INFORMATION
TECHNOLOGY
SERVICES

Shell Scripting — Part 1

Le Yan/Alex Pacheco
HPC User Services @ LSU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Shell Scripting

e Part 1 (today)

— Simple topics such as creating and executing
simple shell scripts, arithmetic operations, flow
control, command line arguments and functions.

* Part 2 (March 4th)

— Advanced topics such as regular expressions and
text processing tools (grep, sed, awk etc.)

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

2/11/2015 HPC training series Spring 2015

Outline

e Recap of Linux 101
Shell Scripting Basics

Beyond Basic Shell Scripting
— Arithmetic Operations

— Arrays

— Flow Control

— Command Line Arguments
— Functions

* Advanced Topics Preview

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

LSL)
What Do Operating Systems Do?

Application
Shell

* Operating systems
work as a bridge
between hardware
and applications

— Kernel: hardware
Hardware drivers etc.

— Shell: user interface to
kernel

— Some applications
(system utilities)

Kernel

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

: Operating System

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

* Kernel
— The kernel is the core component of most operating systems

— Kernel’s responsibilities include managing the system’s
resources

— It provides the lowest level abstraction layer for the resources
(especially processors and I/O devices) that application software
must control to perform its functions

— |t typically makes these facilities available to application
processes through inter-process communication mechanisms
and system calls

CENTER FOR COMPUTATION l
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

e Shell

— The command line interface is the primary user
interface to Linux/Unix operating systems.

— Each shell has varying capabilities and features and
the users should choose the shell that best suits their
needs

— The shell can be deemed as an application running on
top of the kernel and provides a powerful interface to
the system.

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

2/11/2015 HPC training series Spring 2015

Type of Shell

e sh (Bourne Shell)
— Developed by Stephen Bourne at AT\&T Bell Labs

e csh (CShell)
— Developed by Bill Joy at University of California, Berkeley

e ksh (Korn Shell)

— Developed by David Korn at AT&T Bell Labs

— Backward-compatible with the Bourne shell and includes many features of the C shell
* bash (Bourne Again Shell)

— Developed by Brian Fox for the GNU Project as a free software replacement for the Bourne
shell

— Default Shell on Linux and Mac OSX

— The name is also descriptive of what it did, bashing together the features of sh, csh and ksh
e tcsh (TENEX C Shell)

— Developed by Ken Greer at Carnegie Mellon University

— Itis essentially the C shell with programmable command line completion, command-line
editing, and a few other features.

CENTER FOR COMPUTATION l

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Shell Comparison
-““mmm

Programming language y y y
Shell variables y y y y y
Command alias n y y y y
Command history n y y y Y
Filename autocompletion n y* y* y y
Command line editing n n y* y y
Job control n y y y y

*: not by default

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

File Editing

* The two most commonly used editors on Linux/Unix systems are:
— Vi orVvim (viimproved)
— emacs

 Vvi/vimisinstalled by default on Linux/Unix systems and has only
a command line interface (CLI).

e« emacs has both a CLI and a graphical user interface (GUI).
— if emacs GUI is installed then use emacs —nw to open file in console
* Other editors you may come across: kate, gedit, gvim,
pico, nano, kwrite

 Touse VI or emacs is your choice, but you need to know one of
them

* For this tutorial, we assume that you already know how to edit a

Lsfllli with a command line editor
CENTER FOR COMPUTATION l

& TECHNOLOGY -

2/11/2015 HPC training series Spring 2015

Variables

* Linux allows the use of variables
— Similar to programming languages
* Avariable is a named object that contains data
— Number, character or string
* There are two types of variables: ENVIRONMENT and user defined

 Environment variables provide a simple way to share configuration
settings between multiple applications and processes in Linux
— Environment variables are often named using all uppercase letters
— Example: PATH, LD LIBRARY_PATH, DISPLAY etc.

* To reference a variable, prepend S to the name of the variable, e.g.
$PATH, $LD LIBRARY_ PATH

— Example: $PATH, $LD_LIBRARY_PATH, $DISPLAY etc.

CENTER FOR COMPUTATION l
& TECHNOLOGY .

