Shaohao Chen

High performance computing @ Louisiana State University

LSU:
Outline of Xeon Phi Programming

Part | (last week)

* Intel Xeon Phi and its computing features

* Usage of Xeon Phiin HPC

* Xeon Phi programming: native mode, offloading

Part Il (today)

* Xeon Phi programming: symmetric processing

* Optimization, Debugging and profiling

* Xeon-Phi enabled applications: LAMMPS, NAMD

Computer codes

execute natively

)

J Add flag -mmic to create MIC binary files.
1 Log in (ssh) to MIC and execute MIC binary natively.

[Vectorization is critical.

J Monitor MIC performance with micsmc.

MIC

LS

 explicit offload

// Some CPU codes —

CPU

// begin offload block

offload
MIC

l

for (i=0; i<N; i++) {

// do some works

}
// end offload block

// Some CPU codes CPU

Review: MPI + Offload

MPI tasks
15t node 2" node n" node {
Offload Offload Offload
Openmp Openmp Openmp
blocks blocks blocks

LSU INFORMATION
CEFRVICES

 Explicitly offload blocks by adding lines started with #pragma offload or
IdirS offload in C or Forthran source codes respectively.

1 Control data transfer with in, out and inout.

 Place valuables on MIC with attribute or declspec decorations.
J Use wait and offload wait for asynchronous offload.

1 Use offload_transfer for data-only offload.

 Auto offload MKL functions by setting MKL_MIC_ENABLE=1.
1 Offload OpenMP blocks in MPI-OpenMP hybrid codes.

INFORMATION
TECHNOLOGY
SERVICES

* Xeon Phi programming: symmetric processing
* Optimization, Debugging and profiling
* Xeon-Phi enabled applications: LAMMPS, NAMD

Symmetric processing

 Distribute MPI tasks “symmetrically” on both CPUs and MICs.

MPI tasks

2nd hode

L5

INFORMATION
TECHNOLOGY
SERVICES

INFORMATION
TECHNOLOGY
SERVICES

MP| communication

http://research.coltaxinternational.com/
5.8us 0.5GB s
4 Latency of short MPI messages and 1105 3.7G e

bandwidth of long MPI messages 4.81US 3.6GB/s
with DAPL InfiniBand (IB Switch)

1.1ps

[Benchmark by Colfax

INFORMATION
TECHNOLOGY
SERVICES

 Use Intel MPIl implementation
S module switch mvapich2/2.0/INTEL-14.0.2 impi/4.1.3.048/intel64
S module load impi/4.1.3.048/intel64

1 Create CPU and MIC binaries separately
S mpiicc name.c -o name.cpu

S mpiicc -mmic name.c -0 hame.mic

S mpiifort name.f90 -o name.cpu

S mpiifort -mmic name.f90 -o name.mic

* Add the flag -openmp for an MPI-OpenMP hybrid code.

* There is no change from normal CPU source codes!

INFORMATION
[TECHNOLOGY
SERVICES

(d a command provided by the Intel MPI
S which mpiexec.hydra
Jusr/local/compilers/Intel/cluster_studio _xe 2013.1.046/impi/4.1.3.048/intel64/bin/mpiexec.hydra

1 Launch an MPI job to both host and MICs (from the host)

S mpiexec.hydra -n 20 -host smic017 ./name.cpu : \
-n 30 -host smic017p-micO -env LD_LIBRARY_ PATH SMIC_LD_LIBRARY_PATH ./name.mic:\
-n 30 -host smic017p-micl -env LD_LIBRARY_PATH SMIC_LD_LIBRARY_PATH ./name.mic

 Launch an MPI job only to one MIC (from the host)
S mpiexec.hydra -n 30 -host smic017p-micO -env LD_LIBRARY_PATH SMIC_LD_LIBRARY_PATH ./name.mic

