INF(\1% \
I'E{ l‘\

Introduction to R

Le Yan
HPC User Services @ LSU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

The History of R

 Ris adialect of the S language

— S was initiated at the Bell Labs as an internal statistical
analysis environment

— Most well known implementation is S-plus (most recent
stable release was in 2010)

R was first announced in 1993

The R core group was formed in 1997, who controls the
source code of R (written in C)

R 1.0.0 was released in 2000
e The current version is 3.1.3

LS i

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

Features of R

 Risadialect of the S language
— Language designed for statistical analysis
— Similar syntax

* Available on most platform/0OS

* Rich data analysis functionalities and sophisticated
graphical capabilities

* Active development and very active community

— CRAN: The Comprehensive R Archive Network

* Source code and binaries, user contributed packages and
documentation

— More than 6,000 packages available on CRAN as of last week
* Free to use
CENTEB I-OR CQMPU:I‘.:&TION l

3/18/2015

HPC training series Spring 2015

Two Ways of Running R

e With an IDE

— Rstudio is the de facto environment for R on a desktop
system

e On a cluster

— Ris installed on all LONI and LSU HPC clusters
* QB2:r/3.1.0/INTEL-14.0.2
e SuperMIC: r/3.1.0/INTEL-14.0.2
* SuperMike2: +R-2.15.1-gcc-4.4.6

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/18/2015 HPC training series Spring 2015

sy |ESTEE
Rstudio

* Free to use
e Similar user interface to other IDEs or software such as
Matlab; provides panes for
— Source code
— Console
— Workspace
— Others (help message, plot etc.)

* Rstudio in a desktop environment is better suited for
development and/or a limited number of small jobs

CENTER FOR COMPUTATION l
& TECHNOLOGY .

3/18/2015 HPC training series Spring 2015

RStudio

File Edit Code View Plots Session Build Debug Tools Help
Q- e~
@] PA1_template.Rmd @ plots.R @ statinferenceProject.Rmd @ Pa2.Rmd @] statinferenceProject2.Rmd

L7 7+ @ KnitHTIML - ~#Run | 5% @ Chunks=-
a3 ~
45~ ### The most Harmful Event with rRespect to population mealth
46
47 we will use the sum of FATALITIES and INJURIES to measure how harmful an event is to population health. The ten most

harmful events are reported with the plot below.
48
49~ "7 {r}
50 healthHazard <- ddply(stormpata, "EVIYPE", summarize, sum = sum(FATALITIES+INJURIES, na.rm=TRUE))
51 healthHazard <- healthHazard[order (healthHazard$sum, decreasing = TRUE),]
52 topeventHealth <- healthHazard$evTyPE [which. max(healthHazardSsum)]
53 ggplot(head(healthHazard,10) ,aes (EVTYPE,sum)) +
54 geom_bar (stat="identity") +
55 ggtitle("The ten most deadly weather events in the us™) +
56 geom_text (aes(label-EVTYPE), size-2, vjust—-1) +
7 Tabs(c = "casualty") +
58 theme(axis.ticks.x = element_blank(),axis.text.x = element_blank())
59+)
60
61 From the figure it can be clearly seen that “r topeEventHealth™ are the most harmful with respect to population health.
In the period of time covered by the data, a total of “r format(healthHazard$sum[which.max(healthHazard$sum)],big.mark
=",")" people were killed or injured by "r topEventHealth™.
62
63~ ### The Event with The Greatest Economic Consequences
64
65 wWe will use the sum of PROPDMG and CROPDMG to measure the economic consequences of an event. The top ten events are
reported.
66
67~ " {r}
68 econbamage <- ddply(stormpata, "EVTYPE", summarize, sum = sum(PROPDMG*PROPDMGEXPexpanded+CROPDMG*CROPDVMGEXPexpanded,
na.rm=TRUE))
69 econDamage <- econDamage[order (econDamage$sum, decreasing = TRUE),]
70 TopEventEcon <- econbamage$EVTYPE [which.max(econDamage$sum)]
71 ggplot(head(econpamage,10), aes{EVTYPE,sum)) +
72 geom_bar (stat="identity") +
7 ggtitle("The ten most costly weather events in the us™) +
7 geom_text (aes(label=EVTYPE), size=2, vjust=-1) +
7 labs(x="", y = "Damage in Dollar™) +
7| theme(axis.ticks.x = element_blank(),axis.text.x = element_blank{)) ¥
24:33 @ Chunk 2: get-data R Markdown
Console
~
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type "Ticense()’ or 'licence()" for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()’ for more information and
"citation()’ on how to cite R or R packages in publications.
Type "demo()’ for some demos, "help()" for on-line help, or
"help.start()' for an HTML browser interface to help.
Type "q()" to gquit R.
[workspace loaded from ~/R/R_programming_coursera/.RData]
> stormpata <- read.csv("data/repdata-data-stormpata.csv"”, stringsAsFactors=FALSE)
v