2/11/2015 HPC training series Spring 2015

Variables Names

* Rules for variable names
— Must start with a letter or underscore
— Number can be used anywhere else
— Do not use special characters such as @,#,%,5
— (again) They are case sensitive

— Example

e Allowed: VARIABLE, VAR1234able, var name,
_ VAR

* Not allowed: 1var, %name, $myvar, var@NAME

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

2/11/2015 HPC training series Spring 2015

sy [ESTEE
Editing Variables (1)

* How to assignh values to variables depends on the

shell

Tye | sh/ksh/bash
Shell name=value set name=value
Environment export name=value setenv name=value

Shell variables is only valid within the current
shell, while environment variables are valid for all
subsequently opened shells.

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

Editing Variables (2)

 Example: to add a directory to the PATH variable

sh/ksh/bash: export PATH=/path/to/executable:${PATH}
csh/tcsh: setenv PATH /path/to executable:${PATH}

— sh/ksh/bash: no spaces except between export and
PATH

— csh/tcsh: no “=“ sign
— Use colon to separate different paths

— The order matters: if you have a customized version of a
software say perl in your home directory, if you append
the perl path to PATH at the end, your program will use
the system wide perl not your locally installed version

LS i

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Basic Commands

« Command is a directive to a computer program acting as an
interpreter of some kind, in order to perform a specific task

* Command prompt is a sequence of characters used in a
command line interface to indicate readiness to accept
commands

— lts intent is literally to prompt the user to take action

— A prompt usually ends with one of the characters S,%f#,:,> and
often includes information such as user name and the current
working directory

 Each command consists of three parts: name, options and
arguments

CENTER FOR COMPUTATION l

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
I'EA ||‘\ 1| :__':i;

List of Basic Commands
| Name | Funcion

Is Lists files and directories

cd Changes the working directory

mkdir Creates new directories

rm Deletes files and directories

cp Copies files and directories

mv Moves or renames files and directories
pwd prints the current working directory

echo prints arguments to standard output
cat Prints file content to standard output

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

File Permission (1)

e Since *NIX OS's are designed for multi user environment, it is
necessary to restrict access of files to other users on the system.

* In *NIX OS's, you have three types of file permissions
— Read (r)
— Write (w)
— Execute (x)
e for three types of users
— User (u) (owner of the file)
— Group (g) (group owner of the file)
— World (o) (everyone else who is on the system)

LS50

CENTER FOR COMPUTATION l
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

File Permission (2)

[lyanl@mike2 ~]$ Is -al

total 4056

drwXr-xXr-x lyanl Admins 4096 Sep 2 13:30 .
drwxr-xXr-x root root 16384 Aug 29 13:31 ..
drwxr-xXr-x lyanl root 4096 Apr 7 13:07 adminscript
drwxr-xXr-x lyanl Admins 4096 Jun 4 2013 allinea
-rw-r—-r-- lyanl Admins 12 Aug 12 13:53 a.m
drwxr-xr-x lyanl Admins 4096 May 28 10:13 .ansys
—FrWXr-Xr-X lyanl Admins 627911 Aug 28 10:13 a.out

* The first column indicates the type of the file
— d for directory
— | for symbolic link
— - for normal file

LS i

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

File Permission (2)

[lyanl@mike2 ~]$ Is -al

total 4056

drwXr-xXr-x lyanl Admins 4096 Sep 2 13:30 .
drwxr-xXr-x root root 16384 Aug 29 13:31 ..
drwxr-xr-x lyanl root 4096 Apr 7 13:07 adminscript
drwxr-xXr-x lyanl Admins 4096 Jun 4 2013 allinea
-rw-r—-r-- lyanl Admins 12 Aug 12 13:53 a.m
drwxr-xr-x lyanl Admins 4096 May 28 10:13 .ansys
—FrWXr-Xr-X lyanl Admins 627911 Aug 28 10:13 a.out

* The next nine columns can be grouped into
three triads, which indicates what the owner,
the group member and everyone else can do

LSL T

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

File Permission (2)

