Shell Scripting

Shaohao Chen and Le Yan
HPC User Services @ LSU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




Outline

* |ntroduction to Linux Shell
Shell Scripting Basics

* Beyond Basic Shell Scripting
— Arithmetic Operations
— Arrays
— Flow Control
— Command Line Arguments
— Functions

e Advanced Text Processing Commands (grep, sed,
awk)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




LSL):
What Do Operating Systems Do?

Application
Shell

Operating systems
work as a bridge
between hardware
and applications

— Kernel: hardware
Hardware drivers etc.

— Shell: user interface to
kernel

— Some applications
(system utilities)

Kernel

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

: Operating System

9/22/2015 HPC training series Fall 2015



INFORMATION
TECHNOLOGY
SERVICES

* Kernel
— The kernel is the core component of most operating systems

— Kernel’s responsibilities include managing the system’s
resources

— It provides the lowest level abstraction layer for the resources
(especially processors and |I/O devices) that application software
must control to perform its functions

— |t typically makes these facilities available to application
processes through inter-process communication mechanisms
and system calls

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



* Shell

— The command line interface is the primary user
interface to Linux/Unix operating systems.

— Each shell has varying capabilities and features and
the users should choose the shell that best suits their
needs

— The shell can be deemed as an application running on
top of the kernel and provides a powerful interface to
the system.

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




Type of Shell

* sh (Bourne Shell)
— Developed by Stephen Bourne at AT&T Bell Labs
e c¢sh (C Shell)
— Developed by Bill Joy at University of California, Berkeley
* ksh (Korn Shell)
— Developed by David Korn at AT&T Bell Labs
— Backward-compatible with the Bourne shell and includes many features of the C shell
* bash (Bourne Again Shell)
— Developed by Brian Fox for the GNU Project as a free software replacement for the Bourne shell
— Default Shell on Linux and Mac OSX
— The name is also descriptive of what it did, bashing together the features of sh, csh and ksh
* tcsh (TENEX C Shell)
— Developed by Ken Greer at Carnegie Mellon University

— Itis essentially the C shell with programmable command line completion, command-line editing,
and a few other features.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Shell Comparison
mmmmmm

Programming language y y y
Shell variables y y y y y
Command alias n y y y y
Command history n y y y y
Filename autocompletion n y* y* y y
Command line editing n n y* y y
Job control n y y y y

*: not by default

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[TECHNOLOGY
SERVICES

Linux Shell Variables

* Linux allows the use of variables
— Similar to programming languages
* Avariable is a named object that contains data
— Number, character or string
* There are two types of variables: ENVIRONMENT and user defined
* Environment variables provide a simple way to share configuration
settings between multiple applications and processes in Linux
— Environment variables are often named using all uppercase letters
— Example: PATH, LD LIBRARY PATH, SHELL, DISPLAY etc.
— printenv: listall environment variables

* To reference a variable, prepend $ to the name of the variable, e.g.
SPATH, SLD_LIBRARY_PATH

— Example: SPATH, $LD LIBRARY PATH, S$DISPLAY etc.

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



sy |[ESE
Variable Names

* Rules for variable names
— Must start with a letter or underscore
— Number can be used anywhere else
— Do not use special characters such as @,#,%,5
— (again) They are case sensitive

— Example

* Allowed: VARIABLE, VAR1234able, var name,
VAR

* Not allowed: 1var, %name, Smyvar, var@NAME

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



I L Sy
Editing Variables (1)

* How to assign values to variables depends on the shell

shy/ksh/bash

Shell name=value set name=value

Environment export name=value setenv name=value

e Shell variables is only valid within the current shell,
while environment variables are valid for all
subsequently opened shells.

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Editing Variables (2)

 Example: to add a directory to the PATH variable

sh/ksh/bash: export PATH=/path/to/executable:${PATH}
csh/tcsh: setenv PATH /path/to/executable:S$S{PATH}

— sh/ksh/bash: no spaces except between export
and PATH

— csh/tcsh: no “="sign
— Use colon to separate different paths
— The order matters: more forward, higher priority.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




Basic Linux Commands
| Name | Functon

1s Lists files and directories

cd Changes the working directory

mkdir Creates new directories

rm Deletes files and directories

cp Copies files and directories

mv Moves or renames files and directories
pwd prints the current working directory
echo prints arguments to standard output
cat Prints file content to standard output

* Use option --help to check usage of commands

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[TECHNOLOGY
SERVICES

File Editing in Linux

* The two most commonly used editors on Linux/Unix systems are:
— viorvim (viimproved)
— emacCs

 vi/vimis installed by default on Linux/Unix systems and has only
a command line interface (CLI).

 emacs has both a CLI and a graphical user interface (GUI).
— if emacs GUI is installed then use emacs —nw to open file in console

