
Information Technology Services

LSU HPC Training Series, Fall 2015 p. 1/52

Version Control with Git

Xiaoxu Guan

High Performance Computing, LSU

November 11, 2015

(https://www.atlassian.com/git/tutorials)

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 2/52

Overview

• Why should we use a version control system?

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 2/52

Overview

• Why should we use a version control system?

• What is Git?

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 2/52

Overview

• Why should we use a version control system?

• What is Git?

• The setting up of Git:
◦ Programmer’s name, email address, etc.
◦ Select some types of files to be controlled by Git;
◦ Customize your Git working environment;
◦ The setting up of a Git repository;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 2/52

Overview

• Why should we use a version control system?

• What is Git?

• The setting up of Git:
◦ Programmer’s name, email address, etc.
◦ Select some types of files to be controlled by Git;
◦ Customize your Git working environment;
◦ The setting up of a Git repository;

• The ideas and Workflow behind Git;
◦ Working directory;
◦ Cached files;
◦ Commit changes to a repository;
◦ Set up multiple branches and resolve the conflicts;
◦ Work on remote servers;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 2/52

Overview

• Why should we use a version control system?

• What is Git?

• The setting up of Git:
◦ Programmer’s name, email address, etc.
◦ Select some types of files to be controlled by Git;
◦ Customize your Git working environment;
◦ The setting up of a Git repository;

• The ideas and Workflow behind Git;
◦ Working directory;
◦ Cached files;
◦ Commit changes to a repository;
◦ Set up multiple branches and resolve the conflicts;
◦ Work on remote servers;

• Summary and Further Reading

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 3/52

Why should we use a version control system?

• Keep your files “forever” (a back-up strategy);

• Collaboration with your colleagues;

• Keep track of every change you made;

• Work on a large-scale program with many other teams;

• Test different ideas or algorithms without creating a new

directory or repository;

• Enhance productivity of code development;

• Not only applicable to source code, but also other files;

• The tool that tracks and manages changes and different

versions is called Version Control System (VCS);

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 4/52

What is Git?

• Git is one of the VCSs [Subversion (SVN), CVS, Mercurial,

Bazaar, . . .];

• Created by Linus Torvalds in April 2005 (motivated by

maintenance of Linux kernel);

• A distributed VCS (compared to a centralized VCS);

• Allows many developers (say, hundreds) on the same project;

• Focus on non-linear code development;

• “Delta” techniques are used to run faster and efficiently;

• Ensure integrity and trust;

• Enforce “bookkeeping” and accountability;

• Support branched development;

• Be free (an open source VCS);

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 5/52

What is Git?

• Git is one of the VCSs [Subversion (SVN), CVS, Mercurial,

Bazaar, . . .];

• Created by Linus Torvalds in April 2005 (motivated by

maintenance of Linux kernel);

• A distributed VCS (compared to a centralized VCS);

• Allows many developers (say, hundreds) on the same project;

• Focus on non-linear code development;

• “Delta” techniques are used to run faster and efficiently;

• Ensure integrity and trust;

• Enforce “bookkeeping” and accountability;

• Support branched development;

• Be free (an open source VCS);

“The information manager from hell”!

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 6/52

What is Git?

With this commit Git was born on April 7, 2005:

commit e83c5163316f89bfbde7d9ab23ca2e25604af29
Author: Linus Torvalds 〈torvalds@pp970.osdl.org〉
Date: Thu Apr 7 15:13:13 2005 -0700
Initial revision of “git”, the information manager from hell

— Version Control with Git (J. Loeliger, O’reilly, 2009)

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 7/52

What is Git?

Centralized VCS vs. Distributed VCS

Centralized VCS

remote server (repository)

user A user B

commit/update commit/update

Distributed VCS

user A

user B user C

push/pull

push/pull push/pull

Git is one of distributed version control systems.

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 8/52

Configure Git

• Git was installed on all the LSU HPC and LONI machines;

• What happens if we run git without any arguments?