[lyanl@mike2 ~]$ Is -al

total 4056

drwXr-xXr-x lyanl Admins 4096 Sep 2 13:30 .
drwxr-xXr-x root root 16384 Aug 29 13:31 ..
drwxr-xXr-x lyanl root 4096 Apr 7 13:07 adminscript
drwxr-xXr-x lyanl Admins 4096 Jun 4 2013 allinea
-rw-r—-r-- lyanl Admins 12 Aug 12 13:53 a.m
drwxr-xr-x lyanl Admins 4096 May 28 10:13 .ansys
—FrWXr-Xr-X lyanl Admins 627911 Aug 28 10:13 a.out

* We can also use weights to indicate file permission
— r=4, w=2, x=1
— Example: rwx=442+1=7,r-x=4+1=5,r--=4
— This allows us to use three numbers to represent the permission
— Example: rwxr-xr-w = 755
CENT&O&HT[ON l
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Input & Output Commands (1)

* The basis /O statement are echo for displaying to screen and read
for reading input from screen/keyboard/prompt

e echo

— The echo arguments command will print arguments to screen or
standard output, where arguments can be a single or multiple
variables, string or numbers

e read

— The read statement takes all characters typed until the Enter key is
pressed

— Usage: read <variable name>
— Example: read name

CENTER FOR COMPUTATION l

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Input & Output Commands (2)

e Examples

[lyanl@mike2 ~]$ echo $SHELL

/bin/bash

[lyanl@mike2 ~]$ echo Welcome to HPC training
Welcome to HPC training

[lyanl@mike2 ~]$ echo "Welcome to HPC training”
Welcome to HPC training

* By default, echo eliminates redundant whitespaces (multiple
spaces and tabs) and replaces it with a single whitespace between
arguments.

— To include redundant whitespace, enclose the arguments within
double quotes

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

I T S
/O Redirection

* There are three file descriptors for I/O streams (remember
everything is a file in Linux)

— STDIN: Standard input
— STDOUT: standard output
— STDERR: standard error

1 represents STDOUT and 2 represents STDERR

* |/O redirection allows users to connect applications
— <:connects a file to STDIN of an application
— >:connects STDOUT of an application to a file
— >>: connects STDOUT of an application by appending to a file

— |: connects the STDOUT of an application to STDIN of another
application.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

/O Redirection Examples

e Write STDOUT to file: Is —1 > Is-1_.out

e Write STDERR to file: Is —1 &2 > lIs-
1_err

* Write STDERR to STDOUT: Is —1 2>&1

e Send STDOUT as STDIN for another
application: Is —1 | less

CENTER F JTATION

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Outline

* Shell Scripting Basics

* Beyond Basic Shell Scripting
— Arithmetic Operations
— Arrays
— Flow Control
— Command Line Arguments
— Functions

* Advanced Topics Preview

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

Scripting Languages

* Ascriptis a program written for a software environment that
automate the execution of tasks which could alternatively be
executed one-by-one by a human operator.

e Shell scripts are a series of shell commands put together in a file

— When the script is executed, it is as if someone type those commands
on the command line

 The majority of script programs are quick and dirty'’, where the
main goal is to get the program written quickly.
— Compared to programming languages, scripting languages do not
distinguish between data types: integers, real values, strings, etc.

— Might not be as efficient as programs written in C and Fortran, with
which source files need to be compiled to get the executable

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

2/11/2015 HPC training series Spring 2015

Startup Scripts

 When you login to a *NIX computer, shell scripts are automatically loaded
depending on your default shell
* sh/ksh (in the specified order)
— Jetc/profile
— $HOME/ .profile

 bash (in the specified order)
— /Jetc/profile (forlogin shell)
— J/Jetc/bashrc or /etc/bash/bashrc
— S$HOME/ .bash_profile (for login shell)
— $HOME/ .bashrc

« csh/tcsh (in the specified order)
— J/Jetc/csh.cshrc
— $HOME/ .tcshrc
— $HOME/ .cshrc (if .tcshrc is not present)

.bashrc, .tcshrc, .cshrc, .bash _profile are script files where
users can define their own aliases, environment variables, modify paths etc.