* Other editors you may come across: kate, gedit, gvim,
pico, nano, kwrite

* Touse vi oremacs is your choice, but you need to know one of
them

* For this tutorial, we assume that you already know how to edit a
file with a command line editor.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Outline

e Shell Scripting Basics

 Beyond Basic Shell Scripting
— Arithmetic Operations
— Arrays
— Flow Control
— Command Line Arguments
— Functions

* Advanced Text Processing Commands

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



I N S
Scripting Languages

* Ascriptis a program written for a software environment that
automate the execution of tasks which could alternatively be
executed one-by-one by a human operator.

e Shell scripts are a series of shell commands put together in a file

— When the script is executed, it is as if someone type those commands
on the command line

* The majority of script programs are quick and dirty'’, where the
main goal is to get the program written quickly.

— Compared to programming languages, scripting languages do not
distinguish between data types: integers, real values, strings, etc.

— Might not be as efficient as programs written in C and Fortran, with
which source files need to be compiled to get the executable

LSL) 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Startup Scripts

* When you login to a *NIX computer, shell scripts are automatically loaded
depending on your default shell

* sh/ksh (in the specified order)
— /etc/profile
— SHOME/.profile
* Dbash (inthe specified order)
— /etc/profile (forlogin shell)
— /etc/bashrc or /etc/bash/bashrc
— S$SHOME/.bash profile (forlogin shell)
— SHOME/.bashrc
* csh/tcsh (inthe specified order)
— /etc/csh.cshrc
— SHOME/.tcshrc
— SHOME/.cshrc (if .tcshrc is not present)

* .bashrc, .tcshrc, .cshrc, .bash profile are scriptfiles where
users can define their own aliases, environment variables, modify paths etc.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[ECHNOLOGY
SERVICES

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015

An Example

# .bashrc
# Source global definitions
if [ -f /etc/bashrc ]; then

fi

/etc/bashrc

# User specific aliases and functions

alias
alias
alias
alias
alias
alias
export
export
export
source

export

c="clear"

rm="/bin/rm —-i"

psu="ps —-u apacheco"

em="emacs —-nw"

11="1s —-1F"

la="1s —al"

PATH=/home/apacheco/bin:$ {PATH}
g09root=/home/apacheco/Software/Gaussian09
GAUSS_SCRDIR=/home/apacheco/Software/scratch
$g09root/g09/bsd/g09.profile

TEXINPUTS=. :/usr/share/texmf//:/home/apacheco/LaTeX//:${

TEXINPUTS}

export

BIBINPUTS=. : /home/apacheco/TeX//: ${BIBINPUTS}

HPC training series Fall 2015



Writing and Executing a Script

* Three steps
— Create and edit a text file (hello. sh)

# My First Script

e:i'..::- "{-:1 I: World!™
— Set the appropriate permission

~/Tutorials/BASH/scripts> chmod 755 hello.sh

— Execute the script

~fTutorials/BASH/scripts> ./hello.sh
Hello World!

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Components Explained

T e R |

acho "Hello World!™

* The first line is called the "Shebang” line. It tells the OS
which interpreter to use. In the current example, bash

— For tcsh, it would be: #! /bin/tcsh
 The second line is a comment. All comments begin with
II#II.
* The third line tells the OS to print "Hello World!" to the
screen.

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[ECHNOLOGY
SEFRVICES

Special Characters (1)

# Starts a comment line.

$ Indicates the name of a variable.

\ Escape character to display next character literally

{} Used to enclose name of variable

; Command separator. Permits putting two or more commands on the same
line.

- Terminator in a case option

“dot” command. Equivalent to source (for bash only)

LSL) l_

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
ECHNOLOGY
SERVICES

Special Characters (2)

$? Exit status variable.

$9 Process ID variable.

[] Test expression.

[[ 1] Test expression, more flexible than []
S, SC0)) Integer expansion

', &&, ! Logical OR, AND and NOT

CENTER FOR COMPUTATION
& TECHNOLOGY

LS50 l_

9/22/2015

HPC training series Fall 2015



INFORMATION

[TECHNOLOGY

SERVICES
Q t t.

* Single quotation
— Enclosed string is read literally

* Double quotation

— Enclosed string is expanded

* Back quotation

— Enclose string is executed as a command

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Quotation - Examples

[shaohao@mikel
[shaohao@mikel
echo SUSER
[shaohao@mikel
[shaohao@mikel
echo shaohao
[shaohao@mikel
[shaohao@mikel
shaohao

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015

bash scripts]s$
bash scripts]s$

bash scripts]s$
bash scripts]s$

bash scripts]s$
bash scripts]s$

strl="echo
echo S$stril

str2="echo
echo S$str?2

str3="echo
echo S$Sstr3

HPC training series Fall 2015

SUSER'

SUSER"

SUSER"




