
Introduction to Xeon Phi programming:
Part I

Shaohao Chen

High performance computing @ Louisiana State University

Outline of Xeon Phi Programming

Part I

• Intel Xeon Phi and its computing features

• Usage of Xeon Phi in HPC

• Xeon Phi programming: native mode, offloading

Part II

• Xeon Phi programming: symmetric processing

• Optimization, debugging and profiling

• Xeon-Phi enabled applications

Part I

• Intel Xeon Phi and its computing features

• Usage of Xeon Phi in HPC

• Xeon Phi programming:

native mode

offloading

Multi-core vs. Many-core

• 8 ~ 12 cores

• Single-core 2.5 ~ 3 GHz

• 256-bit vectors

Intel Xeon Phi coprocessor (accelerator)

(parameters for Xeon Phi 7120P)

• Add-on to CPU-based system

• PCI express (6.66 ~ 6.93 GB/s)

• IP-addressable

• 16 GB memory

• 61 x86 64-bit cores (244 threads)

• single-core 1.2 GHz

• 512-bit vector registers

• 1.208 TeraFLOPS = 61 cores * 1.238 GHz *
16 DP FLOPs/cycle/core

Xeon Phi Computing Performance

Intel Xeon Phi vs. Nvidia GPU

Disadvantages

• Less acceleration

• In terms of computing power, one GPU beats one Xeon Phi
for most cases currently.

Advantages

• X86 architecture

• IP-addressable

• Traditional parallelization (OpenMP, MPI)

• Easy programming, minor changes from CPU codes

• Offload: minor change of source code.

• New. Still a lot of room for improvement.

Usage of Xeon Phi in HPC

• Statistics of accelerators in top 500 supercomputers (Nov 2014 list)

• Accelerator share

• Number of supercomputers with Xeon Phi coprocessors

• Typical supercomputers with Xeon Phi coprocessors

SuperMIC
@LSU

Ref: http://www.hpc.lsu.edu/resources/hpc/system.php?system=SuperMIC

 360 Compute Nodes
• Two 2.8GHz 10-Core Ivy Bridge-EP E5-2680 Xeon 64-bit Processors
• Two Intel Xeon Phi 7120P Coprocessors
• 64GB DDR3 1866MHz Ram
• 500GB HD
• 56 Gigabit/sec Infiniband network interface
• 1 Gigabit Ethernet network interface

A typical compute node on SuperMIC

• host

20 cores

64 GB memory

Xeon Phi programming

• Native mode

vectorization performance

• Offloading

Explicit offload

MKL automatic offload

MPI + offload

• Symmetric processing

for one node

for on multi nodes

Getting started …

Window 1 (run jobs)

• ssh username@smic.hpc.lsu.edu # login SuperMIC

• qsub -I -A allocation_name -l nodes=2:ppn=20,walltime=hh:mm:ss # interactive session

Window 2 or 3 (monitor performance)

• ssh -X username@smic.hpc.lsu.edu # login SuperMIC with graphics

• ssh -X smic{number} # login the compute node with graphics

• micsmc & (or micsmc-gui &) # open Xeon phi monitor from the host

• ssh mic0 # login mic0

• top # monitor processes on Xeon Phi

mailto:username@smic.hpc.lsu.edu
mailto:username@smic.hpc.lsu.edu

Show Xeon Phi information

[shaohao@smic021 ~]$ lspci | grep Co-processor

03:00.0 Co-processor: Intel Corporation Device 225c (rev 20)

83:00.0 Co-processor: Intel Corporation Device 225c (rev 20)

[shaohao@smic021 ~]$ micinfo

……

Cores

Total No of Active Cores : 61

Voltage : 1052000 uV

Frequency : 1238095 kHz

……

GDDR

GDDR Vendor : Samsung

GDDR Version : 0x6

GDDR Density : 4096 Mb

GDDR Size : 15872 MB

Native mode

 An example (vector_omp.c): vector addition, parallelized with OpenMP.

• No change to normal CPU source codes.

 Compilation

• Always compile codes on the host. Compiler is not available on Xeon Phi.

• icc -O3 -openmp vector_omp.c -o vec.omp.cpu # CPU binary

• icc -O3 -openmp -mmic vector_omp.c -o vec.omp.mic # MIC binary

execute natively

execute CPU binary on the host

• export LD_LIBRARY_PATH=/usr/local/compilers/Intel/composer_xe_2013.5.192/compiler/lib/intel64

specify libs for CPU

• export OMP_NUM_THREADS=20 # set OepnMP threads on host. Maximum is 20.

• ./vec.omp.cpu # run on the host

execute MIC binary on Xeon Phi natively

• ssh mic0 # login mic0

• export LD_LIBRARY_PATH=/usr/local/compilers/Intel/composer_xe_2013.5.192/compiler/lib/mic

specify libs for MIC

• export OMP_NUM_THREADS=244 # Set OepnMP threads on mic0. Maximum is 244.