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 9/52

Configure Git

• Git was installed on all the LSU HPC and LONI machines;

• What happens if we run git without any arguments?
[xiaoxu@smic1 ~]$ git
usage: git [--version] [--exec-path[=GIT_EXEC_PATH]] [--html-path]
 [-p|--paginate|--no-pager] [--no-replace-objects]
 [--bare] [--git-dir=GIT_DIR] [--work-tree=GIT_WORK_TREE]
 [--help] COMMAND [ARGS]

The most commonly used git commands are:
 add Add file contents to the index
 bisect Find by binary search the change that introduced a bug
 branch List, create, or delete branches
 checkout Checkout a branch or paths to the working tree
 clone Clone a repository into a new directory
 commit Record changes to the repository
 diff Show changes between commits, commit and working tree, etc
 fetch Download objects and refs from another repository
 grep Print lines matching a pattern
 init Create an empty git repository or reinitialize an existing one
 log Show commit logs
 merge Join two or more development histories together
 mv Move or rename a file, a directory, or a symlink
 pull Fetch from and merge with another repository or a local branch
 push Update remote refs along with associated objects
 rebase Forward-port local commits to the updated upstream head

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 10/52

Configure Git

• Let Git know who you are and how to reach you:

• Two configuration files: .gitconfig and .gitignore

• $ git config --global user.name “First Last”

• $ git config --global user.email

“hello@world.org”

• $ git config --global core.editor “vi”

• $ cat ∼/.gitconfig

[

user
]

〈 Tab 〉 name = Xiaoxu Guan

〈 Tab 〉 email = xiaoxu.guan@gmail.com
[

core
]

〈 Tab 〉 editor = vi

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 11/52

Configure Git

• We definitely don’t want to keep all the files on your system

under the control of Git;

• How can we tell Git to deliberately overlook certain types of

files?

• Configure your ∼/.gitignore file;
• $ cat ∼/.gitignore
Files are ignored.

generated by Fortran/C/C++ compilers.

*.o

generated by Fortran compiler.

*.mod

I name the executable files generated by

Fortran/C/C++ compilers with an

extension name .project.

*.project

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 12/52

Configure Git

. . .

(La)TeX

*.log

(La)TeX

*.aux

error messages at run time.

*.err

temporary file in vim.

.*.swp

. . .

Basically, that’s all we need for the set up of Git!

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 13/52

Initialize a repository

• Clone an existing repository from other machine:

◦ git clone 〈repo〉

◦ git clone 〈repo〉 〈directory〉

◦ $ git clone myuid@machine.name.org \

◦ :/home/myuid/project 1

◦ A local directory project 1 was cloned from the remote

server.

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 13/52

Initialize a repository

• Clone an existing repository from other machine:

◦ git clone 〈repo〉

◦ git clone 〈repo〉 〈directory〉

◦ $ git clone myuid@machine.name.org \

◦ :/home/myuid/project 1

◦ A local directory project 1 was cloned from the remote

server.

• Start from scratch:

◦ $ git init

◦ $ git init 〈directory〉

◦ $ pwd

◦ $ /home/xiaoxu

◦ $ mkdir project 1; cd project 1

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 14/52

Initialize a repository

• Start from scratch:

◦ . . .

◦ $ git init OR

◦ $ git init project 1

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 14/52

Initialize a repository

• Start from scratch:

◦ . . .

◦ $ git init OR

◦ $ git init project 1

• In both cases, a “hidden” directory .git was created on
project 1.

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 14/52

Initialize a repository

• Start from scratch:

◦ . . .

◦ $ git init OR

◦ $ git init project 1

• In both cases, a “hidden” directory .git was created on
project 1.