INFORMATION
[TECHNOLOGY
SERVICES

Quotation — More Examples

#!/bin/bash

HI=Hello

echo HI # displays HI

echo SHI # displays Hello

echo \SHI # displays SHI

echo "SHI" # displays Hello

echo "S$HI' # displays $HI

echo "S$HIRlex" # displays nothing

echo "5{HI}Alex" # displays HelloRlex

echo ‘pwd’ # displays wor rking directory
echo 3 (pwd) # displays wor rking directory

~/Tutorials/BASH/scripts/dayl/examples> ./quotes.sh

HI
Hello
SHI
Hello
SHI

HelloAlex
fhome /apacheco/Tutorials/BASH/scripts/dayl/examples

fhome /apacheco/Tutorials/BASH/scripts/dayl/examples
I su ~/Tutorials/BASH/scripts/dayl/examples>
CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[TECHNOLOGY
SERVICES

Outline

 Beyond Basic Shell Scripting
— Arithmetic Operations
— Arrays
— Flow Control
— Command Line Arguments
— Functions

* Advanced Text Processing Commands

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



N L SL)
Arithmetic OperatiOnS (1)

* You can carry out numeric operations on
integer variables

Addition +

Subtraction -

Multiplication x
Division /
Exponentiation ** (bash only)
Modulo %

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



I L Sy
Arithmetic Operations (2)

* bash

—S((..)) orSI[..] commands
e Addition: $( (1+2))
* Multiplication: S[$a*Sb]

— Oruse the let command: 1let c=$a-Sb
— Or use the expr command: c=‘expr Sa - S$b‘
— You can also use C-style increment operators:

let c+=1 orlet c—-

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Arithmetic Operations (3)

 tcsh
— Addtwo numbers: @ x = 1 + 2
— Dividetwo numbers: @ x = Sa / Sb

— You can also use the expr command: set ¢ = ‘expr Sa % S$b!
— You can also use C-style increment operators:
@ x == 1 or @ x++

* Note the use of space
— bash: space required around operator in the expr command

— tcsh: space required between @ and variable, around = and numeric
operators.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




Arithmetic Operations (4)

* For floating numbers

— You would need an external calculator like the GNU basic
calculator (bc)

 Add two numbers

echo "3.8 + 4.2" | bc
* Divide two numbers and print result with a precision of 5 digits:
echo "scale=5; 2/5" | bc

* Call bc directly:
bc <<< “scale=b; 2/5”

* Usebc -1 toseeresultin floating point at max scale:
bc -1 << "2/5"

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




Arrays (1)

* bash and tcsh supports one-dimensional arrays

* Array elements may be initialized with the variable [i] notation:
variable[1]=1

* |nitialize an array during declaration

— bash: name=(firstname ’last name’)

— tcsh: set name = (firstname ’last name’)
 Reference an element i of an array name: ${name [i] }
* Print the whole array

— bash: S{name[@Q]}

— tcsh: S{name}

* Print length of array
— bash: $ {#name [@] }
— tesh: S {#name}

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




Arrays (2)

* Print length of element i of array name: ${#name [1] }

— Note: In bash S {#name} prints the length of the first element of the
array

 Add an element to an existing array
— bashname=(title ${name[@Q]})
— tesh set name = ( title "S{name}")

— In the above tcsh example, title is first element of new array while the
second element is the old array name

e Copy an array name to an array user
— bash user=(S{name[@]})
— tcsh set user = ( S$S{name} )

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Arrays (3)

* (Concatenate two arrays
— bash 1
— tcsh set nameuser=( “S{name}” “S{user}” )
* Delete an entire array: unset name
* Remove an element i from an array
— bash unset name[1i]
— tcsh @3 =951 -1
@ k=51 + 1
set name = ( “S{name[1-$7]}” “${name[Sk-]}" )
* Note
— bash: array index starts from O
— tcsh: array index starts from 1

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




L SERVICES

Arrays (4)

sat lastnams b

o

[ 5 stnama $lastnama)

name

$inama}

LR
EE
f] ($title ]
Sinama]
Slnamz[B] | B i S#nan

Ifscripts/fdayl feaxamplas®> . fnama.

E 1 Dr. Alax Pachoco the firsk
y Dr. i

CENTER FOR COMN o
& TECHNOL ..

