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 OpenMP (Open Multi-Processing) is an API (application programming interface)
that supports multi-platform shared memory multiprocessing programming.

 Supporting languages: C, C++, and Fortran

 Consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior.

 For most processor architectures and operating systems: Linux, Solaris, AIX, HP-
UX, Mac OS X, and Windows platforms.

The latest version is OpenMP 4.0, which supports accelerators. Most features
mentioned in this training are within OpenMP 3.0 .

 Official website: http://openmp.org/wp/

I. Introduction to OpenMP

http://openmp.org/wp/


Distributed and shared memory

• Shared memory

• A single multicore compute node

• Open Multi-processing (OpenMP)

• Distributed memory system

• Mutli compute nodes

• Message Passing Interface (MPI)



Multicore processor with shared memory 

 OpenMP can be applied to a 
multicore processor with 
shared memory.

Works are spread to multi 
threads and each thread is 
assigned to one core. 

 Data is copied into cache from 
main memory.



Parallelism of OpenMP

• Fork-join model:

• Multithreading: a master thread forks a specified number of slave threads and the system divides 
a task among them. The threads then run concurrently, with the runtime environment allocating 
threads to different processors (or cores).



The first OpenMP program: Hello world!

• Hello world in C language

#include <omp.h>

int main() {

int id;

#pragma omp parallel private(id)

{

id = omp_get_thread_num();

if (id%2==1)

printf("Hello world from thread %d, I am odd\n", id);

else

printf("Hello world from thread %d, I am even\n", id);

}

}



• Hello world in Fortran language

program hello

use omp_lib

implicit none

integer i

!$omp parallel private(i)

i = omp_get_thread_num()

if (mod(i,2).eq.1) then

print *,'Hello from thread',i,', I am odd!'

else

print *,'Hello from thread',i,', I am even!'

endif

!$omp end parallel

end program hello



#pragma omp directive-name [clause[[,] clause]. . . ]

OpenMP directive syntax

• In C/C++ programs

!$omp directive-name [clause[[,] clause]. . . ]

• In Fortran programs

• Directive-name is a specific keyword, for example parallel, that defines and controls 
the action(s) taken. 

• Clauses, for example private, can be used to further specify the behavior.



Compile and run OpenMP programs

Compile C/C++/Fortran codes

> icc/icpc/ifort -openmp name.c/name.f90  -o  name

> gcc/g++/gfortran -fopenmp name.c/name.f90  -o  name

> pgcc/pgc++/pgf90  -mp name.c/name.f90  -o  name

Run OpenMP programs

> export OMP_NUM_THREADS=20        # set number of threads

> ./name

> time ./name                              # run and measure the time.



II. OpenMP language features

• Synchronization constructs

Barrier Construct

Master Construct

Critical Construct

Atomic Construct

• Advanced clauses: 

reduction, if, num_thread

• Nested parallelism

• Parallel Construct

• Work-Sharing Constructs

Loop Construct

Sections Construct

Single Construct

Workshare Construct (Fortran only)

• Basic clauses

shared, private, lastprivate, firstprivate,

default, nowait, schedule

• Construct : An OpenMP executable directive and the associated statement, loop, or 
structured block, not including the code in any called routines.



#pragma omp parallel [clause[[,] clause]. . . ]

…… code block ......  

Parallel construct

• Syntax in C/C++ programs

• Syntax in Fortran programs

• Parallel construct is used to specify the computations that should be executed in parallel. 

• A team of threads is created to execute the associated parallel region.

• The work of the region is replicated for every thread. 

• At the end of a parallel region, there is an implied barrier that forces all threads to wait 
until the work inside the region has been completed.

!$omp parallel [clause[[,] clause]. . . ]

…… code block ......