• $ git status

◦ fatal: Not a git repository (or any of the parent directories):

.git

◦ write a simple source code a.f90

◦ $ git status

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 15/52

Initialize a repository

• $ git status

On branch master

Initial commit

Untracked files:

(use "git add <file>..." to include in what will be commit-

ted)

a.f90

nothing added to commit but untracked files present
(use "git add" to track)

• branch • master • git commit • git add

• untracked and tracked files

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 16/52

Workflow behind Git

• The Three States: Working Directory, Staging Area, and

Git Directory (repository).

Working Directory Staging Area
Git directory
(repository)

checkout the repo

stage the files

commit to the repo

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 17/52

Workflow behind Git

• The Three States: Working Directory, Staging Area, and

Git Directory (repository).

Working Directory Staging Area
Git directory
(repository)

checkout the repo

stage the files

commit to the repo

directly commit to the repo

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 18/52

Workflow behind Git

• The Three States: Working Directory, Staging Area, and

Git Directory (repository).

Working Directory Staging Area
Git directory
(repository)

checkout the repo

stage the files

commit to the repo

directly commit to the repo

Tracked
files

Untracked
files

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 19/52

Workflow behind Git

• The Three States: Working Directory, Staging Area, and

Git Directory (repository).

• Working directory: A single copy of the Git repository. You

can use and modify the files;

• Staging area: It is simply a file recording the information that

you will do next time to commit the changes into the repo, and

also known as the Index;

• Staged files: the files were modified and put on the stage but

not committed to the repo yet;

• Tracked and untracked files: controlled by Git or not;

• Committed files: the files are stored in the Git repo;

All in One!

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 20/52

Initialize a repository

• $ git status

On branch master

Initial commit

Untracked files:

(use "git add <file>..." to include in what will be commit-

ted)

a.f90

nothing added to commit but untracked files present
(use "git add" to track)

• It shows the paths that have differences (1) between the

working directory and staged files, the paths that have

differences (2) between the staged files and committed

repo, and (3) the paths for untracked files;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 21/52

Workflow behind Git

• Untracked files:

• Git detected there is a file called a.f90, but it cannot find any

previous snapshots (or committed files);

• $ git add a.f90

• $ git add .

Stage everything (be careful with this).

• $ git status

• What do we see now? (Untracked file → Tracked file;

Changes to be committed: . . .)

• This means that Git successfully put this file to the staging

area;

• Staging area looks like a buffer between the working

directory and the repo;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 22/52

Workflow behind Git

• Now we can commit it into the repo;

• $ git commit # commit the changes from staging area to

the repo (an editor pops up);

• $ git commit -m "<descriptive message>" # the

same as the above, but no editor explicitly involved;

• We need to let Git (and us) know that what kind of changes

are done in the commit;

• $ git commit -a -m "<descriptive message>"

Do it in one step;

• Commit all the changes in the working directory to the repo;

Only for the tracked files;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 23/52

Git file and commit management

• List the commit history:
◦ $ git log

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 23/52

Git file and commit management

• List the commit history:
◦ $ git log

• Search a particular pattern in all messages:
◦ $ git log --grep="<pattern>"

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 23/52

Git file and commit management

• List the commit history:
◦ $ git log

• Search a particular pattern in all messages:
◦ $ git log --grep="<pattern>"

• Search a particular author in all commits:
◦ $ git log --author="<pattern>"

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 23/52

Git file and commit management

• List the commit history:
◦ $ git log

• Search a particular pattern in all messages:
◦ $ git log --grep="<pattern>"

• Search a particular author in all commits:
◦ $ git log --author="<pattern>"

• Search the history for a particular file:
◦ $ git log <filename>

◦ $ git --graph --decorate --oneline

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 23/52

Git file and commit management

• List the commit history:
◦ $ git log

• Search a particular pattern in all messages:
◦ $ git log --grep="<pattern>"

• Search a particular author in all commits:
◦ $ git log --author="<pattern>"

• Search the history for a particular file:
◦ $ git log <filename>

◦ $ git --graph --decorate --oneline

• List and view the changes (differences) introduced in each
commit:

◦ $ git log -p -2

Only list the last 2 commits;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 24/52

Git file and commit management

• Q1. How to do list all the tracked files in the current working
directory?
◦ A simple answer: $ git ls-files

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 24/52

Git file and commit management

• Q1. How to do list all the tracked files in the current working
directory?
◦ A simple answer: $ git ls-files

• Q2. How to do list all the untracked files in the current
working directory?
◦ A simple solution: $ git status -u

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 24/52

Git file and commit management

• Q1. How to do list all the tracked files in the current working
directory?
◦ A simple answer: $ git ls-files

• Q2. How to do list all the untracked files in the current
working directory?
◦ A simple solution: $ git status -u

• Q3. How can I list all the commits in the current branch?
◦ $ git log # shows the commit history;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 24/52

Git file and commit management

• Q1. How to do list all the tracked files in the current working
directory?
◦ A simple answer: $ git ls-files

• Q2. How to do list all the untracked files in the current
working directory?
◦ A simple solution: $ git status -u

• Q3. How can I list all the commits in the current branch?
◦ $ git log # shows the commit history;

• Q4. How can I remove files from Git?
◦ $ git rm myfile.f90 # this not only removes the file

from the repo, but also removes the file from the local
working directory;

◦ $ git rm --cached myfile.f90 # this time it only
removes the file from the repo, but without deleting the file
from the local working directory;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 25/52

Git file and commit management

• Q5. How can I recover the file I deleted by git rm? The
answer to this question may not be simple!

◦ $ git log --diff-filter=D --summary

prints all the commits that deleted files. Or if you know the
deleted filename,

◦ $ git rev-list -n 1 HEAD -- b.f90

prints the only commit tag (a 40-digit hexadecimal
SHA-1 code and unique commit ID) that deleted the file;

◦ 0b7b587b46b19a4903b1ad35942dbed965fbddae

this’s the commit tag;
◦ $ git checkout "commit tag∧" b.f90

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 25/52

Git file and commit management

• Q5. How can I recover the file I deleted by git rm? The
answer to this question may not be simple!

◦ $ git log --diff-filter=D --summary

prints all the commits that deleted files. Or if you know the
deleted filename,

◦ $ git rev-list -n 1 HEAD -- b.f90

prints the only commit tag (a 40-digit hexadecimal
SHA-1 code and unique commit ID) that deleted the file;

◦ 0b7b587b46b19a4903b1ad35942dbed965fbddae

this’s the commit tag;
◦ $ git checkout "commit tag∧" b.f90

• Don’t panic because Git has you covered!

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 26/52

Git file and commit management

• The git checkout command: to checkout some files,
commits, and branches;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 26/52

Git file and commit management

• The git checkout command: to checkout some files,
commits, and branches;

• $ git checkout master

returns the master branch.

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 26/52

Git file and commit management

• The git checkout command: to checkout some files,
commits, and branches;

• $ git checkout master

returns the master branch.

• $ git checkout <commit tag>

returns to the exact status of commit tag under the
condition;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 26/52

Git file and commit management

• The git checkout command: to checkout some files,
commits, and branches;

• $ git checkout master

returns the master branch.

• $ git checkout <commit tag>

returns to the exact status of commit tag under the
condition;

• Local working directory can only keep one status of the repo;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 26/52

Git file and commit management

• The git checkout command: to checkout some files,
commits, and branches;

• $ git checkout master

returns the master branch.

• $ git checkout <commit tag>

returns to the exact status of commit tag under the
condition;

• Local working directory can only keep one status of the repo;

• If we want to go back to the one status of the previous
commits, for the safety reasons we’d better commit the
current changes to the repo;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 26/52

Git file and commit management

• The git checkout command: to checkout some files,
commits, and branches;

• $ git checkout master

returns the master branch.

