs in parallel
on the GPU.

When a program encounters a kernels contruct, it
will launch a sequence of kernels in order on the
device.

!$acc kernels
do i = 1, n

x(i) = 1.0
y(i) = 2.0

end do

do i = 1, n
y(i) = y(i) + a * x(i)

end do
!$acc end kernels

#pragma acc kernels
{

for (i = 0; i < n; i++){
x[i] = 1.0 ;
y[i] = 2.0 ;

}

for (i = 0; i < n; i++){
y[i] = a*x[i] + y[i];

}
}

Introduction to OpenACC 21/47

HPC Training: Spring 2014

OpenACC Parallel Directive

The parallel directive identifies a block of code
as having parallelism.

Compiler generates a parallel kernel for that
loop.

C: #pragma acc parallel [clauses]

Fortran: !$acc parallel [clauses]

!$acc parallel
do i = 1, n

x(i) = 1.0
y(i) = 2.0

end do

do i = 1, n
y(i) = y(i) + a * x(i)

end do
!$acc end parallel

#pragma acc parallel
{

for (i = 0; i < n; i++){
x[i] = 1.0 ;
y[i] = 2.0 ;

}

for (i = 0; i < n; i++){
y[i] = a*x[i] + y[i];

}
}

Introduction to OpenACC 22/47

HPC Training: Spring 2014

OpenACC Loop Directive

Loops are the most likely targets for
Parallelizing.

The Loop directive is used within a parallel or
kernels directive identifying a loop that can be
executed on the accelerator device.

C: #pragma acc loop [clauses]

Fortran: !$acc loop [clauses]

The loop directive can be combined with the
enclosing parallel or kernels

C:
#pragma acc kernels loop [clauses]

Fortran: !$acc parallel loop [clauses]

The loop directive clauses can be used to
optimize the code. This however requires
knowledge of the accelerator device.

Clauses: gang, worker, vector, num_gangs, num_workers

!$acc loop
do i = 1, n

y(i) = y(i) + a * x(i)
end do
!$acc end loop

#pragma acc loop
for (i = 0; i < n; i++){

y[i] = a*x[i] + y[i];
}

Introduction to OpenACC 23/47

HPC Training: Spring 2014

OpenACC parallel vs. kernels

PARALLEL

Requires analysis by
programmer to ensure safe
parallelism.

Straightforward path from
OpenMP

KERNELS

Compiler performs parallel
analysis and parallelizes
what it believes is safe.

Can cover larger area of
code with single directive.

Both approaches are equally valid and can perform equally well.

Introduction to OpenACC 24/47

HPC Training: Spring 2014

program saxpy

use omp_lib

implicit none
integer :: i,n
real,dimension(:),allocatable :: x, y
real :: a,start_time, end_time

n=500000000
allocate(x(n),y(n))
a = 2.0
x(:) = 1.0
y(:) = 1.0

start_time = omp_get_wtime()
!$acc parallel loop
do i = 1, n

y(i) = y(i) + a * x(i)
end do
!$acc end parallel loop
end_time = omp_get_wtime()
deallocate(x,y)

print ’(a,f15.6)’, ’SAXPY Time: ’, end_time - start_time

end program saxpy

#include <stdio.h>
#include <time.h>
#include <omp.h>

int main() {
long long int i, n=500000000;
float a=2.0;
float x[n];
float y[n];
double start_time, end_time;

a = 2.0;
for (i = 0; i < n; i++){
x[i] = 1.0;
y[i] = 2.0;

}

start_time = omp_get_wtime();
#pragma acc kernels loop
{
for (i = 0; i < n; i++){
y[i] = a*x[i] + y[i];

}
}
end_time = omp_get_wtime();

printf ("SAXPY Time: %f\n", end_time - start_time);

}

Introduction to OpenACC 25/47

HPC Training: Spring 2014

Compilation

C:
pgcc -acc [-Minfo=accel] [-ta=nvidia] -o saxpyc_acc saxpy_acc.c

Fortran 90:
pgf90 -acc [-Minfo=accel] [-ta=nvidia] -o saxpyf_acc saxpy_acc.f90

Compiler Output
[apacheco@mike1 nodataregion]$ pgcc -acc -ta=nvidia -Minfo=accel -o saxpyc_acc saxpy_acc.c
main:

19, Generating present_or_copyin(x[0:500000000])
Generating present_or_copy(y[0:500000000])
Generating NVIDIA code
Generating compute capability 1.0 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

21, Loop is parallelizable
Accelerator kernel generated
21, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

[apacheco@mike1 nodataregion]$ pgf90 -acc -ta=nvidia -Minfo=accel -o saxpyf_acc saxpy_acc.f90
saxpy:

17, Accelerator kernel generated
18, !$acc loop gang, vector(256) ! blockidx%x threadidx%x

17, Generating present_or_copy(y(1:500000000))
Generating present_or_copyin(x(1:500000000))
Generating NVIDIA code
Generating compute capability 1.0 binary
Generating compute capability 2.0 binary
Generating compute capability 3.0 binary

[apacheco@mike1 nodataregion]$

Introduction to OpenACC 26/47

HPC Training: Spring 2014

Running

The PGI compiler provides automatic instrumentation when PGI_ACC_TIME=1 at
runtime

[apacheco@mike407 nodataregion]$ PGI_ACC_TIME=1 ./saxpyc_acc
SAXPY Time: 6.369176

Accelerator Kernel Timing data
/ddnB/work/apacheco/2013-LONI/openmp/saxpy/nodataregion/saxpy_acc.c

main NVIDIA devicenum=0
time(us): 1,029,419
19: compute region reached 1 time

19: data copyin reached 2 times
device time(us): total=667,515 max=339,175 min=328,340 avg=333,757

21: kernel launched 1 time
grid: [65535] block: [128]
device time(us): total=57,999 max=57,999 min=57,999 avg=57,999

elapsed time(us): total=58,014 max=58,014 min=58,014 avg=58,014
25: data copyout reached 1 time

device time(us): total=303,905 max=303,905 min=303,905 avg=303,905
[apacheco@mike407 nodataregion]$ PGI_ACC_TIME=1 ./saxpyf_acc
SAXPY Time: 6.488910

Accelerator Kernel Timing data
/ddnB/work/apacheco/2013-LONI/openmp/saxpy/nodataregion/saxpy_acc.f90

saxpy NVIDIA devicenum=0
time(us): 1,018,988
17: compute region reached 1 time

17: data copyin reached 2 times
device time(us): total=655,958 max=327,991 min=327,967 avg=327,979

17: kernel launched 1 time
grid: [65535] block: [256]
device time(us): total=59,148 max=59,148 min=59,148 avg=59,148

elapsed time(us): total=59,165 max=59,165 min=59,165 avg=59,165
21: data copyout reached 1 time

device time(us): total=303,882 max=303,882 min=303,882 avg=303,882

Introduction to OpenACC 27/47

HPC Training: Spring 2014

Execution C Fortran
Time SpeedUp Time Speedup

Serial 0.511232 0.969819
OpenMP (8 Threads) 0.180301 2.84 0.237585 4.08
OpenACC (M2090) 9.211521 0.06 9.188178 0.11

What’s going with OpenACC code?

Why even bother with OpenACC if performance is so bad?

Introduction to OpenACC 28/47

HPC Training: Spring 2014

Offloading a Parallel Kernel

CPU Memory GPU Memory

CPU GPU

PCIe

Introduction to OpenACC 29/47

HPC Training: Spring 2014

Offloading a Parallel Kernel

CPU Memory GPU Memory

CPU GPU

For every parallel operation

1: Move data from

Host to Device

2: Execute once

on the Device

3: Move data back

from Device to Host

What if we separate

the data and Execution?

Introduction to OpenACC 29/47

HPC Training: Spring 2014

Offloading a Parallel Kernel

CPU Memory GPU Memory

CPU GPU

Now

1: Move data from

Host to Device
only when needed

2: Execute multiple times

on the Device

3: Move data back

from Device to Host

when needed

Introduction to OpenACC 29/47

HPC Training: Spring 2014

Defining data regions

The data construct defines a region of code in which GPU arrays remain on the GPU and
are shared among all kernels in that region

!$acc data [clause]
!$acc parallel loop

...
!$acc end parallel loop
...

!$acc end data
} Arrays used within the

data region will remain on
the GPU until the end of
the data region.