!$omp end parallel



• if(scalar-expression) (C/C++)

• if(scalar-logical-expression)                                                             (Fortran)

• num_threads(integer-expression)                                                      (C/C++)

• num_threads(scalar-integer-expression)                                        (Fortran)

• private(list)

• firstprivate(list)

• shared(list)

• default(none|shared)                                                                          (C/C++)

• default(none|shared|private)                                                         (Fortran)

• copyin(list)

• reduction(operator:list)                                                                        (C/C++)

• reduction({operator|intrinsicprocedure name}:list) (Fortran)

• Clauses supported by the parallel construct



Work-sharing constructs

• Many applications can be parallelized by using just a parallel region and one or more 
of work-sharing constructs, possibly with clauses.

Functionality Syntax in C/C++ Syntax in Fortran

Distribute iterations #pragma omp for !$omp do

Distribute independent works #pragma omp sections !$omp sections

Use only one thread #pragma omp single !$omp single

Parallelize array syntax N/A !$omp workshare



• The parallel and work-sharing (except single) constructs can be combined.

• Following is the syntax for combined parallel and work-sharing constructs,

Combine parallel construct with … Syntax in C/C++ Syntax in Fortran

Loop construct #pragma omp parallel for !$omp parallel do

Sections construct #pragma omp parallel sections !$omp parallel sections

Workshare construct N/A !$omp parallel workshare



#pragma omp for [clause[[,] clause]. . . ]

…… for loop ......  

Loop construct

• Syntax in C/C++ programs

• Syntax in Fortran programs

• The terminating !$omp end do directive in Fortran is optional but recommended.

!$omp do [clause[[,] clause]. . . ]

…… do loop ......

[!$omp end do]

• The loop construct causes the iterations of the loop immediately following it to be 
executed in parallel.



• Distribute iteration in a parallel region

#pragma omp parallel for shared(n,a) private(i)

{

for (i=0; i<n; i++)   

a[i]=i+1;

}       /*-- End of parallel region --*/

• shared clause: All threads can read from and write to the variable.

• private clause: Each thread has a local copy of the variable.

• The maximum iteration number n is shared, while the iteration number i is private.

• Each thread executes a subset of the total iteration space i = 0, . . . , n − 1

• The mapping between iterations and threads can be controlled by the schedule clause. 



• Two work-sharing loops in one parallel region

#pragma omp parallel shared(n,a,b) private(i)

{

#pragma omp for

for (i=0; i<n; i++)   a[i] = i;

//  there is an implied barrier

#pragma omp for

for (i=0; i<n; i++)   b[i] = 2 * a[i];

} /*-- End of parallel region --*/

• The distribution of iterations to threads could be different for the two loops.
• The implied barrier at the end of the first loop ensures that all the values of a[i] are 

updated before they are used in the second loop.



#pragma omp sections [clause[[,] clause]. . . ]

{

[#pragma omp section ]

…… code block 1 ......  

[#pragma omp section

…… code block 2 ......  ]

. . .

}

Sections construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• The work in each section must be independent. 

• Each section is distributed to one thread. 

!$omp sections [clause[[,] clause]. . . ]

[!$omp section ]

…… code block 1 ......  

[!$omp section

…… code block 2 ......  ]

. . .

!$omp end sections



• Example of parallel sections

#pragma omp parallel sections

{

#pragma omp section

(void) funcA();

#pragma omp section

(void) funcB();

}   /*-- End of parallel region --*/

• Although the sections construct can be generally used to get threads to perform different 
tasks independently, its most common use is probably to execute function or subroutine 
calls in parallel.

• There is a load-balancing problem, if the works in different sections are not equal. 



#pragma omp single [clause[[,] clause]. . . 

…… code block  ......  

Single construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• The code block following the single construct is executed by one thread only. 

• The executing thread could be any thread (not necessary the master one).

• The other threads wait at a barrier until the executing thread has completed.

!$omp single [clause[[,] clause]. . . ]

…… code block  ......  

!$omp end single



• Example of the single construct

#pragma omp parallel shared(a,b) private(i)

{

#pragma omp single

{

a = 10;

}  

/* A barrier is automatically inserted here */

#pragma omp for

for (i=0; i<n; i++)

b[i] = a;

} /*-- End of parallel region --*/

• Only one thread initializes the 
shared variable a.

