

High Performance Computing @ Louisiana State University

25 February 2015
1/71

Backgrounding and Task Distribution
In Batch Jobs

James A. Lupo, Ph.D.
Assist Dir Computational Enablement

Louisiana State University

jalupo@cct.lsu.edu

High Performance Computing @ Louisiana State University

25 February 2015
2/71

Overview

● Description of the Problem Environment
● Quick Review of Command Shell Job

Control
● WQ Components
● Simple Serial Example
● Multi-Threaded Example
● MPI Example
● Comments on Monitoring and Statistics

High Performance Computing @ Louisiana State University

25 February 2015
3/71

The Problem Environment

High Performance Computing @ Louisiana State University

25 February 2015
4/71

LSU HPC Environment

● Linux operating system.
● Moab/Torque (PBS) environment.
● Clusters tuned for large-scale parallel tasks.
● Full nodes assigned - access to 8, 16 or

even 20 cores per node.

How does one handle thousands of 1-core
tasks without going crazy?

High Performance Computing @ Louisiana State University

25 February 2015
5/71

BIG File Counts

● 10's of thousands of input files processed
with the same application:

$ myapp infile1 > outfile1
. . .
$ myapp infile1000 > outfile1000
. . .
(and many more)
. . .

Data sets could come from instruments,
automatically generated parameter sweep
studies, etc.

High Performance Computing @ Louisiana State University

25 February 2015
6/71

Roadblocks to Overcome

● Most workflow tools not well suited to
time-limited batch queuing systems.

● Current approach: background or
otherwise manually distribute work in
the PBS batch script.

● Requires intermediate-level shell
scripting skills

● Scripting (programming) is foreign to
many non-traditional users.

High Performance Computing @ Louisiana State University

25 February 2015
7/71

Desired Solution

● Avoid detailed scripting requirements -
but allow flexibility and adaptability.

● Minimize customization and do most
things automagically.

● Make method batch environment aware,
particularly wallclock time constraints.

High Performance Computing @ Louisiana State University

25 February 2015
8/71

Command Shell Job Control

High Performance Computing @ Louisiana State University

25 February 2015
9/71

Shell Job Control

● Not to be confused with batch jobs!
● Shell job control features - manage,

background, suspend, foreground.
● Typically used interactively, but

available for use in any shell script.

High Performance Computing @ Louisiana State University

25 February 2015
10/71

Job States

● Think of in terms of interactive use:
● foreground (Running) - user interacts

with an application in real time via the
keyboard.

● suspended (Stopped) - application is
stopped, but still available (in memory) to
execute. User is able to do other things.

● background (Running) - application runs
without real time control from keyboard.
User is able to do other things.

● User may move jobs into and out of these
states as often as necessary.

High Performance Computing @ Louisiana State University

25 February 2015
11/71

Common Commands

● Ctrl-Z . . suspends an application (job).

● bg %M . . . sends job #M into background.

● fg %N . . . brings job #N into foreground

● cmd & . . . starts cmd in the background.

● kill %L . . kills job #L.

● jobs . . . lists known jobs.

High Performance Computing @ Louisiana State University

25 February 2015
12/71

Example

1) Launch EMACS in background (uses an X-11 GUI).
2) VIM and LESS programs started, then suspended with Ctrl-Z.
3) Show jobs.

1

2

3

[job#] and process ID

High Performance Computing @ Louisiana State University

25 February 2015
13/71

Hands-On Example

1) Run: $ vimtutor
2) Suspend with Ctrl-Z.
3) Run: $ ls -l
4) Run: $ jobs
5) Identify which job is vimtutor.
6) Run: $ fg %N
7) Suspend again.
8) Run: $ vim &
9) Run: $ jobs
10) Run: $ kill %N %M

High Performance Computing @ Louisiana State University

25 February 2015
14/71

Launching Processes With &

● Jobs requiring interaction are suspended.
● Non-interactive jobs run in background.

● stdio* streams stay as is unless redirected.