>

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

7 R_Intro_20130709.R

HPC training series Spring 2015

variables

"MADISON"

"TORNADO"

Environment History
% [[#Import Dataset~ | 3§ Clear g
‘) Global Environment =
Data
@ stormbata 902297 obs. of 37
STATE__ :mum1111111111...
BGN_DATE chr "4/18/1950 0:00:00" "4/18/1950 0:00:00"
BGN_TIME chr "0130" "0145" "1600" "0900"
TIME_ZONE chr "csT" "CsT" UesTT UesT”
COUNTY : num 97 3 57 89 43 77 9 123 125 57 ...
COUNTYNAME: chr "MOBILE" "BALDWIN" "FAYETTE"
STATE chr "aL™ "AL" "aL" "aL" ..
EVTYPE chr "TORNADO" "TORNADO" "TORNADO"
BGN_RANGE num 0 0 00D0D0DO0O0OO0 ...
BGN_AZI chr oo
BGN_LOCATI: chr "™ ™" """
END_DATE : chr ™" "™ "™ "
Files Plots Packages Help Viewer
G RO ale

R: Combine Values into a Vector or List -

c {base}

Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a commaon type which is the type of the returned

value, and all attributes except names are removed.

Usage

c{..., recursive = FALSE)

Arguments

objects to be concatenated.

recursive logical. f recursive = TRUE, the function recursively descends through lists (and pairlists) combining all their elements into a

wector.

Details

The output type is determined from the highest type of the components in the hierarchy NULL < raw < logical < integer < double < complex <
character < list < expression. Pairlists are treated as lists, but non-vector components (such names and calls) are treated as one-element lists

which cannot be unlisted even if recursive

c is sometimes used for its side effect of removing attributes except names. for example to turn an array into a vector. as.vector is a more
intuitive way to do this, but also drops names_ Mote too that methods other than the default are not required to do this (and they will almost

TRUE.

' "6/8/1951 0:00:00"

"2/20/1951 0:00:00

On LONI and LSU HPC Clusters

e Two modes to run R on clusters

— Interactive mode

* Type R command to enter the console, then run R
commands there

— Batch mode

* Write the R script first, then submit a batch job to run it (use
the Rscript command)

* This is for production runs

* Clusters are better for resource-demanding jobs

LS i

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

INFORMATION
P HINOLE N ¥ Y
SERVICES

[lyanl@gbl ~]$ module add r
[lyanl@gbl ~]$ R

R version 3.1.0 (2014-04-10) -- "Spring Dance"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-unknown-linux-gnu (64-bit)

Type “demo()" for some demos, “help()" for on-line help, or
"help.start()" for an HTML browser interface to help.
Type "q()" to quit R.

> getwd()

[1] "/home/lyanl™
> X <- 5

> X

[11 5

>

Save workspace image? [y/n/c]: n

[lyanl@gbl ~]$ cat hello.R
print("*Hello World!™)
[lyanl@gbl ~]$ Rscript hello.R
[1] "Hello World!"

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

Getting Help

* Command line
— ?<command name>
— ??7<part of command name/topic>

* Or search in the help page in Rstudio

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

sy 0000000 (meTEE
Data Classes

* R has five atomic classes

— Numeric
* Double is equivalent to numeric.
 Numbers in R are treated as numeric unless specified otherwise.

— Integer
— Complex
— Character
— Logical
* TRUE or FALSE

* You can convert data from one type to the other using the
as.<lType> functions

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

s 0000 [ESTEE
Data Objects - Vectors

* Vectors can only contain elements of the same class

e Vectors can be constructed by

— Using the c() function (concatenate)

 Coercion will occur when mixed objects are passed to the c()
function, as if the as.<Type>() function is explicitly called

— Using the vector () function

* One can use [Index] to access individual element
— Indices start from 1

CENTER FOR COMPUTATION l
& TECHNOLOGY .