• If the single construct is omitted 
here, multiple threads could 
assign the value to a at the same 
time, potentially resulting in a 
memory problem. 

• The implicit barrier at the end of 
the single construct ensures that 
the correct value is assigned to 
the variable a before it is used 
by all threads. 



Workshare construct

• Syntax in Fortran programs

• Units of works within the block are executed in parallel in a manner that respects the 
semantics of Fortran array operations.

• For example, if the workshare directive is applied to an array assignment statement, the 
assignment of each element is a unit of work.

!$omp workshare [clause[[,] clause]. . . ]

…… code block  ......  

!$omp end workshare

• Workshare construct is only available for Fortran.



• Example of workshare construct

!$OMP PARALLEL SHARED(n,a,b,c)

!$OMP WORKSHARE

b(1:n) = b(1:n) + 1

c(1:n) = c(1:n) + 2

a(1:n) = b(1:n) + c(1:n)

!$OMP END WORKSHARE

!$OMP END PARALLEL

• These array operations are parallelized. 
• There is no control over the assignment of array updates to the threads.
• The OpenMP compiler must generate code such that the updates of b and c have completed 

before a is computed.



Lastprivate clause

#pragma omp parallel for private(i) lastprivate(a)

for (i=0; i<n; i++) {

a = i+1;

printf("Thread %d has a value of a = %d for i = %d\n", omp_get_thread_num(),a,i);

} /*-- End of parallel for --*/

printf(“After parallel for: i = %d , a = %d\n", i, a);

• private clause: The values of data can no longer be accessed after the region terminates.

• lastprivate clause: The sequentially last value is accessible outside the region.

• For loop construct, “last” means the iteration of the loop that would be last in a sequential execution.

• For sections construct, “last” means the lexically last sections construct.

• Lastprivate clause is not available for parallel construct.



• Alternative code with shared clause

#pragma omp parallel for private(i) private(a) shared(a_shared)

for (i=0; i<n; i++) {

a = i+1;

if ( i == n-1 ) a_shared = a;

} /*-- End of parallel for --*/

• All behavior of the lastprivate clause can be reproduced by the shared clause, but the 
lastprivate clause is more recommended.

• A performance penalty is likely to be associated with the use of lastprivate, because the 
OpenMP library needs to keep track of which thread executes the last iteration.



Firstprivate clause

int i, vtest=10, n=20;

#pragma omp parallel for private(i) firstprivate(vtest) shared(n)

for(i=0; i<n; i++) {

printf("thread %d: initial value = %d\n", omp_get_thread_num(), vtest);

vtest=i;

}

printf("value after loop = %d\n", vtest);

• private clause: Preinitialized value of variables are not passed to the parallel region.

• firstprivate clause: Each thread has a preinitialized copy of the variable. This variable is still private, 
so threads can update it individually.

• Firstprivate clause is available for parallel, loop, sections and single constructs.



Default clause

• The default clause is used to give variables a default data-sharing attribute. 

• It is applicable to the parallel construct only. 

• Syntax in Fortran programs default (none | shared | private) 

• Syntax in C programs default (none | shared) 

#pragma omp for default(shared) private(a,b,c)

• An example: declares all variables to be shared, with the some exceptions. 

• If default(none) is specified, the programmer is forced to specify a data-sharing attribute for 
each variable in the construct.



Nowait clause

• If the nowait clause is added to a construct, the implicit barrier at the end of the 
associated construct will be suppressed. When a thread is finished with the work 
associated with the parallelized for loop, it continues and no longer waits for the 
other threads to finish.

• Note, however, that the barrier at the end of a parallel region cannot be suppressed.

#pragma omp for nowait

for (i=0; i<n; i++)

{

............

}  // no barrier here

• An example for C program

!$OMP DO

............