CENTER FOR COMPUTATION l
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

An Example

.bashrc

Source global definitions

if [—f /etc/bashrc]; then
/etc/bashrc

i

User specific aliases and functions

alias rm="/bin/rm —-i"

alias psu="ps —-u apacheco
"

"

alias em="emacs —-nw
alias 11="1s -1F"
alias la="1ls -al"
export PATH=/home/apacheco/bin:${PATH}

export g09root=/home/apacheco/Software/Gaussian09
export GAUSS_SCRDIR=/home/apacheco/Software/scratch
source $g09root/g09/bsd/g09.profile

export TEXINPUTS=.:/usr/share/texmf//:/home/apacheco/LaTeX//:${
TEXINPUTS}
export BIBINPUTS=.:/home/apacheco/TeX//:${BIBINPUTS}

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Writing and Executing a Script

* Three steps
— Create and edit a text file (hel 1o0.sh)

echo "Hello World!®
— Set the appropriate permission

~/Tutorials/BASH/scripts> chmod 755 hello.sh

— Execute the script

~/Tutorials/BASH/scripts> ./hello.sh
Hello World!

LS i

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

Components Explained

* The first line is called the "Shebang” line. It tells the OS
which interpreter to use. In the current example, bash

— For tcsh, it would be: #1/bin/tcsh

 The second line is a comment. All comments begin with
ll#ll.

* The third line tells the OS to print "Hello World!" to the
screen.

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

2/11/2015 HPC training series Spring 2015

INFORMATION
P HINOLE N ¥ Y
SERVICES

Special Characters (1)

1 Starts a comment line.

$ Indicates the name of a variable.

\ Escape character to display next character literally

{} Used to enclose name of variable

. Command separator. Permits putting two or more commands on the same
line.

>3 Terminator in a case option

] “dot” command. Equivalent to source (for bash only)

CENTER FOR COMPUTATION l :

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY

Special Characters (2)

$? Exit status variable.

$$ Process ID variable.

1] Test expression.

[r 11 Test expression, more flexible than []
$[1, Integer expansion

$COD

Il. &%, Logical OR, AND and NOT
|

CENTER FOR COMPUTATION l :

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Quotation

* Double quotation
— Enclosed string is expanded
* Single quotation
— Enclosed string is read literally

e Back quotation

— Enclose string is executed as a command

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Quotation - Examples

[lyanl@mike2 ~]$ stri="1 am $USER"
[lyanl@mike2 ~]$ echo $stril

I an lyanl

[lyanl@mike2 ~]$ str2="1 am $USER"
[lyanl@mike2 ~]$ echo $str2

I am $USER

[lyanl@mike2 ~]$ str3="echo $str2-
[lyanl@mike2 ~]$ echo $str3

I am $USER

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Quotation — More Examples

#!/bin/bash

HI=Hello

echo HI # displays HI

echo $HI # displays Hellc

echo \$HI # displays S$HI

echo "S$SHI" # displays Hello

echo ’$HI’ # displays S$HI

echo "SHIAlex" # displays nothinc

echo "${HI}Alex" # displays HelloAlex

echo ‘pwd® # di : 1 a'_'j working directory
echo $(pwd) # displays working directory

~/Tutorials/BASH/scripts/dayl/examples> ./quotes.sh
HI

Hello

SHI

Hello

SHI

HelloAlex

/home fapacheco/Tutorials/BASH/scripts/dayl/examples
es

/home /apacheco/Tutorials/BASH/scripts/dayl/exampl
I su ~/Tutorials/BASH/scripts/dayl/examples>
CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Outline

* Beyond Basic Shell Scripting
— Arithmetic Operations
— Arrays
— Flow Control
— Command Line Arguments
— Functions

* Advanced Topics Preview

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INF(‘\.1% 5\
I'E{ l‘\

Arithmetic Operations (1)

* You can carry out numeric operations on
integer variables

Addition +
Subtraction =
Multiplication *
Division /
Exponentiation ** (bash only)
Modulo %

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Arithmetic Operations (2)

* bash

—$((.)) or$[..] commands
 Addition: $((1+2))
« Multiplication: $[$a*$b]
— Or use the et command: let c=%a-$b
— Or use the expr command: c=“expr $a - $b-“
— You can also use C-style increment operators:

let c+=1 orlet c--

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

Arithmetic Operations (3)

e tcsh
— Add two numbers: @ X = 1 + 2
— Divide two numbers: @ X = $a /7 $b
— You can also use the expr command: set ¢ = “expr $a % $b“
— You can also use C-style increment operators:
@ X == 1 or @ X++
* Note the use of space
— bash: space required around operator in the expr command

— tcsh: space required between @ and variable, around = and numeric
operators.