• $ git checkout <commit tag>

returns to the exact status of commit tag under the
condition;

• Local working directory can only keep one status of the repo;

• If we want to go back to the one status of the previous
commits, for the safety reasons we’d better commit the
current changes to the repo;

• Otherwise, you will see something like HEAD detached at
commit tag;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 27/52

Git file and commit management

• Let’s assume that we committed all the current changes to the
repo; and we want to go back to the one status of the
previous commits in the repo’s history;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 27/52

Git file and commit management

• Let’s assume that we committed all the current changes to the
repo; and we want to go back to the one status of the
previous commits in the repo’s history;

• $ git log --oneline

prints a short list for the commit history;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 27/52

Git file and commit management

• Let’s assume that we committed all the current changes to the
repo; and we want to go back to the one status of the
previous commits in the repo’s history;

• $ git log --oneline

prints a short list for the commit history;

• $ git log --since=4.weeks

prints a list for the commit history in the last 4 weeks;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 27/52

Git file and commit management

• Let’s assume that we committed all the current changes to the
repo; and we want to go back to the one status of the
previous commits in the repo’s history;

• $ git log --oneline

prints a short list for the commit history;

• $ git log --since=4.weeks

prints a list for the commit history in the last 4 weeks;

• $ git checkout <commit tag>

returns to the exact status of commit tag;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 27/52

Git file and commit management

• Let’s assume that we committed all the current changes to the
repo; and we want to go back to the one status of the
previous commits in the repo’s history;

• $ git log --oneline

prints a short list for the commit history;

• $ git log --since=4.weeks

prints a list for the commit history in the last 4 weeks;

• $ git checkout <commit tag>

returns to the exact status of commit tag;

• $ git checkout <commit tag> a.f90

In this case, I’m only interested in one of the particular files,

a.f90 in the commit tag without checking out the entire
previous commit;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 28/52

Git file and commit management

A more advanced topic!
• Once we committed all the changes to the repo, Git will

never lose them!

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 28/52

Git file and commit management

A more advanced topic!
• Once we committed all the changes to the repo, Git will

never lose them!

• Changing the git history (be careful again);

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 28/52

Git file and commit management

A more advanced topic!
• Once we committed all the changes to the repo, Git will

never lose them!

• Changing the git history (be careful again);

• $ git commit --amend

◦ Instead of committing as a new snapshot in the repo, it
combines the current changes in the staging area to the
last commit (the most recent one).

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 29/52

Git file and commit management

A more advanced topic!

• $ git commit --amend

1st commit

2nd commit

3rd commit

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 30/52

Git file and commit management

A more advanced topic!

• $ git commit --amend

1st commit

2nd commit

3rd commit

1st commit

2nd commit

3rd commit

Changes in
staging area

git commit
--amend

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 31/52

Git file and commit management

A more advanced topic!

• $ git commit --amend # overwrites the previous one.

1st commit

2nd commit

3rd commit

1st commit

2nd commit

3rd commit

Changes in
staging area

git commit
--amend

1st commit

2nd commit

3rd∗ commit

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 32/52

Git Branching

• Why do we need branches and what is a Git branch?

◦ We want to do many different things at the same time on
the same working directory/repo;

◦ Git encourages using branches — one of the features
focusing the non-linear development;

◦ Multiple branches in a working directory/repo;
◦ Test different ideas or algorithms, . . .
◦ Don’t be confused with sub-directory;
◦ Create and merge branches;
◦ The default branch is called master;
◦ The power of Git largely relies on the concept of branch

and the way how Git manipulates them;
◦ A “killer feature” in Git;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 33/52

Git Branching

• How does Git store data?

commit size
tree 02e0d
author Xiaoxu
committer Xiaoxu
this is my first f90
code · · ·

72sda...

tree size
blob 4fdl5 a.f90
blob po1y3 b.f90
blob ldde0 global.f90

02e0d...

Snapshot

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 33/52

Git Branching

• How does Git store data?