9/22/2015 HPC training series Fall 2015



1 e L S
Flow Control

* Shell scripting languages execute commands in

sequence similar to programming languages such as C
and Fortran

— Control constructs can change the order of command
execution

e Control constructs in bash and tcsh are
— Conditionals: 1 £
— Loops: for, while, until
— Switches: case, switch

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[TECHNOLOGY
SERVICES

if statement

* Anif/then construct tests whether the exit status of a list of
commands is 0, and if so, execute one or more commands

s Wl

if [ conditionl ]; then if |
some commands

conditionl ) then
some commands

2lif [ comndition2 ]; then else if ( conditicon2 ) then
EOmE Commands some Ccommands

el=se el=se
some commands some commands

£i endif

i

* Note the space between condition and the brackets
— bash is very strict about spaces.
— tcsh commands are not so strict about spaces
— tcshusesthe if-then-else if-else-endif similar to Fortran

LSL) 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[TECHNOLOGY
SERVICES

F . | T t

Operston——Lbash

File exists if [ -e .bashrc ] 1f ( -e .tcshrc )
File is a regular file if [ -f .bashrc ]

File is a directory if [ -d /home ] if ( -d /home )

File is not zero size if [ -s .bashrc ] 1if (! -z .tcshrc )
File has read permission if [ -r .bashrc ] 1f ( -r .tcshrc )
File has write permission if [ -w .bashrc ] if ( -w .tcshrc )
File has execute permission if [ -x .bashrc ] if ( -x .tcshrc )

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[TECHNOLOGY
SERVICES

Integer Comparisons
Operation ___|bash  Jtsh

Equal to if [ 1 —-eq 2] if (1 == 2)
Not equal to if [ $a —ne Sb ] if (Sa != $b)
Greater than if [ Sa —gt Sb ] if (Sa > $b)
Greater than or equal to if [ 1 —ge Sb ] if (1 >= Sb)
Less than if [ Sa -1t 2 ] if (Sa < 2)
Less than or equal to if [ $a —-le Sb ] if (Sa <= $b)

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



sy 000 [RATEE
String Comparisons
R N

Equal to if [ Sa == $b ] if ($a == $b)
Not equal to if [ $a != $b ] if ($Sa != S$Sb)
Zero length or null if [ -z Sa ] if ($%a == 0)
Non zero length if [ -n $Sa ] if ($%a > 0)

* One might think that these "[" and "]" belong to the syntax of Bash's
if-clause: No they don't! It's a simple, ordinary command, still!

if [ expression ] if test expression

if [ ! —-e .bashrc ] if test ! -e .bashrc

CENTER FOR COMPUTATION ' (W I
e

& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



N L Sl
Logical Operators
Operation [EBxample

I (NOT) if [ ! -e .bashrc ]

&& (AND) if [ -f .bashrc ] && [ -s .bashrc ]
if [[ -f .bashrc && -s .bashrc ]]
if ( —-e .tcshrc && ! -z .tcshrc )

| (OR) if [ -f .bashrc ] || [ -f .bash profile ]
if [[ -f .bashrc || -f .bash profile ]]

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[TECHNOLOGY
SERVICES

read a
if [[ "%a"™ -gt 0 && "35a™ -1t 5 ]]; then
echo The wvalue of %a liesz =zomewhere between

CR
if [ "2a™ gt 0 ] && [ "Ha™ -1lt 5 ]; then
echo "The walue of Sa lies somewhere between 0 and 5"

set a = <

if { "2a"™ >» 0 && "Za"™ < 5 ) then
echo "The walue of 3a lies

endif

somewhere between 0 and &"

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



sy [EeTEE
Loop Constructs

* Aloop is a block of code that iterates a list of
commands as long as the loop control
condition is evaluated to true

* Loop constructs

— bash: for, while anduntil

—tcsh: foreachandwhile

LS50

CENTER FOR COMPUTATION » [
& TECHNOLOGY !

9/22/2015 HPC training series Fall 2015



For Loop - bash

e The for loop is the basic looping construct in bash

for arg in list
do

some commands
done

e The for and do lines can be written on the same line:
for arg in 1ist; do
« for loops can also use C style syntax

for i in S(seg 1 10) for i in $({segqg 1 10); do for {((i=l;i<=10;i++})
do touch fileS5{i}.dat do
touch file%{i}.dat donea touch file${i}.dat
done done
’

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



sy |ESTEE
For Loop - tcsh

* The foreach loop is the basic looping
construct in tesh

forsach i (*seg 1 10%)
touch filefi.dat
end

CENTER FOR COMPUTATION
& TECHNOLOGY

LSL 1

9/22/2015 HPC training series Fall 2015



While Loop

e The while construct tests for a condition at the top of a loop and
keeps going as long as that condition is true.