CENTER FOR COMPUTATION l

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Arithmetic Operations (4)

* For floating numbers

— You would need an external calculator like the GNU bc

e Add two numbers
echo "3.8 + 4.2" | bc

* Divide two numbers and print result with a precision of 5 digits:
echo "'scale=5; 2/5" | bc

* Call bc directly:
bc <<< *““scale=5; 2/5”

 Usebc -1 toseeresultin floating point at max scale:
bc -1 <<< ""2/5"

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

Arrays (1)

* bash and tcsh supports one-dimensional arrays
* Array elements may be initialized with the vartable[1] notation:
variable[1]=1
e |Initialize an array during declaration
— bash: name=(firstname ’last name”)
— tcsh: set name = (Firstname last name”)
» Reference an element 1 of an array name: ${name[1]}
* Print the whole array

— bash: ${name[@]}
— tcsh: ${name}

* Print length of array

— bash: ${#name[@]}
— tcsh: ${#name}

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

Arrays (2)

* Print length of element 1 of array name: ${#name[1]}

— Note: In bash ${#name} prints the length of the first element of the
array

 Add an element to an existing array
— bash name=(title ${name[@]})
— teshset name = (title "${name}")

— In the above tcsh example, title is first element of new array while the
second element is the old array name

e Copy an array name to an array user

— bash user=(${name[@]})
— teshset user = (${name})

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

Arrays (3)

* Concatenate two arrays

— bash nameuser=(${name[@]} ${user[@]})
— tcsh set nameuser=(“${name}” “${user}”)

* Delete an entire array: unset name
* Remove an element i from an array

— bash unset name[i]
— tcsh @3 =%1 — 1
@k =%1+1

set name = (“${name[1-$j]1}" “${name[$k-]1}")
* Note
— bash: array index starts from O
— tcsh: array index starts from 1

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

Arrays (4)

T

achc
— o
ama = =
ane
suffix ach nt
sat suffix
ama= = s x)
b ama (9t e $nama $n x)
$ (nama |
ame
sat nama ($nama[1-2] $nama[4-$i])

CENTER FOR CON
& TECHNOL.. ..

2/11/2015 HPC training series Spring 2015

Flow Control

* Shell scripting languages execute commands in
sequence similar to programming languages such as C
and Fortran

— Control constructs can change the order of command
execution

e Control constructs in bash and tcsh are
— Conditionals: 1
— Loops: for, while, until
— Switches: case, switch

CENTER FOR COMPUTATION l
& TECHNOLOGY .

2/11/2015 HPC training series Spring 2015

if statement

* An if/then construct tests whether the exit status of a list of
commands is 0, and if so. execute one or more commands

bash tcsh
f (condit 1)
- T some commands
1if d lse if (dit) tb

m T some commands

else
- T some commands

:ndi

y >

* Note the space between condition and the brackets
— bash is very strict about spaces.
— tcsh commands are not so strict about spaces

— tcsh uses the 1 F-then-else 1f-else-endi T similar to
Fortran

CENTER FOR COMPUTATION l

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

File Tests

Operation _______Jbash ________ Jwh

File exists iIT [-e .bashrc] 1f (-e .tcshrc)
File is a regular file iT [-T .bashrc]

File is a directory iIf [-d /Zhome] iIf (-d /home)

File is not zero size iIf [-s .bashrc] 1f (! -z _tcshrc)
File has read permission iIfT [-r .bashrc] 1if (-r .tcshrc)
File has write permission iIT [-w .bashrc] i1f (-w .tcshrc)
File has execute permission IFf [-x _.bashrc] 1if (-x .tcshrc)

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INF('\.1% H\!
I'E('I‘\
SERVIC