Introduction to OpenACC 30/47

HPC Training: Spring 2014

Data Clauses

copy(list) Allocates memory on GPU and copies data from host to GPU when entering
region and copies data to the host when exiting region.

copyin(list) Allocates memory on GPU and copies data from host to GPU when entering
region.

copyout(list) Allocates memory on GPU and copies data to the host when exiting region.

create(list) Allocates memory on GPU but does not copy.

present(list) Data is already present on GPU from another containing data region.

Other clauses: present_or_copy[in|out], present_or_create, deviceptr.

Introduction to OpenACC 31/47

HPC Training: Spring 2014

Array Shaping

Compiler sometime cannot determine size of arrays

Must specify explicitly using the data clauses and array "shape"

C #pragma acc data copyin(a[0:size]), copyout(b[s/4:3*s/4])

Fortran !$acc data copyin(a(1:size)), copyout(b(s/4:3*s/4))

Note: data clauses can be used on data, parallel or kernels

Introduction to OpenACC 32/47

HPC Training: Spring 2014

Update Construct

Used to update existing data after it has changed in its corresponding copy (e.g. upate
device copy after host copy changes).

Move data from GPU to host, or host to GPU.

Data movement can be conditional and asynchronous.

Fortran

!$acc update [clause · · ·]
C

#pragma acc update [clause · · ·]
Clause

host(list)
device(list)
if(expression)
async(expression)

Introduction to OpenACC 33/47

HPC Training: Spring 2014

program saxpy

use omp_lib

implicit none
integer :: i,n
real,dimension(:),allocatable :: x, y
real :: a,start_time, end_time

n=500000000
allocate(x(n),y(n))
a = 2.0
!$acc data create(x,y) copyin(a)
!$acc parallel
x(:) = 1.0
!$acc end parallel
!$acc parallel
y(:) = 1.0
!$acc end parallel

start_time = omp_get_wtime()
!$acc parallel loop
do i = 1, n

y(i) = y(i) + a * x(i)
end do
!$acc end parallel loop
end_time = omp_get_wtime()
!$acc end data
deallocate(x,y)

print ’(a,f15.6,a)’, ’SAXPY Time: ’, end_time - start_time, ’
in secs’

end program saxpy

#include <stdio.h>
#include <time.h>
#include <omp.h>

int main() {
long long int i, n=500000000;
float a=2.0;
float x[n];
float y[n];
double start_time, end_time;

a = 2.0;
#pragma acc data create(x[0:n],y[0:n]) copyin(a)

{
#pragma acc kernels loop

for (i = 0; i < n; i++){
x[i] = 1.0;
y[i] = 2.0;

}

start_time = omp_get_wtime();
#pragma acc kernels loop

{
for (i = 0; i < n; i++){
y[i] = a*x[i] + y[i];

}
}
end_time = omp_get_wtime();

}

printf ("SAXPY Time: %f\n", end_time - start_time);

}

Introduction to OpenACC 34/47

HPC Training: Spring 2014

SAXPY using data clause

Execution C Fortran
Time SpeedUp Time Speedup

Serial 0.510000 0.986609
OpenMP (8 Threads) 0.179959 2.83 0.241465 4.09
OpenACC (M2090) 0.058131 8.77 0.059418 16.61

Introduction to OpenACC 35/47

HPC Training: Spring 2014

Exercise: Matrix Multiplication

C

Execution Time SpeedUp GFlops/s
Serial 6.227 0.964

OpenMP (8 Threads) 0.823 7.566 7.290
OpenMP (16 Threads) 0.445 13.993 13.493

OpenACC 0.188 33.122 31.917

Fortran

Execution Time SpeedUp GFlops/s
Serial 7.112 0.844

OpenMP (8 Threads) 0.931 7.639 6.445
OpenMP (16 Threads) 0.494 14.397 12.146

OpenACC 0.214 33.234 28.037

Introduction to OpenACC 36/47

HPC Training: Spring 2014

Reduction I

Reduction clause is allowed on parallel and loop constructs

Fortran

!$acc parallel reduction(operation: var)
structured block with reduction on var

!$acc end parallel

C

#pragma acc kernels reduction(operation: var) {
structured block with reduction on var

}

Introduction to OpenACC 37/47

HPC Training: Spring 2014

Reduction II

Fortran
Execution Time SpeedUp

Serial 133.782 1
OpenMP (8 Threads) 17.303 7.73

OpenACC 0.149 897.87
C

Execution Time SpeedUp
Serial 134.214 1

OpenMP (8 Threads) 17.3379 7.74
OpenACC 0.151 888.83

Introduction to OpenACC 38/47

HPC Training: Spring 2014

Further Speedups

OpenACC gives us more detailed control over parallelization

Via gang, worker and vector clauses

By understanding more about specific GPU on which you’re running, using these clauses
may allow better performance.