* Incontrasttoa for loop, a while loop finds use in situations
where the number of loop repetitions is not known beforehand.

 bash

while [ condition ]
do

some Ccommands
done

e tcsh

while { conditiom }
some commands
end

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



factorial.sh

read counter
factorial=l

while [ Scounter —gt 0
do

factorial=%(( Sfactorial
counter=%{( Scounter

done
echo Sfactorial

LS50

CENTER FOR COMPUTATION

& TECHNOLOGY

9/22/2015

Scounter

set factorial

@ factorial
@ counter —=
end
echo Sfactorial

set counter = 5<

while [ Scounter

While Loop - Example

factorial.csh

1
> 0 )
Sfactorial
1

HPC training series Fall 2015

socounter




Until Loop

e The until construct tests for a condition at the top of a
loop, and keeps looping as long as that condition is false
(opposite of while loop)

until [ condition iz trues ]
do

some cCcommands
done

factorial2.sh

read counter

break

=1 r—=
done
echo S$factorial

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Switching Constructs - bash

e The case and select constructs are technically not loops since
they do not iterate the execution of a code block

* Like loops, however, they direct program flow according to
conditions at the top or bottom of the block

case construct select construct

case wariable in select wariable [ list ]
"conditionl™) do
some command command
break
"condition2™} domne
some other command
i
es5ac
>

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Switching Constructs - tcsh

e tcsh has the switch constructs

switch construct

awitech (arg list)
case "wvariable"
some command
breaksw
endsw

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



m

mH

0 min

n

= ff e

L

I
Sl I = ]

mmmmImme

*)

15=* add subtract multiply diwvide
rponentiate modulo all quic!
in Soperations

+ Snum2 ] @ diff

=]

echo "Print two numbers cne at a time®
set numl = 5«
set num? - §<
echo =
echo = ; .

set oper = 5<

switch ( Soper )

case "x"
5[%numl + 5Snum2] @ prod = Snuml + Snum2
echo "Snuml = 5 $prod*
breaksw
5[%numl - 5Snum2] case "all®
@ sum = Znuml + Snum2
echo = J

echo ®"Smuml - tdiff=
@ prod = $numl » Snum2
Snum2 | echo ®"Snuml = Snumz Sprod®

@ ratio = Snuml / Snum2

echo ®"Snuml / $num2 Sratio®

Snum2 ] # remain = 5numl % Snum2

echo ®"Snuml % Snum2 Yremain®
breaksw

% Snum2] case """

# result = 5numl 5oper Snum2
echo ®"Snuml Soper $numi Sresult®

Nnnnoirn e
o0 o000

5[%numl + 5Snum2] breaksw
5[%numl - Snum2] endsw
5[%numl * Snum2]
S[5numl ++ Snum]

5 [$nu Enum2 ]
% Snum2]

CENTER FOR
& TECHNOLOGY

9/22/2015

HPC training series Fall 2015




~fTutorials/BASH/scripts>

Frint two numbers

-
4

What operation do you want to do?

1) add 3) multiply 5)
2) subtract 4) diwvide

1 + 4 = 5
1 - 4=-3
1 « 4 =4
1 =« 4 =1
1/ 4 =0

exponentiate

6)

fdaylfexamples/dooper.sh

modulo

B}

1) all

quit

1

E

Enter +, -, x,

all

1 +5=8§&
1 - 5= -4
1 +~5=25
1 / 5=0
1 %5=1

~fTutorials/BASH/ scripts>

fr & or all

JSdayl/fexample s/dooper.csh

Print two numbers one at a time

What operation do you want to do?

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015

HPC training series Fall 2015




INFORMATION
[ECHNOLOG
SERVICES

Command Line Arguments (1)

* Similar to programming languages, bash and other shell scripting
languages can also take command line arguments

— Execute: . /myscript argl arg2 arg3

— Within the script, the positional parameters S0, $1, $2, $3 correspond
to ./myscript, argl, arg2,andarg3, respectively.

— S$#:number of command line arguments
— S$*:all of the positional parameters, seen as a single word
— S$@:same as $* but each parameter is a quoted string.

— shift N: shift positional parameters from N+1 to $# are renamed to
variable namesfrom S1toS$# - N + 1

* |n csh and tcsh

— An array argv contains the list of arguments with argv [0] setto the name
of the script

— #argv isthe number of arguments, i.e. length of argv array

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015

N

\




sy [RelE

USAGE=" E 3 a

0

0o

L)

E] -fTutorials/fBASH scripk s/dayl fexampla s>

Numbor of Argumants:
List of Argumants:

Command You Entarpad:

Number of Argumants:

Humber of Arguments=:

{umbar of Argumants=:

{umbar of Argumants=:

Numbor of Argumants:

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015

Name of script that yon

Argument List is: 1

Argumant List is: 2

Argument List is: 3

qumant List is: 4

qumant List is: &

5

23465
are running:

Jfehift.csh 1 2

7 3 4
3 4

=

=

HPC training series Fall 2015




e Usethe declare command to set variable and functions

attributes

Declare command

* Create a constant variable, i.e. read-only

— declare
— declare

-r wvar
—-r varName=value

* Create an integer variable

— declare
— declare

* You can carry out arithmetic operations on variables declared as

integers

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015

-1 wvar
—1 varName=value

~f/Tutorial=s/BASH> J=10/5 ; echo %57j
10/5

~f/Tutorial=s/BASH> declare —-i j; j=10/5 ; echo %

2

HPC training series Fall 2015




Functions (1)

* Like “real” programming languages, bash has functions.