3/18/2015 HPC training series Spring 2015

=TT S

“#” 1Indicates comment
“<-" performs assignment operation (you can use “=*“ as well, but
“<-" 1s preferred)

numeric (double 1s the same as numeric)
>d <- c(1,2,3)

> d

[1] 1 2 3

character

> d <_ C(llll','lzll’l.Sl')
> d

[1] Illll ll2ll ll3ll

you can covert at object with as.TYPE

as. numeric changes the character vector created above to numeric
> as.numeric(d)

[1] 1 2 3

The conversion doesn"t always work though
> as.numeric(a')
[1] NA
Warning message:
Lc NAs introduced by coercion

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

> X <- c(0.5, 0.6) ## numeric

> X <- c(TRUE, FALSE) ## logical

> x <- c(T, F) ## logical

> X <- c(a", "b", "c'") ## character

The *““:” operator can be used to generate integer seguences
> X <- 9:29 ## iInteger
> X <- c(1+01, 2+41) ## complex

> X <- vector('numeric', length = 10)
> X
[1] O0O0O00O0O0O0O0O

Coercion will occur when objects of different classes are mixed
>y <- c(1.7, "a'") ## character

>y <- c(TRUE, 2) ## numeric

>y <- c("a", TRUE) ## character

Can also coerce explicitly
> X <- 0:6

> class(x)

[1] "integer"

> as.logical (x)
oy 11 FALSE TRUE TRUE TRUE TRUE TRUE TRUE ‘ I

3/18/2015 HPC training series Spring 2015

Vectorized Operations

* Lots of R operations process objects in a
vectorized way

— more efficient, concise, and easier to read.

> X <- 1:4; y <- 6:9

> X + Y

[1] 7 9 11 13

> X > 2

[1] FALSE FALSE TRUE TRUE
> X * vy

1] 6 14 24 36

print (x[x >= 3])
1] 3 4

LS i

[
>
[

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

Data Objects - Matrices

e Matrices are vectors with a dimension attribute

R matrices can be constructed

— Using the matrix() function

— Passing an d1m attribute to a vector

— Using the cbind() or rbind() functions
R matrices are constructed column-wise

* Onecanuse [<Index>,<index>] to access
individual element

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/18/2015 HPC training series Spring 2015

INFORMATION
SFRVICES

Create a matrix using the matrix() function
> m <- matrix(1:6, nrow = 2, ncol = 3)

> m

[.11 [.2] [.3]

[1,] 1 35

[2,] 2 4 6

[1] 2 3

> attributes(m)
$dim

[1] 2 3

Pass a dim attribute to a vector
>m <- 1:10

> m

[1] 123456789 10

> dim(m) <- c(2, 5)

> m

[.11 [.21 [.3]1 [.4]1 [.5]

L s [1,L] 13579
el 24080 ‘*-dhaqhulll:]EI
CENTER FOR S
& TECHNOLOGY ' -

3/18/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Row binding and column binding
X <- 1:3

y <- 10:12

cbind(x, y)

Slicing

m <- 1:10
m[c(1,2),c(2,4)]
[.1] [.2]

[1,] 3 7

[2,] 4 8

LS l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

vV V It <K X = \/ e X V V V &

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Data Objects - Lists

 Lists are a special kind of vector that contains
objects of different classes

* Lists can be constructed by using the I1st()
function

e Lists can be indexed using [[1]

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Use the list () function to construct a list
> X <- list (1, "a", TRUE, 1 + 41)
> X

[[1]1]
[1] 1

[[2]]
[1] "ad

[[3]]
[1] TRUE

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

Data Objects - Data Frames

e Data frames are used to store tabular data

— They are a special type of list where every element of the list
has to have the same length

— Each element of the list can be thought of as a column

— Data frames can store different classes of objects in each
column

— Data frames also have a special attribute called row . names

— Data frames are usually created by calling read . table() or
read.csv()

* More on this later
— Can be converted to a matrix by calling data.matrix()

CENTER FOR COMPUTATION l
& TECHNOLOGY .

3/18/2015

HPC training series Spring 2015

R objects can have names

Each element In a vector can have a name

> X <- 1:3

> names(Xx)

NULL

> pnames(x) <- c("a","b"™,"c')

> names(x)

[1] "a™ "b™ "c"

> X
abc
123

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

LN PURMAL TN
P HINOLE N ¥ Y
SERVICES

Lists

>x <- list(a=1, b=2, c = 3)
> X

$a

[1] 1

$b
[1] 2

$c
[1] 3

Names can be used to refer to individual element
> x%a

[1] 1

Columns and rows of matrices

> m <- matrix(1:4, nrow = 2, ncol = 2)

> dimnames(m) <- list(c('a", "b"™), c('c", "d™"))
>

Q
NEFE O S
HwWa

LS50 ,

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

Querying Object Attributes

« The class() function
 The str() function
 The attributes() function reveals attributes of an object
(does not work with vectors)
— Class
— Names
— Dimensions
— Length
— User defined attributes
 They work on all objects (including functions)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
I'Ed INOLOH Y
SERVICFES

> m <- matrix(1:10, nrow = 2, ncol = 5)
> str(matrix)

function (data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)
> str(m)
int [1:2, 1:5] 1234567 89 10
> str(matrix)
function (data = NA, nrow = 1, ncol = 1, byrow = FALSE,

dimnames = NULL)

> str(str)
function (object, ...)