● Parent shell determines how jobs are
handled when shell terminates.

Syntax: $ cmd [-switches] [args] [< stdin] [> stdout] &

* stdin, stdout, stderr

High Performance Computing @ Louisiana State University

25 February 2015
15/71

PBS Script Running 4 Serial Programs

#! /bin/bash
#PBS -l nodes=1:ppn=4
#PBS . . . other settings . . .

myprog < infile1 > outfile1 &
myprog < infile2 > outfile2 &
myprog < infile3 > outfile3 &
myprog < infile4 > outfile4 &

wait

The wait makes sure all 4 tasks have completed, else
when the script ends, the job manager will kill all the
user's running programs in preparation for the next job.

High Performance Computing @ Louisiana State University

25 February 2015
16/71

Running 2 Multi-Threaded Programs

● With 4 cores there is the ability to
run 2 2-thread programs - almost as
easy as running serial programs.

#! /bin/bash
#PBS -l nodes=1:ppn=4
#PBS . . . other settings . .
.

export OMP_NUM_THREADS=2
myprog < infile1 > outfile1 &
myprog < infile2 > outfile2 &

wait

High Performance Computing @ Louisiana State University

25 February 2015
17/71

Multi-Process MPI Programs

If 8-core node, two 4-process MPI tasks can be run.

#! /bin/bash
#PBS -l nodes=1:ppn=8
#PBS . . . other settings . . .

NPROCS=4
mpirun -np $NPROCS -machinefile $PBS_NODEFILE \

mprog < infile1 > outfile1 &
mpirun -np $NPROCS -machinefile $PBS_NODEFILE mprog \

< infile2 > outfile2 &

wait

High Performance Computing @ Louisiana State University

25 February 2015
18/71

Higher Core Counts

● Multiple multi-threaded or multi-process tasks
allows one script to take advantage of all
cores in a node.

● 4, 8, 16, 20, or 40 cores per node are
available on the various local clusters.

● Program types can be mixed, so long as the
required number of cores is consistent with
what the node provides.

● Scaling up (more nodes plus more cores) will
complicate the scripting required.

High Performance Computing @ Louisiana State University

25 February 2015
19/71

Use Multiple Nodes?

On typical clusters, the work must be done on the compute
nodes. We could submit multiple single node job scripts, but
how about using more than one node at a time?

High Performance Computing @ Louisiana State University

25 February 2015
20/71

Multi-Node Considerations

● The mother superior node is only one with
all the job information, like environment
variables.

● Start programs on other nodes with remote
shell commands, like ssh.

● Account for shared and local file systems.
● Assure all programs finish before script exits.
● Be aware of efficiency (load balancing).

High Performance Computing @ Louisiana State University

25 February 2015
21/71

8 Serial Programs on Two 4-core Nodes

#! /bin/bash
#PBS -l nodes=2:ppn=4
#PBS . . . other settings . . .

export WORKDIR=/path/to/work/directory
cd $WORKDIR

myprog < infile1 > outfile1 &
myprog < infile2 > outfile2 &
myprog < infile3 > outfile3 &
myprog < infile4 > outfile4 &

Discover second host name, somehow, then

ssh -n $HOST2 “cd $WORKDIR; myprog < infile5 > outfile5” &
ssh -n $HOST2 “cd $WORKDIR; myprog < infile6 > outfile6” &
ssh -n $HOST2 “cd $WORKDIR; myprog < infile7 > outfile7” &
ssh -n $HOST2 “cd $WORKDIR; myprog < infile8 > outfile8” &

wait

-n suppresses reading from stdin and just starts the program.
The path to myprog is assumed known (.bashrc?)

Node 1
Mother Superior
4 Tasks

Node 2
Compute Node
4 Tasks

8 Cores Total

High Performance Computing @ Louisiana State University

25 February 2015
22/71

Some Real Scripting Required

● 8 programs on 2 nodes clearly starts to
make life complicated.