* A function is a code block that implements a set of operations, a
“black box” that performs a specified task.

* Wherever there is repetitive code, when a task repeats with only
slight variations in procedure, then consider using a function.

function function name |
command

1

OR

function name (]} |
command

]

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



INFORMATION
[ECHNOLOGY
SERVICES

~fTutorials/BASH/scripts/dayl/examples> ./shiftil.sh ‘segq 1 2 22*
Number of Arguments: 11

B T At List of Arguments: 1 3 5 7 9 11 13 15 17 15 21
o Mame of script that you are running: ./shiftl0.sh
usage {1 | C;mmand You Entered: ./shifti0.sh 1 3 5 7 9 11 13 15 17 19 21
echo "USAGE: 50 [atleast 11 arguments]® Firast Argument 1
=t - Tenth and Eleventh argument 10 11 19 21
} Argument List is: 1 3 5 7 9 11 13 15 17 19 21
Number of Arguments: 11
[[ "54" —1t 11 ]] && usage Argument List is: 19 21

Number of Arguments: 2

mm

mm

Jao oo o>

m
oo oooo

=

M mimim

nn ann
[;

0o Mmoo
'R

fm g

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Functions (2)

* You can also pass arguments to a function

All function parameters can be accessed via S1,
S22, $3..
* SO always point to the shell script name

 S* or S@ holds all parameters passed to a
function

S# holds the number of positional parameters
passed to the function

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Functions (3)

* Array variable called FUNCNAME contains the names of
all shell functions currently in the execution call stack.

* By default all variables are global.

 Modifying a variable in a function changes it in the
whole script.

* You can create a local variables using the local
command
local var=value
local wvarName

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015




INFORMATION
[ECHNOLOGY
SERVICES

* A function may recursively call itself even
without use of local variables.

factorial3.sh

usage () |
echo "USAGE: 50 <integer»"

-/ Tutorials/BASH/scripts/dayl /examples>. /factorial3d.sh 1 3 5 7 9
Factorial of 1 i=s 1

Factorial of 3 is 6

Factorial of 5 i=s 120

Factorial of 7 is 5040

Factorial of 9 iz 362880

Factorial of 15 is 1307674368000

[ FLI (TR TR 1Ty 1Ty 1]
A =i e i

factorial(} {
local i=51
local £

declare -i i
declare -i f

if [

[ "5i® -1le 2 && "%5i" -ne 0 ]]; then
echa §

if [[ i a =5}
echo 1

i [ 51 ]

i factorial 5f )

f { 5E Si })

(= SE

CENTER F(
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Outline

* Advanced Text Processing Commands

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Advanced Text Processing Commands

— grep & egrep
— sed

— awk

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



grep & egrep

 grep is a Unix utility that searches through either information piped to it or files.
* egrep is extended grep (extended regular expressions), same as grep -E

* Use zgrep for compressed files.

* Usage: grep <options> <search pattern> <files>

« Commonly used options

-1i ignore case during search

-r,-R search recursively

-V invert match i.e. match everything except pattern

-1 list files that match pattern

-L list files that do not match pattern

-n prefix each line of output with the line number within its input file.

-A num print num lines of trailing context after matching lines.

-B num print num lines of leading context before matching lines.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



INFORMATION
[TECHNOLOGY
SERVICES

grep Examples

e Search files that contain the word node in the examples directory

egrep node *

checknodes.pbs:#PBS -o nodetest.out

checknodes.pbs:#PBS -e nodetest.err

checknodes.pbs: for nodes in "${NODES[Q]}"; do
checknodes.pbs: ssh -n $nodes ’'echo $HOSTNAME ’'S$i’ ' &
checknodes.pbs:echo "Get Hostnames for all unique nodes"

* Repeat above search using a case insensitive pattern match and print line
number that matches the search pattern

egrep -in node *

checknodes.pbs:20:NODES=(‘cat "S$PBS NODEFILE"‘ )
checknodes.pbs:21:UNODES=(‘unig "$PBS NODEFILE"‘ )
checknodes.pbs:23:echo "Nodes Available: " S${NODES[@]}
checknodes.pbs:24:echo "Unique Nodes Available: " ${UNODES[@]}
checknodes.pbs:28:for nodes in "S${NODES[@]}"; do
checknodes.pbs:29: ssh -n Snodes ’'echo $HOSTNAME ’S$i’ ' &
checknodes.pbs:34:echo "Get Hostnames for all unigque nodes"
checknodes.pbs:39: ssh -n S${UNODES[S$i]} ’'echo SHOSTNAME ’'S$i’ ’