CENTER FOR COMPUTATION
& TECHNOLOGY

LS50 |

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Data Class - Factors

* Factors are used to represent categorical data.
e Factors can be unordered or ordered.

* Factors are treated specially by modelling
functions like Im() and gIm()

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/18/2015 HPC training series Spring 2015

INFORMATION
[ECHNOLOGY
SERVICES

Use the factor() function to construct a vector of factors
The order of levels can be set by the levels keyword

> X <- factor(c("yes", "yes", "no", "yes", "no"),

levels = c("yes", "no"))

> X

[1] yes yes no yes no

Levels: yes no

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

I T S
Date and Time

* R has a Date class for date data while times are
represented by POSIX formats

* One can convert a text string to date using the
as.Date() function

 Thestrptime() function can deal with dates
and times in different formats.

* The package “lubrirdate” provides many
additional and convenient features

CENTER FOR COMPUTATION ‘
& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

NFORMATIO
SFRVICES

Dates are stored internally as the number of days since 1970-01-01
> X <- as.Date(''1970-01-01'")

> X

[1] "1970-01-01"

> as.numeric(x)

[1] O

> x+1

[1] "1970-01-02*

Tmes are stored internally as the number of seconds since 1970-01-01
> X <- Sys.time()

> X

[1] "2015-03-17 09:40:43 CDT"

> as.numeric(x)

[1] 1426603244

> p <- as.POSIXIt(x)

> names(unclass(p))

[1] "sec” "min"' “"hour" "mday" "'mon" svear” wday" “yday"
[9] "isdst” 'zone" gmtoff"
> p$sec

[1] 43.88181

LS50 |

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

Missing Values

* Missing values are denoted by NA or NaN for
undefined mathematical operations.
— 1S.na() isused to test objects if they are NA
— 1s.nan() isused to test for NaN

— NA values have a class also, so there are integer NA,
character NA, etc.

— A NaN value is also NA but the converse is not true

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/18/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

> X <- c(1, 2, NA, 10, 3)

> 1s.na(x)

[1] FALSE FALSE TRUE FALSE FALSE
> 1s.nan(x)

[1] FALSE FALSE FALSE FALSE FALSE
> X <- c(1, 2, NaN, NA, 4)

> 1s.na(x)

[1] FALSE FALSE TRUE TRUE FALSE

> 1s.nan(x)

[1] FALSE FALSE TRUE FALSE FALSE

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

Arithmetic Functions

exp(O) exponentiation
1ogQ) log

10g10(0) log basel0

sqrt(square root

abs() absolute value
sin() sine

cos() cosine

floor()

ceilingQ Rounding of numbers
round()

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
T'Eid INOLOH Y
SERVICFES

Simple Statistic Functions

min() Minimum value
max() Maximum value
which.min(Q Location of minimum value

which_max() Location of maximum value

pmin() Element-wise minima of several vectors
pmax() Element-wise maxima of several vectors
sum() Sum of the elements of a vector
mean() Mean of the elements of a vector
prod() Product of the elements of a vector

> dim(x)

[1] 2 2 50

> min(x)

[1] -2.665878

Lsu > which._min(x)

CENTER FOR COMPUTATION [1] 123
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Distributions and Random Variables

* For each distribution R provides four functions: density (d), cumulative density (p),
qguantile (q), and random generation (r)
— The function name is of the form [d]p]lg]r]<name of distribution>
— e.g.gbinom() gives the quantile of a binomial distribution

Distribution | Distribution name in R

Uniform unif
Binomial brnom
Poisson pois
Geometric geom
Gamma gamma
Normal norm
Log Normal Inorm
Lsu Exponential exp
CENTER FOR COMPUTATION Student’s t T

& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Random generation from a uniform distribution.
> runif (10, 2, 4)
[1] 2.871361 3.176906 3.157928 2.398450 2.171803 3.954051
3.084317 2.883278
[9] 2.284473 3.482990
You can name the arguments in the function call.
> runif (10, min = 2, max = 4)

Given p value and degree of freedom, find the t-value.
> gt (p=0.975, df = 8)

[1] 2.306004

The inverse of the above function call

> pt(2.306, df = 8)

[1] 0.9749998

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

User Defined Functions

e Similar to other languages, functions in Rare
defined by using the function() directives

 The return value is the last expression in the
function body to be evaluated.