● Real shell magic needed to figure out host
names - maybe a little opaque:

NAMES=($(uniq $PBS_HOSTFILE))
HOST2=NAMES[1]

Assumes host names are assigned starting with the mother
superior, and in sorted order. More work if this is not the case!

High Performance Computing @ Louisiana State University

25 February 2015
23/71

Automating Multiple Nodes
Get the node names

NODES=($(uniq $PBS_NODEFILE))

Get the number of names

NUMNODES= $(uniq $PBS_NODEFILE) | wc -l | awk '{print $1-1}')

Do commands on first node:

cmd stuff &

. . . start as many as desired (but customize each line!). . . .

cmd stuff &

Loop over all the nodes, starting with the second name:

for i in $(seq 1 $((NUMNODES-1))); do

 ssh -n ${NODES[$i]} cmd stuff &

 ... start as many as desired (but customize each line!). . . .

 ssh -n ${NODES[$i]} cmd stuff &

done

wait

Really not fun if you don't like shell scripting, yet it gets worse!

Node N
Compute Node
4 Tasks

Node 1
Mother Superior
4 Tasks

High Performance Computing @ Louisiana State University

25 February 2015
24/71

Consider Multi-Threaded / MPI Task
Requirements

● Have to pass the thread count.
● Have to construct partial host name lists.
● Involves basic shell programming, and maybe

gets involved with fussy quoting rules to get
everything passed correctly.

● Manual scripting doesn't really SCALE!

High Performance Computing @ Louisiana State University

25 February 2015
25/71

Solution Requirements

● Isolate the things that change with each
task.

● Make user setup as simple as possible.
● Automate most of the magic.
● Try to deal with batch job walltime issues.

High Performance Computing @ Louisiana State University

25 February 2015
26/71

Questions?

● Before we move on, any further clarifications
of the basic shell scripting concepts needed?

● Any concerns over difference between a shell
script and a PBS job script?

High Performance Computing @ Louisiana State University

25 February 2015
27/71

WQ and It's Components

High Performance Computing @ Louisiana State University

25 February 2015
28/71

What Is WQ?

● Dispatcher/Worker model - WQ roughly stands for
Work Queuing.

● Handles tasks – defined as the work necessary to
process one input file.

● Multiple workers execute the tasks - one worker per
simultaneous task on all nodes.

● Workers request a task from the Dispatcher.
● Workers share task times with Dispatcher.
● Dispatcher won't assign a new task if it estimates

that insufficient time remains to complete it.

High Performance Computing @ Louisiana State University

25 February 2015
29/71

Design Assumptions

● Task viewed as applications + data
needed to process one input file.

● The Dispatcher manages a list of input
file names, and hands out one at a time.

● A worker request includes run time of last
task executed.

● Dispatcher tracks longest task time. Uses
it, and a safety margin of 1.25, to decide if
there is sufficient time for another task.

High Performance Computing @ Louisiana State University

25 February 2015
30/71

WQ Components

● wq.py – A Python script that implements the dispatcher
and workers (as they say, no user serviceable parts
inside!).

● wq.pbs – A PBS batch script template with a few user
required variable settings and most of the magic cooked in.

● wq.sh – A user created script (could be a program) that
accepts an input file name as it's only argument.

● wq.list – A user created file containing input file names,
one per line (suggest using absolute path names).

The names of files can be changed – just keep consistent with the
contents of the PBS script – changing name of wq.py would require
alot more work than changing any of the other 3.

High Performance Computing @ Louisiana State University

25 February 2015
31/71

wq.pbs : PBS Preamble Section

#! /bin/bash
##
#
Begin WQ Prologue section
##
#
#PBS -A hpc_myalloc_03
#PBS -l nodes=4:ppn=4
#PBS -l walltime=00:30:00
#PBS -q workq
#PBS -N WQ_Test

The PBS script itself must be set executable, as it will be run by nodes
other than the mother superior, if necessary.