• ./vec.omp.mic # Run natively on mic0

Exercise 1: Native run and affinity setting

i) Compile vector_omp.c with and without the flag -mmic, then execute the
binaries on the host and on Xeon Phi respectively.

ii) Set up the affinity environment (e.g. export KMP_AFFINITY=
compact,granularity=fine,verbose), then execute the MIC binary natively on
Xeon Phi. Change “compact” to “scatter” or “balanced” then run it again.
Observe the outputs.

Vectorization performance

Compare performance with and without vectorization

• An example (vector.c): a serial code for vector addition.

• icc -O3 -openmp -mmic vector.c -o vec.mic # vectorized by default

• icc -O3 -openmp -mmic -no-vec vector.c -o novec.mic # no vectorization

• Vectorized code is around 10 times faster!

Exercise 2: vectorization

i) Compile vector.c with and without the flag -no-vec, then run the binaries and compare
the computational time.

ii) Compile vector.c with the flag -vec-report3, then vary the vector report number from 1
to 7. Observe the outputs.

Summary for Native mode

 Add flag -mmic to create MIC binary files.

 ssh to MIC and execute MIC binary natively.

 Vectorization is critical.

Monitor MIC performance with micsmc.

Offloading
 A C code with explicit offload (off02block.c)

offload

CPU

CPU

MIC

Explicit Offload: compilation and run

Compile

• The same as compiling normal CPU codes. Without -mmic.

• icc -openmp name.c -o name.off # C

• ifort -openmp name.f90 -o name.off # Fortran

Execute offloading jobs from the host

• export MIC_ENV_PREFIX=MIC # set the prefix if launch from the host.

• export MIC_OMP_NUM_THREADS=240 # set number of threads for MIC (The default is the
maximum, that is 240, not 244. Leave one core with 4 threads to execute offloading.)

• ./name.off # launch from the host

Exercise 3 (a): report offloading information

i) Compile off02block.c, then launch the binary from the host.

ii) Export the value of OFFLOAD_REPORT in the range of 1, 2 and 3. Then run it
again and analyze the outputs.

iii) Compile off02block.c with the flag -opt-report-phase=offload. Observe the
outputs.

Exercise 3 (b):

Do exercise 3 (a) with the Fortran code off02block.f90 .

Offload an OpenMP region

 Assign values to a vector (C code: off03omp.c)

 Spread OpenMP threads to 240 workers (logical threads) of MIC.

 Assign values to a vector (Fortran code: off03omp.f90)

 Note: Data transfer between CPU and MIC influences the performance.

Less transferred data is better.

Control data transfer between host and MIC

in, out, inout (C code: off06stack.c)

in, out, inout (Fortran code: off06stack.f90)

Transfer dynamic arrays

 length(), alloc_if, free_if (C code: off07heap.c)

 alloc_if, free_if (Fortran code: off07heap.f90)

Exercise 5 (a): control data transfer

i) Compile and run off06stack.c and off07heap.c.

ii) Report offloading information and analyze data transfer between host and
MIC in these cases.

Exercise 5 (b):

Do exercise 5 (a) with the Fortran codes off06stack.f90 and off07heap.f90.

Place valuables on MIC
attribute decorations (C code: off05global.c)

attribute decorations (Fortran code: off05global.f90)

Exercise 6 (a): declspec/attribute decorations

i) Compile and run off05global.c.

ii) Report offloading information (export OFFLOAD_REPORT=3) and analyze data
transfer between host and MIC.

iii) Replace all __attribute__((target(mic:0))) with __declspec(target(mic:0)),
then compile and run it again.

iv) Remove all attribute/declspec decorations, then compile the code with the flag
“-offload-attribute-target=mic”. Run it again.

Asynchronous offload

When offloading works to the MIC, the host is empty.

When the MIC is busy, can the host do some other works? Yes.

 How? Asynchronous offload!

 Be careful about synchronizing the works between the host and the MIC.

 wait, signal, offload_wait (C code: off08asynch.c)

 wait, signal, offload_wait (Fortran code: off08asynch.f90)

Exercise 7 (a): asynchronous offload

i) Compile and run 0ff08asynch.c . Does the value of n increase?

ii) Comment out the line with wait, then compile and run again. Does the value
of n increase? Why?

iii) Change the key word offload_wait to offload, then compile and run again.
Observe the number of threads in the output. Is it changed? Why?

Exercise 7 (b):

Do sections i and ii of exercise 7 (a) with the Fortran code off08asynch.f90. For
section iii, output the number of MIC threads instead of CPU threads.