#1/bin/bash

module load impi/4.1.3.048/intel64 # load Intel MPI

export TASKS _PER_HOST=2 # number of MPI tasks per host

export THREADS_HOST=10 # number of OpenMP threads spawned by each task on the host
export TASKS _PER_MIC=3 # number of MPI tasks per MIC

export THREADS_MIC=80 # number of OpenMP threads spawned by each task on the MIC
export CPU_ENV="-env OMP_NUM_THREADS STHREADS_HOST" # CPU run-time environments

export MIC_ENV="-env OMP_NUM_THREADS STHREADS_MIC -env LD_LIBRARY_PATH SMIC_LD_LIBRARY_PATH"
MIC run-time environments

run on CPU
run on micO

run on micl

JExercise 1: run jobs with mpiexec.hydra

i) Compile pi_hybrid.c or pi_hybrid.f90, then run it with mpiexec.hydra
on one compute node. Observe the usage of MICs on the micsmc monitor.

i) Vary the numbers of MPI tasks and OpenMP threads. Find out the best
combination of them so that the computational time is the shortest.

iii) Compare the computational time of the following cases:
1) use only CPU;
2) use only one MIC;
3) use CPU and one MIC;
4) use CPU and two MICs.

INFORMATION
TECHNOLOGY
SERVICES

Q Number of MPI tasks on MIC

< The theoretical maximum is 61, which is equal to the number
of cores on MIC.

< The practical number should be much less than 61 due to the
MIC-memory (16 GB) bottleneck!

Q A problem of using mpiexec.hydra

The command lines become very messy if many nodes are utilized.

INFORMATION
TECHNOLOGY
SERVICES

dmicrun.sym is a bash script for running symmetric jobs on SuperMIC.

S which micrun.sym

/usr/local/compilers/Intel/cluster_studio xe 2013.1.046/impi/4.1.3.048/intel64/bin/micrun.sym

+» Automatically obtains the target names, sets up the environments and constructs the
complicated command lines.

¢ Easy for running heavy jobs with many nodes.

O Usage of micrun.sym:
S mirun.sym -c /path/to/name.cpu -m /path/to/name.mic

S mirun.sym -c /path/to/name.cpu -m /path/to/name.mic -inp "parl par2 par3..."

#!1/bin/bash

#PBS -q workq

#PBS -A your_allocation
#PBS -l walltime=01:30:00
#PBS -l nodes=4:ppn=20

module load impi/4.1.3.048/intel64 # load Intel MPI
export TASKS _PER_HOST=20 # number of MPI tasks per host

export THREADS_HOST=1 # number of OpenMP threads spawned by each task on the host
export TASKS_PER_MIC=30 # number of MPI tasks per MIC
export THREADS _MIC=1 # number of OpenMP threads spawned by each task on the MIC

run with micrun.sym

(JExercise 2: run jobs with micrun.sym

i) Compile pi_hybrid.c or pi_hybrid.f90, then run it with micrun.sym on four
compute nodes. Observe the usage of MICs on the micsmc monitor.

i) Vary the numbers of MPI tasks and OpenMP threads. Find out the best
combination of them so that the computational time is the shortest.

iii) Using both CPU and two MICs of each node, compare the computational
time of the following cases:

1) use only one node;
2) use four nodes;
3) 16 nodes.

LSh)

d Use Intel MPI (impi) implementation.

J Create CPU and MIC binaries with and without -mmic respectively.
J Run symmetric jobs on few nodes with mpiexec.hydra .
J Run symmetric jobs on many nodes with micrun.sym .

1 Balance works on CPU and MICs to obtain the best performance.

L Sh)

dMKL

» If your use MKL, congratulations! MKL functions are automatically offloaded
to Xeon Phi and are optimized.

INon-MKL: If your code is
¢ parallel with OpenMP, explicitly offload the OpenMP blocks to Xeon Phi.
¢ parallel with pure MPI, run it symmetrically on both CPUs and Xeon Phis.

¢ parallel with hybrid MPIl and OpenMP, either explicitly offload the OpenMP
blocks to Xeon Phi or run it symmetrically on both CPUs and Xeon Phis.

¢ serial, most likely it becomes slower, because the frequency of one Xeon Phi
core is much lower than that of one CPU core.

LS

[In general, a computer program may be optimized so that it
executes more rapidly, or is capable of operating with less
memory storage or other resources, or draw less power.

JOptimized codes can be accelerated for both CPU and Xeon
Phi.