• Data includes the file data and meta data;

commit size
tree 02e0d
author Xiaoxu
committer Xiaoxu
this is my first f90
code · · ·

72sda...

tree size
blob 4fdl5 a.f90
blob po1y3 b.f90
blob ldde0 global.f90

02e0d...

Snapshot

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 34/52

Git Branching

• After several commits, it may look like this:

commit size
tree 02e0d
author Xiaoxu
committer Xiaoxu
this is my first f90
code · · ·

72sda...

Snapshot A

commit size
tree 9l72w
parent 72sda...
author Xiaoxu
committer Xiaoxu
add more features
· · ·

90t4a...

Snapshot B

commit size
tree 61fe4r
parent 90t4a...
author Xiaoxu
committer Xiaoxu
The bug in a.f90 was
fixed · · ·

1u70k...

Snapshot C

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 34/52

Git Branching

• After several commits, it may look like this:

commit size
tree 02e0d
author Xiaoxu
committer Xiaoxu
this is my first f90
code · · ·

72sda...

Snapshot A

commit size
tree 9l72w
parent 72sda...
author Xiaoxu
committer Xiaoxu
add more features
· · ·

90t4a...

Snapshot B

commit size
tree 61fe4r
parent 90t4a...
author Xiaoxu
committer Xiaoxu
The bug in a.f90 was
fixed · · ·

1u70k...

Snapshot C

• A Git branch is a lightweight movable pointer to one of the
commits. Whenever we make a new commit, the pointer
moves forward.

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 35/52

Git Branching

• Let’s create a new branch:
◦ $ git branch # which branch am I on?

◦ $ git branch idea a # creates a branch called
“idea a”;

72sda... 90t4a... 1u70k...

master

idea a

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 36/52

Git Branching

• Let’s create a new branch:
◦ $ git branch # which branch am I on?

◦ $ git branch idea a # creates a branch called
“idea a”;

72sda... 90t4a... 1u70k...

master

idea a

HEAD

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 36/52

Git Branching

• Let’s create a new branch:
◦ $ git branch # which branch am I on?

◦ $ git branch idea a # creates a branch called
“idea a”;

72sda... 90t4a... 1u70k...

master

idea a

HEAD

• Git HEAD is a special pointer that points to which branch you
are on;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 37/52

Git Branching

• Switch to another branch:
◦ $ git checkout idea a # change to the branch
idea a;

◦ We need to commit the changes on the previous branch
before changing to a new branch;

72sda... 90t4a... 1u70k...

master

idea a

HEAD

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 38/52

Git Branching

• Create and switch to another branch at the same time:
◦ $ git checkout -b idea a # create & change to the

branch idea_a;
◦ Let’s work on the branch idea a for now. After several

commits, the entire branch may look like this:

72sda... 90t4a... 1u70k...

master

63y802... to7ql...

idea a

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 39/52

Git Branching

• Create and switch to another branch at the same time:
◦ $ git checkout -b idea a # create & change to the

branch idea_a;
◦ Let’s work on the branch idea a for now. After several

commits the entire branches may look like this:

72sda... 90t4a... 1u70k...

master

63y802... to7ql...

idea a

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 40/52

Git Branching

• Create and switch to another branch at the same time:
◦ $ git checkout -b idea a # create & change to the

branch idea_a;
◦ Let’s work on the branch idea a for now. After several

commits the entire branches may look like this:

72sda... 90t4a... 1u70k...

master

63y802... to7ql...

idea a

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 40/52

Git Branching

• Create and switch to another branch at the same time:
◦ $ git checkout -b idea a # create & change to the

branch idea_a;
◦ Let’s work on the branch idea a for now. After several

commits the entire branches may look like this:

72sda... 90t4a... 1u70k...

master

63y802... to7ql...

idea a

• In general, different branches take different paths of commits.
This allows us to test different things (ideas, algorithms, etc.)
on the same directory without interfering the other files;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 41/52

Git Branching

• Create the third branch and merge it with master:

◦ Let’s say I have worked on the branch idea a for a while,
and I have to go back to the master branch to fix bugs;

◦ Create a test branch to debug the code;

72sda... 90t4a... 1u70k...