* Functions can be nested

* Functions are R objects

— For example, they can be passed as an argument to
other functions

Lsu l .;"'J 2\ ;
CENTER FOR COMPUTATION AN
& TECHNOLOGY ek s

3/18/2015 HPC training series Spring 2015

I T S
Control Structures

e Control structures allow one to control the flow
of execution.

it . testing a condition

else

for executing a loop (with fixed number of iterations)
while executing a loop when a condition is true

repeat executing an infinite loop
break breaking the execution of a loop
next skipping to next iteration
return exit a function
LS |
S TRCHNOLOGY :

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Testing conditions

Comparisons: <,<=,>,>=,==,!=
Logical operations: !, &&, ||

if(x > 3 && x < 5) {
print (“x is between 3 and 5”)
} else if(x <= 3) {
print (“x is less or equal to 3”)
} else {
print (“x is greater or equal to 5”)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

For Loops

X <- c(”a", nbn, "C", ndn)

These loops have the same effect

Loop through the indices
for(i in 1:4) {

print (x[1i])
}

Loop using the seqg along() function
for(i in seq along(x)) {

print (x[1i])
}

Loop through the name
for (letter in x)

Lsu print (letter)
}

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

for(i in 1:4) print(x[i])

ST S
The apply Function

 The apply() function evaluate a function over
the margins of an array

— More concise than the for loops (not necessarily
faster)

X:. array objects

MARGIN: a vector giving the subscripts which
the function will be applied over

FUN: a function to be applied

> str(apply)
function (X, MARGIN, FUN, ...)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

=TT S

> X <- matrix(rnorm(200), 20, 10)

Row means
> apply(x, 1, mean)
[1] -0.23457304 0.36702942 -0.29057632 -0.24516988 -0.02845449 0.38583231
[7] 0.16124103 -0.10164565 0.02261840 -0.52110832 -0.10415452 0.40272211
[13] 0.14556279 -0.58283197 -0.16267073 0.16245682 -0.28675615 -0.21147184
[19] 0.30415344 0.35131224

Column sums

> apply(x, 2, sum)
[1] 2.866834 2.110785 -2.123740 -1.222108 -5.461704 -5.447811 -4.299182
[8] -7-696728 7.370928 9.237883

25t and 75™ Quantiles for rows
> apply(x, 1, quantile, probs = c(0.25, 0.75))
[.1] [.2] [.3] [.4] [.5] [.6]
25% -0.52753974 -0.1084101 -1.1327258 -0.9473914 -1.176299 -0.4790660
75% 0.05962769 0.6818734 0.7354684 0.5547772 1.066931 0.6359116
[.7]1 [.8] [.9] [.10] [.11] [.12]
25% -0.1968380 -0.5063218 -0.8846155 -1.54558614 -0.8847892 -0.2001400
75% 0.7910642 0.3893138 0.8881821 -0.06074355 0.5042554 0.9384258
[.13] [.14] [.15] [.16] [.17] [.18]
25% -0.5378145 -1.08873676 -0.5566373 -0.3189407 -0.6280269 -0.6979439
I 75% 0.6438305 -0.02031298 0.3495564 0.3391990 -0.1151416 0.2936645 H

[,19] [.20]
CENTE 250y —0.259203 -0.1798460

L

. 75% 1.081322 0.8306676 -

INFORMATION
P HINOLE N ¥ Y
SERVICES

> dim(x)
[1] 20 10

Change the dimensions of X
> dim(x) <- c(2,2,50)

Take average over the first two dimensions
> apply(x, c(1, 2), mean)
[.1]1 [.2]
[1,] -0.0763205 -0.01840142
[2,] -0.1125101 0.11393513
> rowMeans(x, dims = 2)
[.1] [.2]
[1,] -0.0763205 -0.01840142
[2,] -0.1125101 0.11393513

CENTER FOR COMPUTATION :
& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Other Apply Functions

lapply - Loop over a list and evaluate a
function on each element

* sapply - Same as lapply but try to simplify the
result

« tapply - Apply a function over subsets of a
vector

 mapply - Multivariate version of lapply

Lsu l H__,, = :
CENTER FOR COMPUTATION At
& TECHNOLOGY - >

3/18/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

Plyr Package

* |n data analysis you often need to split up a
big data structure into homogeneous pieces,
apply a function to each piece and then
combine all the results back together

* This split-apply-combine procedure is what
the plyr package is for.

LS50

CENTER FOR COMPUTATION
w TECHNOLOGY

3/18/2015

HPC training series Spring 2015

| =R

> library(ggplot2)
> library(plyr)

> str(mpg)

"data.frame”: 234 obs. of 11 variables:

$ manufacturer: Factor w/ 15 levels "audi',"'chevrolet”,..: 1111111111
$ model : Factor w/ 38 levels "4runner 4wd'",..: 2 2 2 2 2 2 2 333 ...
$ displ :num 1.8 1.8 22 2.8 2.8 3.11.81.82 ...