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



INFORMATION
[TECHNOLOGY
SERVICES

sed

 sed ("stream editor") is Unix utility for parsing and
transforming text files.
— Also works for either information piped to it or files
« sedisline-oriented - it operates one line at a time and allows
regular expression matching and substitution.
* sed has several commands, the most commonly used

command and sometime the only one learned is the
substitution command, s

> echo day | sed ’'s/day/night/’
> night

LS50 l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



N L S

List of sed commands and flags

Flags Operation Command Operation

-e combine multiple commands s substitution

-f read commands from file g global replacement

-h print help info P print

-n disable print i ignore case

-V print version info d delete

-r use extended regex G add newline
W write to file
X exchange pattern with hold buffer

copy pattern to hold buffer

; separate commands

L:I-l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

=]
: S,




sed Examples (1)

Add the -e to carry out multiple matches.

cat hello.sh | sed -e ’'s/bash/tcsh/g’ -e ’'s/First/First tcsh/g’

#!/bin/tcsh
# My First tcsh Script
echo "Hello World!"™

Alternate form

sed ’'s/bash/tcsh/g; s/First/First tcsh/g’ hello.sh

#!/bin/tcsh
# My First tcsh Script
echo "Hello World!™"

LS50

The default delimiter is slash (/), but you can change it to whatever you want
which is useful when you want to replace path names

sed ’'s:/bin/bash:/bin/tcsh:g’ hello.sh

#!/bin/tcsh
# My First Script
echo "Hello World!"

CENTER FOR COMPUTATION

& TECHNOLOGY

3/4/2015

HPC training series Spring 2015




sed Examples (2)

e sed can also delete blank lines from a file

sed '/*$/d’ hello.sh

#!/bin/bash
# My First Script
echo "Hello World!"™

 Delete line n throughmin a file

sed '2,4d’ hello.sh

#!/bin/bash
echo "Hello World!"™

* Insert a blank line above every line which matches pattern

sed ' /First/{x;p;x}’ hello.sh

#!/bin/bash

I 5" # My First Script [

CENTER FOR COMPUTATION " -
& TECHNOLOGY echo "Hello World!

3/4/2015 HPC training series Spring 2015



sed Examples (3)

* Insert a blank line below every line which matches
pattern

sed ' /First/G’ hello.sh
#!/bin/bash

# My First Script

echo "Hello World!"™

* [Insert a blank line above and below every line which
matches pattern

sed ' /First/{x;p;x;G}’ hello.sh

#!/bin/bash

# My First Script

Lsu echo "Hello World!"™ l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



sed Examples (4)

* Print only lines which match pattern (emulates grep)

sed -n ' /echo/p’ hello.sh

echo "Hello World!"

* Print only lines which do NOT match pattern (emulates grep -v)
sed -n ’'/echo/'p’ hello.sh

#!/bin/bash
# My First Script

e Print current line number to standard output
sed -n ' /echo/ =’ quotes.sh

5

6

7

8

9

10

11
LSuU |
CENTER FOR COMPUTATION 13 :

& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



INFORMATION
[ECHNOLOGY
SERVICES

awk

* The awk text-processing language is useful for such tasks as:
— Tallying information from text files and creating reports from the results.
— Adding additional functions to text editors like "vi".
— Translating files from one format to another.
— Creating small databases.
— Performing mathematical operations on files of numeric data.
* awk has two faces:
— ltis a utility for performing simple text-processing tasks, and
— Itis a programming language for performing complex text-processing tasks.
* awk comes in three variations
— awk : Original AWK by A. Aho, B. W. Kernighnan and P. Weinberger from AT&T
— nawk : New AWK, also from AT&T

— gawk : GNU AWK, all Linux distributions come with gawk. In some distros,
awk is a symbolic link to gawk.

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



sy (Rl
awk Syntax

e Simplest form of using awk
—awk pattern {action}
* pattern decides when action is performed
— Most common action: print
— Print file dosum.sh: awk ’ {print $0}’ dosum.sh

— Print line matching bash in all . sh files in current
directory: awk ' /bash/{print $0}’ *.sh

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



sy [l
Awk Examples

* Print list of files that are csh script files

awk ’'/*“#\!'\/bin\/tcsh/{print FILENAME}' *

dooper.csh
factorial.csh
hellol.sh
name.csh
nestedloops.csh
quotes.csh
shift.csh

* Print contents of hello.sh that lie between two patterns

awk ’'/*#\'\/bin\/bash/,/echo/{print $0}’ hello.sh

#!/bin/bash
# My First Script
echo "Hello World!™"

LSLU 1

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



N L Sl
How awk Works

 awk reads the file being processed line by line.

* The entire content of each line is split into columns with space or
tab as the delimiter. The delimiter can be changed as will be seen
in the next few slides.

* To print the entire line, use $0.

* The intrinsic variable NR contains the number of records (lines)
read.