C1 C2 C3 C4

master

63y802... to7ql...

C5

idea a

53nwl...

test

C6

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 41/52

Git Branching

• Create the third branch and merge it with master:

◦ Let’s say I have worked on the branch idea a for a while,
and I have to go back to the master branch to fix bugs;

◦ Create a test branch to debug the code;

72sda... 90t4a... 1u70k...

C1 C2 C3 C4

master

63y802... to7ql...

C5

idea a

53nwl...

test

C6

• Once I have fixed the bugs, I want to merge the branch test

to the branch master;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 42/52

Git Branching

• $ git checkout master

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 42/52

Git Branching

• $ git checkout master

• $ git merge test

◦ We see “. . . Fast forward . . .";
◦ We want to merge an upstream branch to the master, so

the pointer HEAD needs to move forward from its current
position;

72sda... 90t4a... 1u70k...

C1 C2 C3 C4

master

63y802... to7ql...

C5

idea a

53nwl...

test

C6

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 43/52

Git Branching

• I don’t need the branch test anymore and want to remove it;

• $ git branch -d test # Delete a branch;

• $ git branch # Now we have two branches;
◦ The pointer HEAD points to the master branch;
◦ master: C1, C2, C3, and C6

◦ idea a: C1, C2, C3, C4, and C5

72sda... 90t4a... 1u70k...

C1 C2 C3 C4

master

63y802... to7ql...

C5

idea a

53nwl... C6

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 44/52

Git Branching

• Now I want to merge the idea a into the master branch;

• $ git checkout master # Back to the master branch;

• $ git merge idea a # Merge idea a into the master;
◦ It makes no difference with the merging of the test to the
master;

◦ However, a new commit (C7) will be automatically created
without any extra command involved;

72sda... 90t4a... 1u70k...

C1 C2 C3 C4

master

63y802... to7ql... C5

idea a

53nwl...

C6

42lfa... C7

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 45/52

Git Branching

• Therefore, C7 has two parents (C5 and C6);

• Now we can safely remove the branch idea a by
$ git branch -d idea a

72sda... 90t4a... 1u70k...

C1 C2 C3 C4

master

63y802... to7ql... C5

53nwl...

C6

42lfa... C7

• So far, it seems very good. However, what about the potential
merging conflicts?

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 46/52

Git Branching

• Sometimes we might have issues with merging branches;

• If we modify the same code or same parts of different
branches, Git will complain about conflicts. It tells you which
files are in conflict;

• If this happens, the merging process only attempted to merge
the files that are not in conflict (merged/unmerged);

• The developer needs to fix the conflict issues before merging;
we have to decide how to keep/modify the files in conflict;
that’s our choice, instead of Git;

• An example;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 47/52

Collaborating through Git

• Where would you host the code or data for your team with
multiple developers?

• Git repositories on severs:

https://bitbucket.org https://github.com

· · ·
https://www.fogcreek.com/kiln

• Note the different user policies;

https://bitbucket.org
https://github.com
https://www.fogcreek.com/kiln

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 48/52

Collaborating through Git

• For instance, Git on Bitbucket or GitHub;

• Third-party servers that support private/public accounts;

• Let’s say you received an invitation from Bitbucket:

• $ git clone

git@bitbucket.org:xiaoxu guan/helium-fedvr.git

• Clone a copy from a machine to another machine:

• $ git clone

guan@stampede.tacc.utexas.edu:

/home1/01046/guan/Helium-FEDVR-2014

Helium-FEDVR-2014

• The entire development history will be included in your local
directory;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 49/52

Collaborating through Git

• $ git remote

• $ git remote -v

origin guan@git.example.com:

/home/guan/Helium-FEDVR-2014 (fetch)

origin guan@git.example.com:

/home/guan/Helium-FEDVR-2014 (push)

• Git supports multiple remotes;

◦ $ git remote add second

git://github.com/bob/project w.git

◦ Now we have two remotes that we can “fetch” from and
“push” to each remote server;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 50/52

Collaborating through Git

• How to fetch and pull from a remote server?