Integer Comparisons
Operaton ___[bash _ Jwh

Equal to it [1 —eq 2] it (1 == 2)
Not equal to iT [$a —ne $b] it ($a 1= $b)
Greater than ifT [$a —gt $b] if ($a > $b)
Greater than or equal to iT[1 —ge $b] it (1 >= $b)
Less than iT [$a -1t 2] it ($a < 2)
Less than or equal to iIT [[$a —le $b]J] 1T (Ba <= $b)

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
I'E(JI‘N‘T‘I 7Y
SERVIC

String Comparisons

Operation lbash lwh

Equal to iIT [$a == $b] iIT ($a == $b)
Not equal to iT [$a '= $b] it ($a = $b)
Zero length or null iT [-z $a] it ($%a == 0)
Non zero length iT [-n $a] it ($%a > 0)

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Logical Operators

Opertion Gwmpe

| (NOT) iIT [! -e _bashrc]
&& (AND) iIT | -f _bashrc] && [-s .bashrc]
| (OR) iIf [[-f .bashrc || -f .bash profile]]

iIf (-e /.tcshrc && ' -z /.tcshrc)

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

OR
if ["$a" -gt 0] && ["Sa"™ -1t 5]; then

echo " alue of $a es somewh between and 5"
f.

>

set a = 8<
if ("Sa" > 0 && "%a" < 5) then

echo "The wvalue of $a lies somewhere between 0 and 5"

endif

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

sy [ESTEE
Loop Constructs

 Aloop is a block of code that iterates a list of
commands as long as the loop control
condition is evaluated to true

* Loop constructs
— bash: for, while anduntil
— tcsh: foreach andwhile

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

For Loop - bash

 The For loop is the basic looping construct in bash
for arg in list
do

me commands

m 0

b B 1 |

do

 The for and do lines can be written on the same line:
for arg 1n list; do
« Tor loops can also use C style syntax

for i in S$(seq 1 10) for i in $(seq 1 10); do for ((i=1;i<=10;i++))
do touch file${i} .dat do
touch file${i}.dat done touch file${i}.dat
done done
>

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

For Loop - tcsh

 The foreach loop is the basic looping
construct in tesh

foreach i (‘seg 1 10")
touch file$i.dat
end

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

While Loop

 The while construct tests for a condition at the top of a loop and
keeps going as long as that condition is true.

* In contrast to a for loop, awhile loop finds use in situations
where the number of loop repetitions is not known beforehand.

* bash
while [condition]
=::sc:rmfe commands
done

* tcsh
wh (condition

CENTER FOR COMPUTATION l

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

While Loop - Example

factorial.sh factorial.csh

read counter set counter = §
factoriai=1 set factorial = 1
while Scounter -gt 0] while ($counter > 0)
do @ factorial = §factorial » $counter
factorial=$(($factorial * Scounter)) d counter —-= 1
counter=5(($counter - 1)) end
done echo S$factorial
echo $factorial
>

CENTER FOR COMPUTATION l

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

=T S
Until Loop

 The unti |l construct tests for a condition at the top of a
loop, and keeps looping as long as that condition is false
(opposite of whi e loop)

until [condition is true]
do

some commands
done

factorial2.sh

7 L;;L counter-=2
fi
done
echo $factorial
CENTER FOR COMPUTATION

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

« for, while,anduntil loops can be nested,
to exit from the loop use the break command

nestedloops.sh nestedloops.csh

2/11/2015 HPC training series Spring 2015

a+*b=23
a+b=234+3
3 «5> 10

.
or
]
I
.
-

+
o
[
U s
L 2
-

(0 I PV

r
=
N
1]
"

|
[+3]

m
"

O Wt

& M

o

oute

Lad et

outer
- 3

loop:

loop:

ENT
Oy (R ——

wn

un

Value of a in
a+b=1=+1
aeb=1+313
a +« - 1 « 5
valu 3

.
oon o
I O
I
[1]
™
2

a 2 * 1
a « -2 « 3
2+5>10

Value of a in

.
om
!
W
*

a 1
a+*b=3=+3
2 c in
3+«5>10
value of a in
a«b=4 .1
4 10

- %
L
v

value of a in
a+b=24.:1
2 +«3>5

value of a in

v Lo
- .
W o
]
w
*

&
*

Ww o m
]
o
.

outer loop:
-]