Data-only offload

……

a = (double*) memalign(64, N*sizeof(double)); // allocate alligned memory on host

b = (double*) memalign(64, N*sizeof(double));

#pragma offload_transfer target(mic:0) nocopy(a : length(N) alloc_if(1) free_if(0)) \

nocopy(b : length(N) alloc_if(1) free_if(0)) signal(&tag1) // allocate memory on MIC

for (i=0; i<N; i++) { a[i] = (double)(i); } // assign value on host

// after tag1 is finished, copy a from host to MIC,

#pragma offload target(mic:0) wait(&tag1) in(a : length(N) alloc_if(0) free_if(0)) \

out(b : length(N) alloc_if(0) free_if(0)) signal(&tag2)

#pragma omp parallel for

for (i=0; i<N; i++) { b[i] = 2.0 * a[i]; } // calculate b on MIC

 Offload_transfer, nocopy (C code: off09transfer.c)

// (…… continued from the previous slide)

#pragma offload_transfer target(mic:0) wait(&tag2) \ // after tag2 is finished

nocopy(a : length(N) alloc_if(0) free_if(1)) \ // deallocate a on mic

out(b : length(N) alloc_if(0) free_if(1)) \ // copy b from mic to host, deallocate b on mic

signal(&tag3)

#pragma offload_wait target(mic:0) wait(&tag3) // wait until tag3 is finished

{

printf("\n\t last a val = %f", a[N-1]); // print values on the host

printf("\n\t last b val = %f\n\n", b[N-1]);

}

……

Automatic offload with Intel MKL

an example for auto-offload

……

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, m, n, p, alpha, A, p, B,
n, beta, C, n); // Double-precision General Matrix Multiplication

……

Auto-offload: compile

Auto-offloading: run

Exercise 8 (a): automatic offload with MKL

i) Compile and run ao_intel.c. Observe the usage of MICs on the “micsmc”
monitor.

ii) Compare the computational time with and without automatic offload.

iii) Change the number of threads on the host and on the MICs. Observe the
variation of computational time.

iv) Increase the problem size from small to large and observe the results. At
what threshold(s) does MKL begin to use the MIC?

Using MPI and offload together

MPI + Offload

1st node

MPI tasks

2nd node nth node

......

......

......
Offload

Openmp
blocks

Offload
Openmp

blocks

Offload
Openmp

blocks

An example for MPI + Offload:
Calculate the value of pi

MPI-OpenMP hybrid codes with offload

……

MPI_Init(&argc, &argv); // MPI functions

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

......

#pragma offload target (mic:myrank) in(start_int,end_int) //Offload OepnMP block of each MPI task to one MIC

#pragma omp parallel private(iam,i,np){ // OpenMP block

iam = omp_get_thread_num() ;

np=omp_get_num_threads() ;

printf("Thread %5d of %5d in MPI task %5d of %5d\n",iam,np,myrank,nprocs);

......

}

......

 Calculate pi (C code: pi_hybrid_off.c)

......

call mpi_init(ierr) // MPI functions

call mpi_comm_size(mpi_comm_world,nprocs,ierr)

call mpi_comm_rank(mpi_comm_world,myrank,ierr)

......

!dir$ offload begin target (mic:myrank) in(start_int,end_int) //Offload OepnMP block of each MPI task to one MIC

!$omp parallel private(iam,i,np) // OpenMP block

iam = omp_get_thread_num()

np=omp_get_num_threads()

write(*,*) iam, myrank, np,nprocs

......

!$omp end parallel

!dir$ end offload

......

 Calculate pi (Fortran code: pi_hybrid_off.f90)

MPI + Offload: compile

MPI + Offload: run

Exercise 9 (a): Offload OpenMP blocks in MPI-OpenMP hybrid codes

i) Compile pi_hybrid_off.c, then run it on one node and two nodes respectively, with
two MPI tasks per node. Observe the usage of MICs on the micsmc monitor.

ii) Change the number of threads on the MICs. Observe the variation of
computational time.

iii) Change the number of MPI tasks to 1 per node, run it again. How many MICs on
each node are utilized now?

iv) Compare the computational time of the following cases: 1) without offloading; 2)
offload to one MIC; 3) offload to two MICs.

Summary for offloading

 Explicitly offload blocks by adding lines started with #pragma offload or
!dir$ offload in C or Forthran source codes respectively.

 Control data transfer with in, out and inout.

 Place valuables on MIC with attribute or declspec decorations.

 Use wait and offload_wait for asynchronous offload.

 Use offload_transfer for data-only offload.

 Auto offload MKL functions by setting MKL_MIC_ENABLE=1.

 Offload OpenMP blocks in MPI-OpenMP hybrid codes.

Next training: Xeon Phi programming II

Date: April 1, 2015
Time: 9:30 AM - 11:30 AM

• Xeon Phi programming: symmetric processing

• Optimization, Debug and profiling

• Xeon-Phi enabled packages

References