!$OMP END DO NOWAIT ! no barrier here

• An example for Fortran program



Schedule clause

• Specifies how iterations of the loop are assigned to the threads in the team. 

• Supported on the loop construct only.

• The iteration space is divided into chunks. Chunk represents the granularity of workload 
distribution, a contiguous nonempty subset of the iteration space.

• Syntax schedule(kind [,chunk_size] )

• The static schedule works best for regular workloads and is the default on many 
OpenMP compilers.

• The dynamic and guided schedules are useful for handling poorly balanced and 
unpredictable workloads.

• There is a performance penalty for using dynamic and guided schedules.



kind description

static The chunks are assigned to the threads statically in a round-robin manner, in the order of the thread 
number. If chunk_sizeis not specified, the chunk size is approximately equal to the total number of 
iteration divided by the number of threads.

dynamic The chunks are assigned to threads as the threads request them. The last chunk may have fewer 
iterations than chunk size. If chunk_sizeis not specified, it defaults to 1.

guided The chunks are assigned to threads as the threads request them. For a chunk_sizeof 1, the size of 
each chunk is proportional to the number of unassigned iterations, divided by the number
of threads, decreasing to 1. For a chunk_sizeof “k” (k > 1), the size of each chunk is determined in 
the same way, with the restriction that the chunks do not contain fewer than k iterations (with a 
possible exception for the last chunk to be assigned, which may have fewer than k iterations). When 
no chunk_sizeis specified, it defaults to 1.

runtime The schedule and (optional) chunk size are set through the OMP_SCHEDULE environment variable.

• Schedule kind



• Example of schedule clause: 

The workload in the inner loop depends on the value of the outer loop iteration variable i. 
Therefore, the workload is not balanced, and the static schedule is probably not the best 
choice. Dynamic or guided schedules are required. 

#pragma omp parallel for default(none) schedule(runtime) private(i,j) shared(n)

for (i=0; i<n; i++)

{

printf("Iteration %d executed by thread %d\n", i, omp_get_thread_num());

for (j=0; j<i; j++)   

system("sleep 1");

} 



#pragma omp barrier

Barrier construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• A barrier is a point in the execution of a program where threads wait for each other: 
no thread in the team of threads it applies to may proceed beyond a barrier until all 
threads in the team have reached that point.

!$omp barrier

Two important restrictions apply to the barrier construct:

• Each barrier must be encountered by all threads in a team, or by none at all.

• The sequence of work-sharing regions and barrier regions encountered must be the same 
for every thread in the team.



• Example of barrier construct: 

A thread waits at the barrier until the last thread in the team arrives.

#pragma omp parallel private(TID)

{

TID = omp_get_thread_num();

if (TID < omp_get_num_threads()/2 ) system("sleep 3");

bt1 =  time(NULL);

printf("Thread %d before barrier at %s \n", omp_get_thread_num(), ctime(&t1) ); 

#pragma omp barrier

t2 =  time(NULL);

printf("Thread %d after barrier at %s \n", omp_get_thread_num(), ctime(&t2) );

} /*-- End of parallel region --*/



• Also, a barrier should not be in a work-sharing construct, a critical section, or a master construct.

#pragma omp parallel

{

if ( omp_get_thread_num() == 0 ){

.....

#pragma omp barrier  // Correction: the barrier should be out of the if-else region

}

else{

.....

#pragma omp barrier

}

} /*-- End of parallel region --*/

• The barrier is not encountered by all threads in the team, and therefore this is not illegal. 

• Illegal use of the barrier



work1(){

/*-- Some work performed here --*/

#pragma omp barrier   // Correction: remove this barrier

}

work2(){

/*-- Some work performed here --*/

}

main(){

#pragma omp parallel sections

{

#pragma omp section

work1();

#pragma omp section

work2();

}    // An implicit barrier

}

• If executed by two threads, 
this program never finishes.

• Thread1 executing work1 
waits forever in the explicit 
barrier, which thread2 will 
never encounter.