$ year : Int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...

$ cyl :int 4444666444 ...

$ trans : Factor w/ 10 levels "auto(av)","auto(13)",..: 491014910914
10 ...

$ drv : Factor w/ 3 levels "4","f","r'': 2222222111 ...

$ cty : int 18 21 20 21 16 18 18 18 16 20 ...

$ hwy : Int 29 29 31 30 26 26 27 26 25 28 ...

$ fl : Factor w/ 5 levels ""c","d","e","p",.-- 44 4 4 444444 __.
$ class : Factor w/ 7 levels '2seater',"compact'”,..: 22 22222222

> str(ddply)
function (.data, .variables, .fun = NULL, ..., .progress = "none", .inform =
FALSE, .drop = TRUE, .parallel = FALSE, .paropts = NULL)
> ddply(mpg, "cyl™, summarise, mean = mean(cty))
cyl mean
1 4 21.01235
2 5 20.50000
3 6 16.21519
4 8 12.57143

CE

3/18/2015 HPC training series Spring 2015

Reading and Writing Data

* R understands many different data formats
and has lots of ways of reading/writing them

read.table write.table forreading/writing tabular data

read.csv write.csv

readLines writeLines forreading/writing lines of a text file

source dump for reading/writing in R code files

dget dput for reading/writing in R code files

load save for reading in/saving workspaces

unserialize serialize for reading/writing single R objects in binary form

CENT R i ‘ I

& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Reading Data with read.table (1)

> str(read.table)

function (file, header = FALSE, sep = """, quote = '"\""", dec = ".",
row.names, col.names, as.is = IstringsAsFactors, na.strings = "NA",
colClasses = NA, nrows = -1, skip = 0, check.names = TRUE, fill =
Iblank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#", allowEscapes = FALSE, flush = FALSE, stringsAsFactors =
default.stringsAsFactors(), fileEncoding = """, encoding = "unknown', text,
skipNul = FALSE)

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

Reading Data with read.table (2)

« Ti1le-the name of afile, or a connection
 header - logical indicating if the file has a header line
* Sep - astring indicating how the columns are separated

« colClasses - acharacter vector indicating the class of each
column in the dataset

e Nrows - the number of rows in the dataset

« comment.char - a character string indicating the comment
character

* SKIp -the number of lines to skip from the beginning

« stringsAsFactors - should character variables be coded as
factors?

CENTER FOR COMPUTATION l
& TECHNOLOGY .

3/18/2015 HPC training series Spring 2015

Reading Data with read.table (3)

e The function will
— Skip lines that begin with a #

— Figure out how many rows there are (and how much memory
needs to be allocated)

— Figure out what type of variable is in each column of the table

* Telling R all these things directly makes R run faster and
more efficiently.

 read.csv() isidenticalto read.table() except
that the default separator is a comma.

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/18/2015 HPC training series Spring 2015

[lyanl@gbl R]$ head household_power_consumption.txt

This file contains the househould power cosumption data.

Date;Time;Global _active power;Global reactive power;Voltage;Global intensity;Sub m
etering_1;Sub _metering 2;Sub _metering_ 3
16/12/2006;17:24:00;4.216;0.418;234.840;18.400;0.000;1.000;17.000
16/12/2006;17:25:00;5.360;0.436;233.630;23.000;0.000;1.000;16.000
16/12/2006;17:26:00;5.374;0.498;233.290;23.000;0.000;2.000;17.000

> comsumpData <- read.table(*'household_power_consumption.txt",6header=TRUE,sep="";"")
> str(comsumpData)
"data.frame": 2075259 obs. of 9 variables:

$ Date : Factor w/ 1442 levels '10/10/2007'",''10/10/2008",..: 326
326 326 326 326 326 326 326 326 326 ...
$ Time : Factor w/ 1440 levels "00:00:00","00:01:00",..: 1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 ...

$ Global active power : Factor w/ 4187 levels "?","0.076","0.078",..: 2082 2654
2661 2668 1807 1734 1825 1824 1808 1805 ...

$ Global _reactive power: Factor w/ 533 levels "?","0.000","0.046",..: 189 198 229
231 244 241 240 240 235 235 ...

$ Voltage : Factor w/ 2838 levels "?'","223.200",..: 992 871 837 882
1076 1010 1017 1030 907 894 ...