The PBS script is divided into 2 parts: the WQ prologue (which
includes the PBS preamble), and the WQ epilog. Only the prologue
contains items the user should adjust. The PBS preamble portion
should look familiar (not all PBS options are shown here):

High Performance Computing @ Louisiana State University

25 February 2015
32/71

wq.pbs : Prologue Section

“Workers Per Node” - WPN * processes = cores (PPN)

WPN=4

Set the working directory:

WORKDIR=/work/user

Use a file with 82 names listed:

FILES=${WORKDIR}/82_file_list

Name the task script each worker is expected to run on the file
name provided as it's only argument.

TASK=${WORKDIR}/wq_timing.sh

START=1

VERBOSE=0

5

3

4

2

1

6

High Performance Computing @ Louisiana State University

25 February 2015
33/71

● Serious magic happens in the Epilogue section – so dabble
with at your own peril.

● Does some sanity checking of settings.

● Determines if running as mother superior.

● Mother superior preps information exchange process and
starts job script on all other compute nodes.

● Mother superior starts dispatcher, and it's workers.

● Compute nodes start their workers.

● All workers start the request - execute cycle until walltime
runs out or there are no more tasks to assign.

wq.pbs : Epilogue Section

High Performance Computing @ Louisiana State University

25 February 2015
34/71

wq.sh

This name represents an actual shell script, program, or any
other type of executable which works on the provided input file
name. What it does should be consistent with the settings (i.e.
multi-threaded, multi-process, serial) in wq.pbs.

Before launching, it can/should be tested with a single file:

 $./wq.sh filename

If it works manually, it should function correctly when called by
a worker.

High Performance Computing @ Louisiana State University

25 February 2015
35/71

wq.list

This is nothing more than a file containing input file names, one
per line. For a really large number of input files, generate it with
the find command:

 $ find `pwd` -name '*.dat' -print > wq.list

In many cases, using absolute paths for the file names is best
since the script can extract information about the location from
the name (hence the use of `pwd` to get the current working
directory).

Some examples are in order.

High Performance Computing @ Louisiana State University

25 February 2015
36/71

A Serial Example

High Performance Computing @ Louisiana State University

25 February 2015
37/71

A Simple wq.sh

Let's not try to do much except waste some time
and show what can be done with the file name:

#! /bin/bash

First, some basic processing of the input file name.

FILE=$1
DIR=`dirname ${FILE}`
BASE=`basename ${FILE}`

Now just echo the results, and sleep.

echo "DIR=${DIR}; BASE=${BASE}"
echo "That's all, folks!"
T=`expr 2 + $RANDOM % 10`
echo "Sleeping for $T seconds."
sleep $T

backticks NOT single quotes!

High Performance Computing @ Louisiana State University

25 February 2015
38/71

An Input File List

Let's look for files with .bf extensions:

$ find /work/user -name '*.bf' -print > file_list

And assume it produces names like so:

/work/user/chr13/chr13_710.bf

/work/user/chr13/chr13_727.bf

/work/user/chr13/chr13_2847.bf

/work/user/chr13/chr13_711.bf

/work/user/chr13/chr13_696.bf

. . .

High Performance Computing @ Louisiana State University

25 February 2015
39/71

A Serial wq.pbs

We can try to run on 32 cores. If the system has 16 cores per
node, we would need to request 2 nodes. The PBS preamble
option would look like:

#PBS -l nodes=2:ppn=16

Now we just need to set the 6 PBS prologue variables properly:

WPN=16
WORKDIR=/work/user
FILES=${WORKDIR}/file_list
TASK=${WORKDIR}/wq.sh
START=1
VERBOSE=0

High Performance Computing @ Louisiana State University

25 February 2015
40/71

Serial Example STDERR

Dispatcher:Start:1:1422475181.25
Worker:Shutdown:mike305_0:1422475215.27
Worker:Shutdown:mike341_13:1422475216.28
. . . skipping . . .
Worker:Shutdown:mike305_5:1422475223.28
Worker:Shutdown:mike305_10:1422475223.28
Dispatcher:Last:82
Dispatcher:Shutdown:1422475225.28
Worker:Shutdown:mike341_11:1422475225.28

Dispatcher:Start: first task # assigned : starting system clock time
Dispatcher:Last: last task completed.
Dispatcher:Timeup: worker : system time (if walltime runs short)
Dispatcher:Shutdown: ending system clock time.
Worker:Shutdown: worker ID : ending system time.