- 3
- 5
outer loop:

- 6

outer loop:
- 3

- O

outer loop:
- 4

outer loop:

outer loop:

outer loop:
- 3

outer loop:
- 4

outer loop:

./dayl/examples/nestedloops.csh

un

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGHY
SERVICES

Switching Constructs - bash

 The case and select constructs are technically not loops since
they do not iterate the execution of a code block

* Like loops, however, they direct program flow according to
conditions at the top or bottom of the block

case construct

case variable in
" conditionl")

some command

"condition2™)
some other command

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

select construct

select variable [list]
do

command

break
done

INFORMATION
[ECHNOLOGY
SERVICES

Switching Constructs - tcsh

* tcsh has the switch constructs

switch construct

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

echo nt tw ' umbers or t a time"
wa .
ation do you want to do?*
multiply divide ; , /» % or all"

all quit’

$[$numl + $num2]

Snum2

at)
uml «+« Snum * §[Snuml ++ $num2 11 « $num2 - $prod*
Snuml $num2
1i) 1 snum2 = $ratio"

$numl Snum2 $[$numl / $num2] $numl & $Snum2

i & SnumZ $remain®
modul)
echo wml % Snum " §[$numl % $num2] case """

;i @ result - $Snuml Soper $num2
"all®) echo "$numl $oper $n 5

breaksw

- Snum2)
. ++ Snum2] y
i -

CENTER FOR v
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
Ia\u\ LOGY

~/Tutorials/BASH/scripts> ./dayl/examples/dooper.sh ~/Tutorials/BASH/scripts> ./dayl/examples/dooper.csh
Print two numbers Print two numbers one at a time

14 1

What operation do you want to do? 5

1) add 3) multiply 5) exponentiate 7) all What operation do you want to do?

2) subtract 4) divide 6) modulo 8) quit Enter +, -, x, /, % or all

& all

l1+4=25 1+ 5= g

1— 4 =-3 1~ 5= =i

1 « 4 4 1 »5=25

l »« 4 =1 1/5=0

1/ 4=0 1§85=1

1% 4=1

o

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Command Line Arguments (1)

* Similar to programming languages, bash and other shell scripting
languages can also take command line arguments
— Execute: ./myscript argl arg2 arg3

— Within the script, the positional parameters $0, $1, $2, $3 correspond
to ./myscript, argl, arg2, and arg3, respectively.

— $#: number of command line arguments
— $*: all of the positional parameters, seen as a single word
— $@: same as $* but each parameter is a quoted string.
— shift N:shift positional parameters from N+1 to $# are renamed to
variable names from$1to$# - N + 1
* Incshand tcsh

— An array argyv contains the list of arguments with argv[0] set to the name
of the script

— #argv is the number of arguments, i.e. length of argv array
CENTER FOR COMPUTATION l
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
I'Ed INOLOH Y
SERVICFES

SA - USAGE
1t {) thar
SAGE ach
ax i

- axamplas> - - 1 /faxamplas> s sh sag }
u J J: sh ranning = cs
- : osh 1 4

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Declare command

* Use the declare command to set variable and functions
attributes
* Create a constant variable, i.e. read-only
— declare -r var
— declare -r varName=value
 Create an integer variable
— declare -1 var
— declare -1 varName=value

* You can carry out arithmetic operations on variables declared as

integers
~/Tutorials/BASH> 3=10/5 ; echo %3
105
~/Tutorials/BASH> declare -i j; 3j=10/5 ; echo $j
CENTER FOR COMPUTATION o l

& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Functions (1)

I”

e Like “real” programming languages, bash has functions.

* A function is a code block that implements a set of operations, a
“black box” that performs a specified task.