* The intrinsic variable NF contains the number of fields or columns
in the current line.

* By default the field delimiter is space or tab. To change the field
delimiter use the -F<delimiter> command.

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



B el RS

uptime
11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11, 0.17
uptime | awk ’ {print $1,NF}’

11:1%9am 0.17

uptime | awk -F: ’ {print $1,NF}’

11 0.12, 0.10, 0.16

for i in $(seq 1 10); do touch file${i}.dat ; done
ls file*

filelO.dat file2.dat filed.dat file6.dat file8.dat
filel.dat file3.dat filebS5.dat file7.dat file9.dat

for i in file* ; do

> prefix=$(echo $i | awk -F. ’'{print $1}’)
> suffix=$(echo $i | awk -F. ’'{print NF}’)
> echo $prefix $suffix $i

> done

filelO dat filelO.dat
filel dat filel.dat
file2 dat file2.dat
file3 dat file3.dat
filed dat filed.dat
file5 dat file5.dat
fileo dat file6.dat
file7 dat file7.dat
cpl file8 dat file8.dat
file9 dat file9.dat

0 HPC training series Spring 20




Arithmetic Operations (1)

* awk has in-built support for arithmetic

operations
Addition Autoincrement
- Subtraction -- Autodecrement
* Multiplication  += Add to
/ Division -= Subtract from
ok Exponentiation *= Multiple with
% Modulo /= Divide by

echo | awk ’{print 10%3}’

1
I su echo | awk ’'{a=10;print a/=5}’

CENTER FOR COMPUTATION 2
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



Conditionals and Loops (1)

* awk supports
— if ... else 1f .. else conditionals.
— while and for loops
 They work similar to that in C-programming
* Supported operators: ==, 1=, >, >=, <, <=, ~ (string matches), |~
(string does not match)

awk ’'{if (NR > O ){print NR,”:”, $0}}’ hello.sh
1 : #!/bin/bash

2 3

3 : # My First Script

4 .

5

: echo "Hello World!"™

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



Conditionals and Loops (2)

* The for command can be used for processing
the various columns of each line

cat << EOF | awk ’'{for (i=1;i<=NF;i++){if (i==1) {a=$i}else if (i==NF) {print a}else{a+=$i}}}’

123456
7 8 9 10
EOF

15

24

echo $(seq 1 10) | awk ’'BEGIN{a=6}{for (i=1;i<=NF;i++){a+=$i}}END {print a}’

61

LSL) 1

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



Further Reading

* BASH Programming http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
* Advanced Bash-Scripting Guide http://tldp.org/LDP/abs/html/

e Regular Expressions http://www.grymoire.com/Unix/Regular.html
* AWK Programming http://www.grymoire.com/Unix/Awk.html

e awk one-liners: http://www.pement.org/awk/awk1line.txt

e sed http://www.grymoire.com/Unix/Sed.html

* sed one-liners: http://sed.sourceforge.net/sed1line.txt

e CSH Programming http://www.grymoire.com/Unix/Csh.html

* csh Programming Considered Harmful

* http://www.fags.org/fags/unix-fag/shell/csh-whynot/

* Wiki Books http://en.wikibooks.org/wiki/Subject:Computing

LSLU 1

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015



INFORMATION
[TECHNOLOGY
SERVICES

Exercises

1. Write a shell script to
— Print “Hello world!” to the screen
— Use a variable to store the greeting
2.  Write a shell script to
—  Take two integers on the command line as arguments
— Print the sum, different, product of those two integers

—  Think: what if there are too few or too many arguments? How can you check
that?

3.  Write a shell script to read your first and last name to an array
—  Add your salutation and suffix to the array
— Drop either the salutation or suffix
— Print the array after each of the three steps above

4. Write a shell script to calculate the factorial and double factorial of an
integer or list of integers

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



sy |ESTE
Next Tutorial —
Distributed Job Execution

* |If any of the following fits you, then you might
want come
— | have to run more than one serial job.

— | don’t want to submit multiple job using the serial
gueue

— How do | submit one job which can run multiple serial
jobs?

e Date: Sept 30", 2015

LSL 1

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



Getting Help

 User Guides
— LSU HPC: http://www.hpc.lsu.edu/docs/guides.php#thpc
— LONI:http://www.hpc.Isu.edu/docs/guides.php#loni
 Documentation: http://www.hpc.Isu.edu/docs
e Online courses: http://moodle.hpc.lsu.edu
* Contactus

— Email ticket system: sys-help@]Ioni.org
— Telephone Help Desk: 225-578-0900

— Instant Messenger (AIM, Yahoo Messenger, Google Talk)
e Add “Isuhpchelp”

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/22/2015 HPC training series Fall 2015



http://www.hpc.lsu.edu/docs
http://moodle.hpc.lsu.edu/
mailto:sys-help@loni.org