High Performance Computing @ Louisiana State University

25 February 2015
41/71

Verbose STDERR

Additional lines added include:

Worker:Startup: worker : system start time

Worker:LastTask: worker : last task

Dispatcher:File: file name : task # : worker assigned

Dispatcher:Maxtime: worker : task time : system time

Dispatcher:WaitOn: number of workers still processing

Dispatcher:WaitFor: worker : worker (6 per line)

High Performance Computing @ Louisiana State University

25 February 2015
42/71

Serial Example STDOUT

Worker:Stdout:9:Ran:True
 DIR=/work/jalupo/DCL/0MQ/Brown/chr13; BASE=chr13_2779.bf
 That's all, folks!
 Sleeping for 2 seconds.
Worker:Stderr:9:

If verbose is off, each worker emits a report using a
group of lines as so:

● Worker:Stdout: task number, Ran or Skipped, success (True/False).
● Followed by any Stdout from the task script.

● Worker:Stderr: task number
● Followed by any Stderr from the task script.

High Performance Computing @ Louisiana State University

25 February 2015
43/71

Verbose STDOUT

If verbose is on, the grouping looks like:

Worker:Task:9:mike156_7:/work/jalupo/WQ/Timing/wq_timing.sh \
 /work/jalupo/DCL/0MQ/Brown/chr13/chr13_2779.bf
Worker:Timings:9:mike156_7:1422475184.07:1422475189.12:5.05:5.05
Worker:Stdout:9:Ran:True
 DIR=/work/jalupo/DCL/0MQ/Brown/chr13; BASE=chr13_2779.bf
 That's all, folks!
 Sleeping for 5 seconds.
Worker:Stderr:9:

Worker:Task: task number, assigned worker, full command line.
Worker:Timings: task number, worker, start system time, end system time,

elapsed task time, walltime at task end.

High Performance Computing @ Louisiana State University

25 February 2015
44/71

A Multi-Threaded Example

High Performance Computing @ Louisiana State University

25 February 2015
45/71

Adjust For Multi-Threading

● wq.sh – set up for multi-threading. We'll
use OpenMP for this example.

● wq.pbs - adjust so number of threads and
number of workers is consistent with
number of cores on the nodes.

High Performance Computing @ Louisiana State University

25 February 2015
46/71

Multi-Threaded Example wq.sh

#! /bin/bash

Set a variable as the absolute path to the blastn executable:

BLASTN=/usr/local/packages/bioinformatics/ncbiblast/2.2.28/gcc-4.4.6/bin/blastn

export OMP_NUM_THREADS=4

FILE=$1
DIR=`dirname ${FILE}`
BASE=`basename ${FILE}`

Build the rather complex command line.

CMD="${BLASTN} -task blastn -outfmt 7 -max_target_seqs 1"
CMD="${CMD} -num_threads ${OMP_NUM_THREADS}"
CMD="${CMD} -db /project/special/db/img_v400_custom/img_v400_custom_GENOME"
CMD="${CMD} -query ${FILE}"
CMD="${CMD} -out ${DIR}/IMG_genome_blast.${BASE}"

For testing purposes, use "if false". For real runs, use "if true":

if true ; then
 eval "${CMD}"
else
 echo "${CMD}"
 # This just slows things way down for testing.
 sleep 1
fi

Production
vs

Testing

Keep
It

Readable

Threads

Shortcut

High Performance Computing @ Louisiana State University

25 February 2015
47/71

Multi-Threaded Example wq.pbs

Assume the system has 16 cores per node. That means we
could run 4 4-thread tasks per node. On 2 nodes we could
run 8 tasks at a time, so let's set that up in the PBS
preamble:

#PBS -l nodes=2:ppn=16

Now we just need to make the PBS prologue variables agree:

WPN=4
WORKDIR=/work/user
FILES=${WORKDIR}/file_list
TASK=${WORKDIR}/wq.sh
START=1
VERBOSE=0

High Performance Computing @ Louisiana State University

25 February 2015
48/71

An MPI Example

High Performance Computing @ Louisiana State University

25 February 2015
49/71

Adjust For MPI

● wq.sh – set up for small number of MPI
processes per task.

● wq.pbs - adjust so number of processes
and number of workers is consistent with
number of cores on the nodes.

High Performance Computing @ Louisiana State University

25 February 2015
50/71

MPI Example wq.sh
#! /bin/bash

FILE=$1
DIR=`dirname ${FILE}`
BASE=`basename ${FILE}`

Assume we want 16 processes per task (i.e. 1 worker per node).

PROCS=16
HOSTNAME=`uname -n`
HOSTLIST=""
for i in `seq 1 ${PROCS}`; do
 HOSTLIST="${HOSTNAME},${HOSTLIST}"
done
HOSTLIST=${HOSTLIST%,*}

CMD="mpirun -host ${HOSTLIST} -np ${PROCS} mb < ${FILE} > ${BASE}.mb.log"

cd $DIR

Clean out any previous run.

rm -f *.[pt] *.log *.ckp *.ckp~ *.mcmc

For testing purposes, use "if false". For production, use "if true"

if false ; then
 eval "${CMD}"
else
 echo "${CMD}"
 echo "Faking It On Hosts: ${HOSTLIST}"
 sleep 2
fi

Build
Host
Lists

High Performance Computing @ Louisiana State University

25 February 2015
51/71

MPI Example wq.pbs
#! /bin/bash
###
Begin WQ preamble section.
###
#PBS -A hpc_enable02
#PBS ... Other Settings ...

Set number of workers per node:

WPN=1

Set the working directory:

WORKDIR=/work/user

Name of the file containing the list of input files:

FILES=${WORKDIR}/wq.lst

Name of the task script

TASK=${WORKDIR}/wq_mb.sh

START=1

##
End WQ preamble section.

High Performance Computing @ Louisiana State University

25 February 2015
52/71

Load Balancing Issues

● The more uniform the task times are
across all tasks, the more likely a job will
end gracefully.

● Take a look at the concepts.
● Illustrate potential problem.
● Discuss how to analyze a job's efficiency.

High Performance Computing @ Louisiana State University

25 February 2015
53/71

Task Run Times

Imagine a set of 8 tasks, number for identification only, and represented
by bars propotional to their run times.

High Performance Computing @ Louisiana State University

25 February 2015
54/71

Insufficient Walltime

PBS walltime sets the maximum wallclock time a job is
allowed. Imagine the tasks get assigned in the following
order:

Dashed bars show
estimated times for next
task - they all appear to fit
remaining time.

Bad estimate for Task
8!

High Performance Computing @ Louisiana State University

25 February 2015
55/71

Sufficient Walltime

5 estimates
sufficient time
remains, but 6-8 do
not!

5 requests 1 more
task, but 6-8 stop!

High Performance Computing @ Louisiana State University

25 February 2015
56/71

Load Balance Implications

● Order by longest running first, if possible.
● Run many tasks so representative times

are seen early in the job.
● If range of times not known, there is no

good way to make absolutely sure jobs
complete gracefully.

● Output format allows analysis.

High Performance Computing @ Louisiana State University

25 February 2015
57/71

Monitoring and Statistics

High Performance Computing @ Louisiana State University

25 February 2015
58/71

Output Format Rational

● The colon-delimited format and
seemingly redundant data items was
intentional.

● Gawk, Perl, Python, and other scripting
languages have easy facilities for parsing
lines with character delimited fields.

● A few examples illustrate the idea.