• $ git fetch [server name]

• $ git fetch origin # Depends on which remote server
you want to fetch from;

• Remember that Git fetches any new work from the server to
your local directory from the last time you have cloned or
fetched;

• It’s safe to fetch any new files/data from the server, no matter
what you have been working on;

• git fetch does not automatically merge the new data/files
with anything you have been working on;

• The developer has to manually merge the new files with your
local files;

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 51/52

A summary

[xiaoxu@smic1 ~]$ git
usage: git [--version] [--exec-path[=GIT_EXEC_PATH]] [--html-path]
 [-p|--paginate|--no-pager] [--no-replace-objects]
 [--bare] [--git-dir=GIT_DIR] [--work-tree=GIT_WORK_TREE]
 [--help] COMMAND [ARGS]

The most commonly used git commands are:
 add Add file contents to the index
 bisect Find by binary search the change that introduced a bug
 branch List, create, or delete branches
 checkout Checkout a branch or paths to the working tree
 clone Clone a repository into a new directory
 commit Record changes to the repository
 diff Show changes between commits, commit and working tree, etc
 fetch Download objects and refs from another repository
 grep Print lines matching a pattern
 init Create an empty git repository or reinitialize an existing one
 log Show commit logs
 merge Join two or more development histories together
 mv Move or rename a file, a directory, or a symlink
 pull Fetch from and merge with another repository or a local branch
 push Update remote refs along with associated objects
 rebase Forward-port local commits to the updated upstream head

✔

✔
✔
✔
✔

✔

✔

✔
✔

Information Technology Services

LSU HPC Training Series, Fall 2015 p. 52/52

Further Reading

• Pro Git, S. Chacon, Apress (2010)

• Version Control with Git, J. Loeliger (O’reilly, 2009)

• Official online documentation
https://git-scm.com/doc

• A very good Git tutorial from Atlassian
https://www.atlassian.com/git/tutorials

Questions?
sys-help@loni.org

https://git-scm.com/doc
https://www.atlassian.com/git/tutorials

	Overview
	Overview
	Overview
	Overview
	Overview
	Overview

	Overview
	Why should we use a version control system?
	What is blueGit?
	What is blueGit?
	What is blueGit?
	 What is blueGit?
	Configure Git
	Configure Git
	Configure Git
	*-1.3mm Configure Git
	Configure Git
	Initialize a repository
	Initialize a repository

	Initialize a repository
	Initialize a repository
	Initialize a repository

	Initialize a repository
	Workflow behind Git
	Workflow behind Git
	Workflow behind Git
	Workflow behind Git
	Initialize a repository
	Workflow behind Git
	Workflow behind Git
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management

	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management

	 Git file and commit management
	 Git file and commit management

	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management

	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git file and commit management

	 Git file and commit management
	 Git file and commit management
	 Git file and commit management

	 Git file and commit management
	 Git file and commit management
	 Git file and commit management
	 Git Branching
	 Git Branching
	 Git Branching

	 Git Branching
	 Git Branching

	 Git Branching
	 *-1mmGit Branching
	 *-1mmGit Branching

	 Git Branching
	 Git Branching
	 Git Branching
	 Git Branching
	 Git Branching

	 Git Branching
	 Git Branching

	 Git Branching
	 Git Branching

	 Git Branching
	*-1mm Git Branching
	 Git Branching
	 Git Branching
	Collaborating through Git
	Collaborating through Git
	Collaborating through Git
	Collaborating through Git
	A summary
	 Further Reading