• Thread2 executing work2 
waits  forever in the implicit 
barrier at the end of the 
parallel sections construct, 
which thread1 will never 
encounter.

• Note: Do not insert a barrier 
that is not encountered by all 
threads of the same team.

• A dead lock situation



#pragma omp master

…… code block …..

Master construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• The master construct defines a block of code that is guaranteed to be executed by the 
master thread only.

• It does not have an implied barrier on entry or exit. In the cases where a barrier is not 
required, the master construct may be preferable compared to the single construct.

!$omp master

…… code block …..

!$omp end master

• The master construct is often used (in combination with barrier construct) to initialize data.



• This code fragment implicitly assumes that variable Xinit is available to all threads after it is 
initialized by the master thread. This is incorrect. The master thread might not have executed 
the assignment when another thread reaches it.

int Xinit, Xlocal;

#pragma omp parallel shared(Xinit) private(Xlocal)

{

#pragma omp master // correct version 1: use single construct instead, #pragma omp single 

{ 

Xinit = 10; 

}

// correct version 2: insert a barrier here, #pragma omp barrier

Xlocal = Xinit;    /*-- Xinit might not be available for other threads yet --*/

}     /*-- End of parallel region --*/

• Incorrect use of master construct



#pragma omp critical [(name)]

…… code block …..

Critical construct

• Syntax in C/C++ programs • Syntax in Fortran programs

• The critical construct provides a means to ensure that multiple threads do not attempt to 
update the same shared data simultaneously.

• When a thread encounters a critical construct, it waits until no other thread is executing a 
critical region with the same name.

!$omp critical [(name)]

…… code block …..

!$omp end critical [(name)]

• The code block is executed by all threads, but only one at a time executes the block.



• Example 1 of critical construct: Avoiding garbled output  

A critical region helps to avoid intermingled output when multiple threads print from 
within a parallel region.

#pragma omp parallel private(TID)

{

TID = omp_get_thread_num();

#pragma omp critical (print_tid)  

{

printf("Thread %d : Hello, ",TID);

printf(“world!\n");

}

}  /*-- End of parallel region --*/



Race condition

• Race conditions arise when the result depends on the sequence or timing of processes or threads, 
for example, when multithreads read or write the same shared data simultaneously.

• Example: two threads each want to increment the value of a shared integer variable by one.

Thread 1 Thread 2 value

0

read value ← 0

Increase value 0

write back → 1

read value ← 1

increase value 1

write back → 2

Thread 1 Thread 2 value

0

read value ← 0

read value ← 0

increase value 0

increase value 0

write back → 1

write back → 1

Correct sequence Incorrect sequence



• Example of data racing: sums up elements of a vector

Multithreads can read and write the shared data sum simultaneously. 

A data race condition arises!

If a thread reads sum before sum is updated by another thread, the final result of sum is wrong!

sum = 0;

#pragma omp parallel for shared(sum,a,n) private(i)

for (i=0; i<n; i++)

{

sum = sum + a[i];

}  /*-- End of parallel for --*/

printf("Value of sum after parallel region: %f\n",sum);



• A partially parallel scheme to avoid data racing

Step 1: Calculate local sums in parallel

Thread 1

a0

a1

am-1

+

+

+

=
…

LS1

Thread 2

am

am+1

a2m-1

+

+

+

=
…

LS2

Thread m

an-m-1

an-m

an

+

+

+

=
…

LSm

m: number of threads

n: array length

LS: local sum

……

……

……

……

……



Step 2: Update total sum sequentially

Thread 1 Thread 2 …… Thread m

Read initial S

S = S + LS1

Write S

Read S

S = S + LS2

Write S

……

Read S

S = S + LSm

Write S

m: number of threads

LS: local sum

S: total sum



• Example 2 of critical construct: sums up the elements of a vector

The critical region is needed to avoid a data race condition when updating variable sum.

sum = 0;

#pragma omp parallel shared(n,a,sum) private(sumLocal)

{

sumLocal = 0;

#pragma omp for

for (i=0; i<n; i++)  sumLocal += a[i];

#pragma omp critical (update_sum)

{

sum += sumLocal;

printf("TID=%d: sumLocal=%d sum = %d\n", omp_get_thread_num(), sumLocal, sum);

}

} /*-- End of parallel region --*/

printf("Value of sum after parallel region: %d\n",sum);



#pragma omp atomic

…… a single statement …..