LSL) l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

Graphics in R

* There are three plotting systems in R
— Base
e Convenient, but hard to adjust after the plot is created

— Lattice
e Good for creating conditioning plot

— Ggplot2

 Powerful and flexible, many tunable feature, may require
some time to master

* Each has its pros and cons, so it is up to the users
which one to choose

LS i

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

INFORMATION
T'EC ||\ YLOGY

Graphics - Base

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

Ty)
=t
o
-
o
- o
- o
o
o
o
= o oo
= o o o
o o o0 oo o
E o o o o o0
= [~ ==X o o o o
- o o o oo o oo oo o o o
o o o o oo o o o
oo oo o o o
o o o o o o o
o o o o o
= o o
= o o oo
o o o oo o
o o o o o oo
oo o o oo o o o o
o oo o o
_— o oo coo o
o
o
I I I I
dizpl

plot(hwy ~ displ, data=mpg)

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Graphics - Base

L
=
o a
o
D_
=
o
e o I
- 1
1
1] T 1
= | T 1
o 1 1 1
a = _| 1 1
= = i
= 1
=
T o
= o
= | 1 1 o
m ™ 1 1 |
= 1 1] o
I 1 1 1 ! [n]
1
 — o ! -
= e — 1 1
8 - — —— !
I ;
- E !
1
| 1 i
_
1
o o
I I

T T T T T
2seater compact midsize minivan pickup subcompact SV

Class

boxplot(hwy ~ class, data = mpg, xlab = "Class",

LSl ylab = "High Way Mileage™)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

=3 3 4 7 2 3 4 8 7 z 3 4 [7
1 1
4 4 f f r r
1999 2008 1999 2008 1999 2008
o
o
40 | -
L]
L]
o o
=]
oo
o o
o m
20 =) -
ooooo o o
g] oo o
= o o o o oo
oo o o @ oo @] o o
oo o o o]
oo o oo oo o o
o o o oo o o
oo o o o o
o o
20 - o o o o -
o o oo @™ o
0000 @ o
@© T ooD o [- o o oo o
o o o
w oo oo
o o
o
- T—
2 3 4 7 2 3 4 [+ T 2 3 4 & T
displ

mpg <- transform(mpg, year = factor(year))
xyplot(hwy ~ displ | year*drv, mpg, layout = c(6,1))

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

sy [ESTEE
Graphics — ggplot2

drw

displ

gplot(displ, cty, data = mpg, color = drv)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

Graphics — ggplot?2

1999 2008
= :.i: 1 E I) B
B IR TR thef e
- |
:.
o ¢
£20 edess i3 .
= L] :r - .t..
- L * 3 B3)
. t * t
- L] :. .. L]
LS o - -
lot(displ, h data = m facets = drv ~ year
CENTER FOR COMPUTATION ap (pi, nwy, PY., y)

& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

Graphics — ggplot2

Total Emission in Baltimore City by Source Type

type ‘& NON-ROAD @ NONPOINT @ ON-ROAD '+ POINT

2000

1500 ‘\.

1000

Total Emissions (ton)

B |.kh“‘*~‘~s~.

1= 1 ———

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

sy [ESTEEE
Graphics — ggplot2

ggplot(emiByType, aes(year, sum, colour = type)) +
geom_point(size = 5) +
geom_line(size = 1) +
ggtitle("Total Emission in Baltimore City by Source Type'™) +
labs(x = "Year"™, y = "Total Emissions (ton)", fontsize = 20) +
theme_economist() + scale_colour_economist() +
theme(axis.title=element text(size=14,face="bold"), legend.title =

element _text(size = rel(1.5), face = "bold))

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Installing and Loading R Packages

e |nstallation
— With R Studio

* You most likely have root privilege on your own computer

« Use the Install .packages(‘“‘<package name>’")
function (double quotation is mandatory), or

* Click on “install packages” in the menu
— On a cluster

* You most likely do NOT have root privilege

* Toinstall a R packages
— Point the environment variable R_LIBS USER to desired location, then
— Use the Instal l . packages function

* Loading: the library() function load previously
installed packages

CENTER FOR COMPUTATION l
& TECHNOLOGY .

3/18/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

[lyanl@gbl R]$ export R_LIBS USER=/home/lyanl/packages/R/libraries
[lyanl@gbl R]$ R

R version 3.1.0 (2014-04-10) -- "'Spring Dance"

Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-unknown-l1inux-gnu (64-bit)

> install.packages('swirl™)

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

R with HPC

* There are lots of efforts going on to make R
run (more efficiently) on HPC platforms

— http://cran.r-
project.org/web/views/HighPerformanceComputi
ng.html

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/18/2015 HPC training series Spring 2015

s 0000 [ESTEE
Not Covered

* Data cleaning/preprocessing

* Profiling and debugging

* Regression Models

* Machine learning/Data Mining

* Chances are that R has something in store for you
whenever it comes to data analysis

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/18/2015 HPC training series Spring 2015

INFORMATION
SFRVICES

Case Study 1: Central Limit Theorem

The purpose of this segment of code is to verify the Central Limit Theorem
(CLT).