* Wherever there is repetitive code, when a task repeats with only
slight variations in procedure, then consider using a function.

function function_ name {
command

}

OR

function_name () |
command

]

CENTER FOR COMPUTATION l
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
[ECHNOLOGY
SERVICES

Arguments:
script that
You Entered: ./shi
Argument 1

h and nth argqument 10 11 19 21

nt t is: 1357911131517 19 21
of Arguments: 11
nt List is 19 21
of Arguments: 2

: nning 50
Se
nt* $10 $11 ${10} ${11)

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Functions (2)

* You can also pass arguments to a function
 All function parameters can be accessed via S1,

$2, $3..
« $0 always point to the shell script name

* $* or $@ holds all parameters passed to a
function

* $# holds the number of positional parameters
passed to the function

Lsu l .;"'J 2\ ;
CENTER FOR COMPUTATION AN
& TECHNOLOGY ek s

2/11/2015 HPC training series Spring 2015

Functions (3)

* Array variable called FUNCNAME contains the names of
all shell functions currently in the execution call stack.

* By default all variables are global.

* Modifying a variable in a function changes it in the
whole script.

* You can create a local variables using the local
command
local var=value
local varName

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VICF
achviLEs

* A function may recursively call itself even
without use of local variables.

factorial3.sh
~/Tutorials/BASH/scripts/dayl/examples>./factoriald.sh 1 3 57 9 15
Factorial

;;;;;;

CENTER F(
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMAT
|i ||‘\ "' :__':i;

Outline

* Advanced Topics Preview

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Advanced Topics Preview

* Text processing commands
—grep & egrep
— sed
— awk

e Regular expression (RegEx)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

=TT S
grep & egrep

* grep is a Unix utility that searches through
either information piped to it or files in the
current directory.

* egrepis extended grep, same asgrep -E
* Use zgrep for compressed files.
* Usage:

grep <options> <search pattern> <files>

LS50

CENTER FOR COMPUTATION l
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

* sed ("stream editor") is Unix utility for
parsing and transforming text files.

 sed is line-oriented

— It operates one line at a time and allows regular
expression matching and substitution.

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

* The awk text-processing language is useful for such tasks as:

— Tallying information from text files and creating reports from the
results.

— Adding additional functions to text editors like "vi".

— Translating files from one format to another.

— Creating small databases.

— Performing mathematical operations on files of numeric data.
 awk has two faces:

— It is a utility for performing simple text-processing tasks, and

— Itis a programming language for performing complex text-processing
tasks.

CENTER FOR COMPUTATION l

& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Further Reading

* BASH Programming
http://tldp.org/HOWTO/bash-Prog-Intro-HOWTO.html

* CSH Programming
http://www.grymoire.com/Unix/Csh.html

e csh Programming Considered Harmful
http://www.faqgs.org/fags/unix-fag/shell/csh-whynot/

* Wiki Books
http://en.wikibooks.org/wiki/Subject:Computing

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

2/11/2015 HPC training series Spring 2015

Next Tutorial - Distributed Job

Execution

* |If any of the following fits you, then you might
want come
— | have to run more than one serial job.

— | don’t want to submit multiple job using the serial
queue

— How do | submit one job which can run multiple serial
jobs?

e Date: Feb 25t 2015

Lsu l H__,, = ;
CENTER FOR COMPUTATION ._ Rt
& TECHNOLOGY ek s

2/11/2015 HPC training series Spring 2015

Getting Help

* User Guides
— LSU HPC: http://www.hpc.Isu.edu/docs/guides.php#thpc
— LONI:http://www.hpc.lsu.edu/docs/guides.php#loni
 Documentation: http://www.hpc.lsu.edu/docs
* Online courses: http://moodle.hpc.lsu.edu
* Contact us

— Email ticket system: sys-help@Ioni.org
— Telephone Help Desk: 225-578-0900

— Instant Messenger (AIM, Yahoo Messenger, Google Talk)
e Add “Isuhpchelp”

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Questions?

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

2/11/2015

HPC training series Spring 2015

Exercises

1. Write a shell script to
— Print “Hello world!” to the screen
— Use a variable to store the greeting

2. Write a shell script to
— Take two integers on the command line as arguments
— Print the sum, different, product of those two integers

— Think: what if there are too few or too many arguments? How can you check
that?

3. Write a shell script to read your first and last name to an array
— Add your salutation and suffix to the array
— Drop either the salutation or suffix
— Print the array after each of the three steps above

4. Write a shell script to calculate the factorial and double factorial of an
integer or list of integers

CENTER FOR COMPUTATION l
& TECHNOLOGY

2/11/2015 HPC training series Spring 2015