Atomic construct

• Syntax

Fortran programs

• The atomic construct also enables multiple threads to update shared data without interference. 

• It is applied only to the (single) assignment statement that immediately follows it.

• If a thread is atomically updating a value, then no other thread may do so simultaneously.

!$omp atomic

…… a single statement …..

!$omp end atomic

• Supported operators +, *, -, /, &, ^, |, <<, >>. +, *, -, /, .AND., .OR., .EQV., .NEQV. .

C/C++ programs



• Example 1a of atomic construct: sums up the elements of a vector (fast version)

The atomic construct ensures that no updates are lost when multiple threads update the variable sum.

Atomic construct can be an alternative to the critical construct in this case. 

sum = 0;

#pragma omp parallel shared(n,a,sum) private(sumLocal)

{

sumLocal = 0;

#pragma omp for

for (i=0; i<n; i++)  sumLocal += a[i];

#pragma omp atomic

sum += sumLocal;

}   /*-- End of parallel region --*/

printf("Value of sum after parallel region: %d\n",sum);



• The atomic construct avoids the data racing condition. Therefore this code gives a correct result. 

• But the additions are performed sequentially and there is additional performance penalty for atomic. 

• This code is even slower than a normal serial code!

sum = 0;

#pragma omp parallel for shared(n,a,sum) private(i) // Optimization: use reduction instead of atomic 

for (i=0; i<n; i++)

{

#pragma omp atomic

sum += a[i];

}   /*-- End of parallel for --*/

printf("Value of sum after parallel region: %d\n",sum);

• Example 1b of atomic construct: sums up the elements of a vector (slow version)



• Example 2 of atomic construct: sums up the values of functions

The atomic construct does not prevent multiple threads from executing the function 
bigfuncparallelly.

It is only the update to the memory location of the variable sum that will occur atomically. 

sum = 0;

#pragma omp parallel for shared(n,a,sum) private(i)

for (i=0; i<n; i++)

{

#pragma omp atomic

sum = sum + bigfunc();

}   /*-- End of parallel for --*/

printf("Value of sum after parallel region: %d\n",sum);



Reduction clause

• There is a much easier way to implement the summation operation using reduction clause.

• An OpenMP compiler will generate a roughly equivalent machine code for the two cases: using 
critical construct and using reduction clause, meaning that their performance is almost the same.

• The result sum will be shared and it is not necessary to specify it explicitly as “shared”.

• The order in which thread-specific values are combined is unspecified. Therefore, where floating-
point data are concerned, there may be numerical differences between the results of a sequential 
and parallel run, or even of two parallel runs using the same number of threads.

#pragma omp parallel for default(none) shared(n,a) private(i) reduction(+:sum)

for (i=0; i<n; i++)  

sum += a[i];

/*-- End of parallel reduction --*/



• Operators and statements supported by the reduction clause

C/C++ Fortran

Typical statements x = x op expr
x binop= expr
x = expr op x (except for subtraction)
x++
++x
x--
--x

x = x op expr
x = expr op x (except for subtraction)
x = intrinsic(x, expr_list )
x = intrinsic(expr_list, x)

op could be +, *, -, &, ^, |, &&, or || +, *, -, .and., .or., .eqv., or .neqv. 

binopcould be +, *, -, &, ^, or | N/A

Intrinsicfunction could be N/A max, min, iand, ior, ieor



If clause

• The if clause is supported on the parallel construct only and is used to specify conditional execution.

• it is sometimes necessary to test whether there is enough work in the region to warrant its parallelization.