High Performance Computing @ Louisiana State University

25 February 2015
59/71

Identifying Failed Tasks
The Task lines in the output file have the following format (fields are numbered):

 1 2 3 4 5 6
Worker:Stdout:2:mike460_3:Ran:True

That means we just have to find the “Task” lines, check field 5 for True/False, and
output the file name (i.e. could use to generate a new input list). Consider using Gawk:

#! /bin/gawk -f

BEGIN { FS = ":"; }

/^Worker:Stdout/ if ($6 == "False") failed[++n] = task[3]; }

END {
 print n, "files were not processed.\n" > "/dev/stderr";
 for (i = 1; i <= n; i++) printf("%s\n", failed[i]);
}

High Performance Computing @ Louisiana State University

25 February 2015
60/71

Timing Jitter
● Use Python to find the timing jitter between the longest and shortest running

workers using Timing records (i.e. $ python tasktimes.py stdout_file):

 1 2 3 4 5 6 7 8

 Worker:Timings:3:mike243_0:1406673580.51:1406673582.52:2.02:2.02

#! /bin/env python
import sys

f = open(sys.argv[1], 'r')
raw = f.readlines()
f.close()
worker = {}
max_end = 0.0
min_end = 1.0e+37

for l in raw:
 u = l.strip().split(':')
 if u[0] == 'Worker' and u[1] == 'Timings' :
 t = float(u[6])
 if t > 0.0 :
 worker[u[2]] = t

for k, v in worker.iteritems() :
 if v < min_end :
 min_end = v
 if v > max_end :
 max_end = v

print("Task times between %.2f and %.2f - %.2f sec spread." %
 (min_end, max_end, max_end - min_end))

High Performance Computing @ Louisiana State University

25 February 2015
61/71

Efficiency

● Important because job charges are based
total walltime (in hours):

● Want uniform end times. If one task keeps
many nodes idle waiting to end, not good!

Eff ave=
t long+t short

2∗t long

SU=cores∗tlong

Eff actual=
∑ ttask

cores∗t long

Eff
ave

 = average parallel efficiency
Eff

actual
 = actual parallel efficiency

t
long

 = longest worker walltime
t
short

 = shortest worker walltime
t
task

 = individual task walltime

High Performance Computing @ Louisiana State University

25 February 2015
62/71

Examples

● Consider a job that runs 64 tasks on 64 cores.
● Well balanced, min of 69 hrs, max of 71 hours:

● 98.6% ave efficiency.

● Highly imbalanced, 63 finish in 1 hour, 1
finishes in 71 hours.

● 50.7% ave efficiency.
● 2.9% actual efficiency.

High Performance Computing @ Louisiana State University

25 February 2015
63/71

Resources

● Moodle version at:
● http://moodle.hpc.lsu.edu
● HPC121 – Background and Distribute

Tasks
● Distribution zip archive file provided.

● On SuperMike-II:
● /work/jalupo/WQ/WQ-20150130-

r174.zip

High Performance Computing @ Louisiana State University

25 February 2015
64/71

Hands-On Test

1. Need +Python-2.7.3-gcc-4.4.6 in .soft

2. Create a directory.

3. unzip /work/jalupo/WQ/WQ-20150130-r174.zip

4. cd Examples/Timing

5. cp ../../wq.py .

6. chmod u+x wq_timing*

7. Edit wq_timing.pbs: set PBS output directory, proper
allocation, and work directory.

8. Generate a proper file list:
1. rm 82_file_list

2. for i in `seq 1 82` ; do echo "`pwd`/file$i" >> 82_file_list; done

9. Submit the PBS file: qsub wq_timing.pbs > jid

High Performance Computing @ Louisiana State University

25 February 2015
65/71

Hands-On Test Results

$ ls
82_file_list jid wq.py WQ_Timing.o228557
wq_timing.sh
hostlist.228557 pbs.228557 WQ_Timing.e228557 wq_timing.pbs
$

When job completes, the directory will look like this:

jid Job ID (228557 in this case).
hostlist.228557 . . . Job specific host list.
pbs.228557 PBS job script copy.
WQ_Timing.e228557 . . stderr (note use of job name and jobID).
WQ_Timing.o228557 . . stdout (note use of job name and jobID).