CLT states that, when certain conditions are satisfied, sample means are
approximately normally distributed, no matter what the underlying
distribution is.

First, show a histogram of the underlying distribution.
hist(rexp(1000,0.2), main = “Exponential distribution with a rate of 0.2")

Draw 1000 samples (size = 100) and plot a histogram of the means.

mns=NULL
for (i In 1 : 1000) mns = c(mns, mean(rexp(100,0.2)))
hist(mns, main = "Distribtion of sample means')

Test 1T the sample means are normally distributed.
shapiro.test(mnns)
ggnorm(mns) ;qgline(mns,col = 2)

CENTER FOR COMPUTATION
& TECHNOLOGY)

3/18/2015

HPC training series Spring 2015

Case Study 2: Data Analysis with
Reporting

* Typical data analysis workflow involves
— Obtaining the data
— Cleaning and preprocessing the data
— Analyzing the data
— Generating a report
 knitrisaR package that allows one to generate

dynamic report by weaving R code and human
readable texts together

— It uses the markdown syntax
— The output can be HTML, PDF or (even) Word

LS50

CENTER FOR COMPUTATION l
& TECHNOLOGY

3/18/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

1- —- ~
2 title: "R_tutorial_knitr”

3 author: "Le yan"

4 date: "Tuesday, March 10, 2015"

5 output: pdf_document
7]

7

B

9

i}

- ———

This 15 a report generated by the "knitr" package for the LSU HPC "Introduction to R" tutorial.

1 The data source is from [Univerity of California at Irvine Machine Learning Repositorylhttp://archive.ics.uci.edu/ml/):
[Electric Power Consumption.]{https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption)

11

12 ~ ## Load the data

13

14 In this step, we load the dataset into R.

15

16~ " {r, echo=FaLSE, cache=TRUE}

2

i

18 # Note that the “echo = FALSE® parameter was added to the code chunk to prevent printing of the R code that generated
the plot.

19 # The "cache=TRUE" parameter enables caching, which means that the objects created in this segment of code will not
be recalculated next time.

20

21 taball =- read.table("household_power_consumption. txt”,header=TRUE,s5ep=";")

2~ G

23

24 - #% Preprocessing the data

25

26 In this step, we extract two days of data, add a column "datetime" to the data frame and convert the "Global_active_pow

er"" column from factor to numeric.|

28~ 7 {r}

29

30 tab2day <- subset(taball, Date == "1/2/2007" Date == "2/2/2007")

31 tab2dayfdatetime =- strptime(paste(tab2dayipate, tab2dayiTime),

32 format="%d,/%m/ %Yy %H:%M:%5")

33 tab2dayiclobal_active_power =- as.numeric{levels(tab2dayiclobal_active_power)
34 [tabZdayiclobal_active_power])

35

36«

I8 - ## Data analysis

40 The only data analysis performed in this step is to generate a histogram.

41
42 - {r}
43 hist(tab2dayiclobal_active_power, col="red", main="Global Active Power",

. 44 xlab = "Global active Power (in kilowatts)™)
CENTER Fl 45. -~
& Tl jf v
26:155 [Top Level) R Markdown
@ \J U

Learning R

e User documentation on CRAN

— An Introduction on R: http://cran.r-
project.org/doc/manuals/r-release/R-intro.html

 Online tutorials
— http://www.cyclismo.org/tutorial/R/

* Online courses (e.g. Coursera)

* Educational R packages
— Swirl: Learn R in R

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/18/2015 HPC training series Spring 2015

Next Tutorial — Xeon Phi Programming

e Xeon Phi coprocessors have the potential of
accelerate the execution of your code.

* Most of the nodes on the LSU SuperMIC cluster
have two Xeon Phi coprocessors installed.

 This tutorial will be of interest to those who
would like to harness the power of this family of
accelerators

e Date: March 25t 2015

Lsu l .;"'J 2\ ;
CENTER FOR COMPUTATION AN
& TECHNOLOGY ek s

3/4/2015 HPC training series Spring 2015

Getting Help

* User Guides
— LSU HPC: http://www.hpc.Isu.edu/docs/guides.php#thpc
— LONI:http://www.hpc.lsu.edu/docs/guides.php#loni
 Documentation: http://www.hpc.lsu.edu/docs
* Online courses: http://moodle.hpc.lsu.edu
* Contact us

— Email ticket system: sys-help@Ioni.org
— Telephone Help Desk: 225-578-0900

— Instant Messenger (AIM, Yahoo Messenger, Google Talk)
e Add “Isuhpchelp”

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Questions?

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