#pragma omp parallel if (n > 5) default(none)  private(TID) shared(n)

{

TID = omp_get_thread_num();

#pragma omp single

{

printf("Number of threads in parallel region: %d\n", omp_get_num_threads());

}

printf("Print statement executed by thread %d\n",TID);

} /*-- End of parallel region --*/



Num_threads clause

• The num_threads clause is supported on the parallel construct only and can be used to specify how 
many threads should be in the team executing the parallel region

omp_set_num_threads(4);

#pragma omp parallel if (n > 5) num_threads(n) default(none) shared(n)

{

#pragma omp single

{

printf("Number of threads in parallel region: %d\n", omp_get_num_threads());

}

printf("Print statement executed by thread %d\n", omp_get_thread_num());

} /*-- End of parallel region --*/



Nested parallelism
• If a thread in a team executing a parallel region encounters another parallel construct, it creates a 

new team and becomes the master of that new team.

• The function omp_get_thread_num() returns the thread number of the current parallel region.

• The thread number of the first lever can be passed on to the second level by fristprivate clause.

#pragma omp parallel private(TID)

{

TID = omp_get_thread_num();

#pragma omp parallel num_threads(2) firstprivate(TID)

{

printf(“Outer thread number: %d. Inner thread number: %d.\n", TID,omp_get_thread_num());

}    /*-- End of inner parallel region --*/

} /*-- End of outer parallel region --*/   



III. Optimization for performance

• It may be possible to quickly write a correctly functioning OpenMP program, 
but not so easy to create a program that provides the desired level of 
performance.

• The most intuitive implementation is often not the best one when it comes to 
performance, but the parallel inefficiency is not directly visible simply by 
inspecting the source.

• Programmers have developed some rules of thumb on how to write efficient 
code.



 Optimize serial code

• Memory access patterns: rowwise for C and columnwise for Fortran.

• Lower data precision if possible

• Common subexpression elimination

• Loop unrolling and jam

• Loop fusion and fission

• Loop tiling

• If-statement collapse

 Cases for optimizing OpenMP parallel codes will be introduced at 
the following slides.



#pragma omp parallel shared(n,a,b,c,d,sum) private(i)

{

#pragma omp for nowait

for (i=0; i<n; i++)  a[i] += b[i];

#pragma omp for nowait

for (i=0; i<n; i++) c[i] += d[i];

#pragma omp barrier

#pragma omp for nowait reduction(+:sum)

for (i=0; i<n; i++) sum += a[i] + c[i];

} /*-- End of parallel region --*/ 

Case 1: A reduced number of barriers

• Use the nowait clause where 
possible, carefully inserting 
explicit barriers at specific 
points in the program as 
needed. 

• Here vectors a and c are 
independently updated. 
Therefore a thread that has 
finished its work in the first 
loop can safely enter the 
second loop.

• The barrier ensures that a and 
c have been updated before 
they are used. 



#pragma omp parallel shared(a,b) private(c,d)

{

......

#pragma omp critical

{

a += 2 * c;

c = d * d;   // Optimization: move this line out of critical region

}

} /*-- End of parallel region --*/

Case 2: Avoid Large Critical Regions

• The more code contained in 
the critical region, the greater 
the likelihood that threads 
have to wait to enter it, and 
the longer the potential wait 
times.

• The first statement is protected 
by the critical region to avoid a 
data race of the shared 
variable a. 

• The second statement however 
involves private data only. 
There is no data race. It should 
be removed from the critical 
region.



#pragma omp parallel for

for (.....){

/*-- Work-sharing loop 1 --*/

}

#pragma omp parallel for

for (.....){

/*-- Work-sharing loop 2 --*/

}

Case 3: Maximize Parallel Regions

• Overheads are associated with starting and terminating a parallel region.

• Large parallel regions offer more opportunities for using data in cache and provide a bigger 
context for other compiler optimizations.