High Performance Computing @ Louisiana State University

25 February 2015
66/71

Final Suggestions

● Organize data files in meaningful way.
● More than 10,000 files per directory

will cause performance degradation.

● Use Linux tools to generate file lists.
● Stay aware of job performance.

High Performance Computing @ Louisiana State University

25 February 2015
67/71

Backup Slides

High Performance Computing @ Louisiana State University

25 February 2015
68/71

Multi-Threaded Example STDERR

Dispatcher:Start:1
mike111_0:Taking:1:0.00:252000.00
mike111_1:Taking:2:0.00:252000.00
mike111_2:Taking:3:0.00:252000.00
mike111_3:Taking:4:0.00:252000.00
Dispatcher:Maxtime:mike111_1:64223.42:1393836959.93
mike111_1:Taking:5:64223.42:187776.58
Dispatcher:Maxtime:mike111_2:123837.43:1393896573.95
mike111_2:Skipping:6:123837.44:128162.56
Dispatcher:Timeup:mike111_2:1393896573.95
Dispatcher:Shutdown:3
Dispatcher:Last:6

Note Task 6 was last handed out, but mike111_2 skipped
it because to little time remained to safely start it and
finish.

High Performance Computing @ Louisiana State University

25 February 2015
69/71

Multi-Threaded Example STDOUT

Task:3:mike111_2:Ran:True:/work/jalupo/WQ/BLASTN/wq_blastn.sh
/work/jalupo/WQ/BLASTN/GS049.blast/xai.fna

Timings:3:mike111_2:1393772736.52:1393896573.95:123837.43:123837.43

Stdout:3:

Stderr:3:

Task:6:mike111_2:Skipped:False:/work/jalupo/WQ/BLASTN/wq_blastn.sh
/work/jalupo/WQ/BLASTN/GS049.blast/xaa.fna

Timings:6:mike111_2:-1.00:-1.00:-1.00:123837.44

Stdout:6:

 Insufficient Time

Stderr:6:

 Time left: 128162.56; Max Time: 123837.43; Margin: 1.25

High Performance Computing @ Louisiana State University

25 February 2015
70/71

MPI Example STDERR

Only the end of the file looks interesting:

. . .
mike333_0:Taking:513:15336.63:2663.37
mike241_0:Taking:514:15367.58:2632.42
mike331_0:Taking:515:15401.42:2598.58
mike322_0:Skipping:516:15459.29:2540.71
Dispatcher:Timeup:mike322_0:1393617821.63
Dispatcher:Shutdown:31
Dispatcher:Last:516

Last task handed out was number 516, but looks like mike322_0 skipped it.
The Dispatcher expects to order 31 other workers to stop the next time they
request a task.

High Performance Computing @ Louisiana State University

25 February 2015
71/71

MPI Example STDOUT

Task:513:mike333_0:Ran:True:/work/user/wq_mb.sh
/work/user/PostPredYeast/YHL004W_DNA/SeqOutfiles/YHL004W_DNA.ne
x.run3_2868000/GTRIG.bayesblock
Timings:513:mike333_0:1393617699.01:1393618496.73:797.72:16134.
34
Stdout:513:
Stderr:513:

Task:515:mike331_0:Ran:True:/work/jalupo/WQ/MrBayes/wq_mb.sh
/work/jalupo/WQ/MrBayes/PostPredYeast/YHL004W_DNA/SeqOutfiles/Y
HL004W_DNA.nex.run3_4180000/GTRIG.bayesblock
Timings:515:mike331_0:1393617763.78:1393618516.08:752.30:16153.
72
Stdout:515:
Stderr:515:

The stdout file really doesn't change much, though the file paths are long.