By understanding bottlenecks in the code via profiling, we can reorganize the code for
even better performance.

Introduction to OpenACC 39/47

HPC Training: Spring 2014

General Principles: Finding Parallelism in Code

(Nested) for/do loops are best for parallelization

Large loop counts are best

Iterations of loops must be independent of each other

To help compiler: restrict keyword (C), independent clause
Use subscripted arrays, rather than pointer-indexed arrays

Data regions should avoid wasted bandwidth

Can use directive to explicitly control sizes

Various annoying things can interfere with accelerated regions.

Function calls within accelerated region must be inlineable.
No IO

Introduction to OpenACC 40/47

HPC Training: Spring 2014

OpenACC: Is it worth it?

High-level. No involvement of OpenCL, CUDA, etc

Single source. No forking off a separate GPU code. Compile the same program for
accelerators or serial, non-GPU programmers can play along.

Efficient. Experience shows very favorable comparison to low-level implementations of
same algorithms.

Performance portable. Supports GPU accelreators and co-processors from multiple
vendors, current and future versions.

Incremental. Developers can port and tune parts of their application as resources and
profiling dictates. No wholesale rewrite required. Which can be quick.

Introduction to OpenACC 41/47

HPC Training: Spring 2014

Lecture derived from slides and presentations by

Michael Wolfe, PGI

Jeff Larkin, NVIDIA

John Urbanic, PSC

Search for OpenACC presentations at the GPU Technology Conference Website for
further study
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

Introduction to OpenACC 42/47

HPC Training: Spring 2014

http://www.gputechconf.com/gtcnew/on-demand-gtc.php

Exercise 1: Calculate pi by Numerical Integration I

We know that∫ 1

0

4.0

(1 + x2)
dx = π

So numerically, we can approxiate pi
as the sum of a number of rectangles

N∑
i=0

F (xi)∆x ≈ π

Meadows et al, A “hands-on”
introduction to OpenMP, SC09

Introduction to OpenACC 43/47

HPC Training: Spring 2014

Exercise 1: Calculate pi by Numerical Integration II

Algorithm 1 Pseudo Code for Calculating Pi
program CALCULATE_PI

step← 1/n
sum← 0
do i← 0 · · ·n

x← (i+ 0.5) ∗ step; sum← sum+ 4/(1 + x2)
end do
pi← sum ∗ step

end program

Introduction to OpenACC 44/47

HPC Training: Spring 2014

Exercise 2: SAXPY

SAXPY is a common operation in computations with vector processors included as part
of the BLAS routines

y ← αx+ y

Write a SAXPY code to multiply a vector with a scalar.

Algorithm 2 Pseudo Code for SAXPY
program SAXPY

n← some large number
x(1 : n)← some number say, 1
y(1 : n)← some other number say, 2
a← some other number ,say, 3
do i← 1 · · ·n

yi ← yi + a ∗ xi
end do

end program SAXPY

Introduction to OpenACC 45/47

HPC Training: Spring 2014

Exercise 3: Matrix Multiplication I

Most Computational code involve matrix operations such as matrix multiplication.

Consider a matrix C which is a product of two matrices A and B:

Element i,j of C is the dot product of the ith row of A and jth column of B

Write a MATMUL code to multiple two matrices.

Introduction to OpenACC 46/47

HPC Training: Spring 2014

Exercise 3: Matrix Multiplication II

Algorithm 3 Pseudo Code for MATMUL
program MATMUL

m,n← some large number ≤ 1000
Define amn, bnm, cmm
aij ← i+ j; bij ← i− j; cij ← 0
do i← 1 · · ·m

do j ← 1 · · ·m
ci,j ←

∑n
k=1 ai,k ∗ bk,j

end do
end do

end program MATMUL

Introduction to OpenACC 47/47

HPC Training: Spring 2014