• The code in the right panel is better, because it has fewer implied barriers, and there might be 
potential for cache data reuse between loops.

#pragma omp parallel

{

#pragma omp for /*-- Work-sharing loop 1 --*/

{ ...... }

#pragma omp for /*-- Work-sharing loop 2 --*/

{ ...... }

}



for (i=0; i<n; i++)

for (j=0; j<n; j++){

#pragma omp parallel for

for (k=0; k<n; k++){ 

.........

}

}

Case 4: Avoid Parallel Regions in Inner Loops

• In the left panel, the overheads of the parallel region are incurred n2 times.

• The code in the right panel is better, because the parallel construct overheads are minimized.

#pragma omp parallel

{

for (i=0; i<n; i++)

for (j=0; j<n; j++){

#pragma omp for

for (k=0; k<n; k++){ 

.........

}

}

}



False sharing

• Cache coherence mechanism: When a cache line is modified by one processor, other caches 
holding a copy of the same line are notified that the line has been modified elsewhere. At 
such a point, the copy of the line on other processors is invalidated.

• False sharing: When two or more threads update different data elements in the same cache 
line simultaneously, they interfere with each other. 

• Typically, the computing results in false sharing cases are still correct.

• Note that a modest amount of false sharing does not have a significant impact on 
performance. However, if some or all of the threads update the same cache line frequently, 
performance degrades.

• False sharing is likely to significantly impact performance under the following conditions:

1. Shared data is modified by multiple threads.

2. The access pattern is such that multiple threads modify the same cache line(s).

3. These modifications occur in rapid succession. 



Case 5: Avoid false sharing (I)

• Each thread has its own copy of a[i], thus there is no data race and the computing result is 
correct. 

• However, all elements of a accesses to the same cache line, which results in false sharing 
and thus degrades the performance. 

#pragma omp parallel for shared(Nthreads,a) schedule(static,1)

for (int i=0; i<Nthreads; i++)   a[i] += i;         // Optimization: use a[i][0] instead of a[i]

• Example I of false sharing case:

• This case can be optimized by array padding: Accesses to different elements a[i][0] are now 
separated by a cache line. As a result, the update of an element no longer affects other 
elements.



Case 6: Avoid false sharing (II)

• Variable b is not modified, thus it does not cause false sharing.

• However, the shared variable a is modified by multi threads, thus it causes false sharing.

• If there are a number of such initializations, they could reduce program performance. In a more 
efficient implementation, variable a should be declared and used as a private variable instead.

#pragma omp parallel shared(a,b)   // Optimization: variable a should be private.

{

a = b + 1;

......

}

• Example II of false sharing:



Appendix A: OpenMP built-in functions

• List of OpenMP functions:

omp_set_num_threads(integer) : set the number of threads

omp_get_num_threads(): returns the number of threads

omp_get_thread_num(): returns the number of the calling thread.

omp_set_dynamic(integer|logical): dynamically adjust the number of threads 

omp_get_num_procs(): returns the total number of available processors when it is called.

omp_in_parallel(): returns true if it is called within an active parallel region. Otherwise, it returns false.

• Enable the usage of OpenMP functions:

C/C++ program: include omp.h . 

Fortran program: include omp_lib.h or use omp_lib module. 



Appendix B: OpenMP runtime variables

OMP_NUM_THREADS : the number of threads (=integer)

OMP_SCHEDULE : the schedule type (=kind,chunk . Kind could be static, dynamic or guided)

OMP_DYNAMIC : dynamically adjust the number of threads (=true | =false).

KMP_AFFINITY : for intel compiler, to bind OpenMP threads to physical processing units. 

(=compact | =scatter | =balanced). 

Example usage: export KMP_AFFINITY= compact,granularity=fine,verbose .



Exercises

1. Add a scalar multiple of a real vector to another real vector, 
s = a*x + y. 

2. Multiply two squared matrices, C=A*B.

3. Calculate the value of Pi using numerical integration,

• Use OpenMP to parallelize the following programs.
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