1 icc -O3 source.c -0 mycode

 The default optimization level -02
**optimization for speed
“*automatic vectorization

*inlining

ssconstant propagation
**dead-code elimination

**loop unrolling

LS

void my_function() {

//... Some codes ...

}

Jdoptimization level -O3

**Enables more aggressive optimization
**loop fusion

**block-unroll-and-jam

s»if-statement collapse

LS

N=1<<28;
w =0.5;
T=(IN;
s =0.0;
(inti=0;i<N;i++)

s += W*()i/T;

N=1<<28;
w =0.5;
T = (double)N;
s =0.0;
(inti=0;i<N;i++)

S += W¥()i/T;

printf("%e\n", s);

printf("%e\n", s);

slower faster

(

(

i=0;i<n;i+t)

j=0;j<m;j++){

r =

sin(A[i])*cos(B[j]);

slower

(

for (

LS.

i=0;i<n;i++)f
sin_A = sin(A[i]);
j=0;j<m;j++){

cos_B = cos(BJ[j]);

r =sin_A*cos_B;

faster

twoPi = 6.283185307179586; // double precision
phase = 0.3f; // single precision

sin(X); // double precision

sinf(X); // single precision

exp(X); // Double precision

LS.

expf(X); // single precision

Float is faster than double.

LSU INFORMATION
SERVICES

* Intel VTune Amplifier

+** Intel Trace Analyzer and Collector
** GDB: GNU Debug

¢ TotalView

** Paraview

INFORMATION
TECHNOLOGY
SERVICES

* Intuitive CPU & coprocessor performance tuning, multi-core scalability,
bandwidth and more

* Quick performance insight with advanced data visualization

* Automate regression tests and collect data remotely

CPU Time by Utilizationw

Didle @Poor DOk BIdeal @ Over
7.650s [

5.337s [|
5013 I

4.025s I 1
0.983: [IJB
L

L Sh)

1 Currently VTune only works for two compute nodes on SuperMIC:
smic099 and smic100.

S ssh =X smic100

S source
/usr/local/compilers/Intel/parallel_studio_xe 2015/vtune_amplifier xe
2015.1.0.367959/amplxe-vars.sh

S amplxe-gui &

S amplxe-cl

INFORMATION
TECHNOLOGY
SERVICES

A example for using VTune: tachyon

@ tachyon_find_hotspots dat/balls.dat CPU Time: 13.365 sec - X

O Fast, high quality parallel ray tracer.

 Renders an image, calculating reflections.

A VTune project for CPU

L Set up a VTune project

Create a VTune project: ->New->Project
Name the project, click on “Create Project”

In the “Target System” pull-down menu, select “Local”

Specify the application /path/to/tachyon_find _hotspots, click on “OK”

Target | Binary/Symbol Search ‘ Source Search ‘

Target system: [Iocal v J

Target type: [Launch Application| v ‘

Launch Application

Press F1 for more details.

Specify and configure your analysis target: an application or a script to execute.

Application: iyon/tachyon_fi nd_hotspotsl v [‘

Application parameters: v [‘

Browse... ’

Modify...

L5

INFORMATION
TECHNOLOGY
SERVICES

(J Start a new analysis

* Click on “New Analysis”

* Select “Basic Hotspots”, click on “Start”.

& Choose Analysis Type

& B
v Algorithm Analysis
& Advanced Hotspots
& Concurrency
& Locks and Waits
v Microarchitecture Analysi
A General Exploration
A Bandwidth
v CPU Specific Analysis
> = Intel Core 2 Processor
> iz Nehalem / Westmere /
> [z Sandy Bridge Analysis
P &z Haswell Analysis
[Knights Corner Platform /
[zx Custom Analysis

Basic Hotspots

Identify your most time-consuming source code. This analysis type cannot be used to

Intel VTune Amplifier XE 2015

profile the system but must either launch an application/process or attach to one. This @ Start Paused
analysis type uses user-mode sampling and tracing collection. Press F1 for more .),

details.
CPU sampling interval, ms: \10 \;}
[J Analyze user tasks

@ Details

Analyze GPU usage (Intel HD Graphics only): No

CPU sampling interval, ms:
Collect CPU sampling data:
Collect signalling APl data:
Collect synchronization APl data:
Collect 1/0 API data:

Analyze user tasks:

Analyze user synchronization:
Linux Ftrace events:

Stack unwinding mode:

Stitch stacks:

Collect timeline data:

Collect sleep data:

Collect frequency data:

; Project Properties

10
With stacks
No
No
No
No
No

After collection
Yes
Yes
No
No

L 5 U SERV

@ Analysis Target|| © Analysis Type| B8 Collection Log % Bottom-up| «% Caller/Callee |*% Top-down Tree B2

» Elapsed Time: 21.008s

Total Thread Count: 1
Overhead Time: Os
Spin Time: Os
CPU Time: 6.850s
Paused Time: Os

®» Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in
improving overall application performance.

Function CPU Time

arid_intersect 2.427s
sphere_intersect 2.019s
initialize 2D _buffer 1.753s
arid bounds_intersect 0.310s
shader 0.070s

1 CPU time is the sum of the time every thread consumes. (single-threaded in this case).

 Elapsed time > CPU time. Idle time is large.

M grid_intersect shows up at the top of the list as the hottest function.

INFORMATION
TECHNOLOGY

ICES

INFORMATION
TECHNOLOGY
SERVICES

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and
Overhead time adds to the Idle CPU usage value.

£15s
5125
Q
29s
©
wbs
3s
Os

Freney |

Target ...

2 3 4 5 6 7 8 O 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ok Fsmq

Simultaneously Utilized Logical CPUs

(Ran mostly on one logical CPU, which is classified by the VTune Amplifier as a Poor
utilization for a multicore system.

INFORMATION
TECHNOLOGY
SERVICES

@ Analysis Target | © Analysis Type |2 Collection Log| ¥ Summary E-RLIdInBuleY - Caller/Callee| % Top-down Tree

Grouping: | Function / Call Stack NEENE

CPU Timev w

Function / Call Stack | Effective Time by Utilization Spi. O. Module Function
. Sdle BPoor @Ok Mideal BOver

Peihere. irbsrseet o e ——- Sohete) nterseét(sphg

Pinitialize 2D _buffer 1.753s N 0s 0s tachyon find hotspots initialize 2D _buffer

0Os tachyon_find_hotspots

Pgrid_bounds_intersect| 0.310s |}l 0Os 0s tachyon find_hotspots grid bounds_intersec
Pshader 0.070s 0Os 0s tachyon_find_hotspots shader(ray*)
Ppos2grid 0.0605. Os Os tachyon_find_hotspots pos2grid(grid*, vecto
Ptri_intersect 0.050s | 0s Os tachyon_find_hotspots tri_intersect(tri*, ray]
Pintersect objects 0.0305| 0Os Os tachyon_find_hotspots intersect_objects(ray”
PXPutlmage 0.02OS| 0Os 0s libX11.50.6.3.0 XPutlmage
Padd_intersection 0.020s| 0Os O0s tachyon_find_hotspots add_intersection(dou
Plight_intersect 0.020s| 0Os 0s tachyon_find_hotspots light_intersect(point_|
PVScale 0.011s| 0Os 0s tachyon_find_hotspots VScale(vector*, doubl
PColorScale 0.0105| 0Os Os tachyon_find_hotspots ColorScale(color*, doﬁ
Pfscanf 0.010s| 0Os Os libc-2.12.s0 fscanf |
S lacted Trowier| 24275 0s 0s " o '[

d All functions are marked with red bars, which means that the processor cores
were underutilized.

INFORMATION
TECHNOLOGY
SERVICES

J Double click the hottest function.

@ Analysis Target| | * Analysis Type 2 Collection Log ¥ Summary «% Bottom-up||+% Caller/Callee |+« Top-down Tree EE Tasks and Frames [eXelgleKds] »

nXp;

Source | Assembly P ®| 9| a| Assembly grouping: | Address 24
CPU Time: Total CPU Time: Self Li]
S. Soiirra I T I : R R B
L. ective Time by Utilization Spln Ov Effective Time by Utilization |
| @Idle @Poor MOk @ideal @Over '™ TMe m4ic @Poor MOk @Ideal @Over
569 if (ry->maxdist < tmax.x || curvox.x == out.x) 0.0% 0.0% 0.0%
570 break; 0.0% 0.0% 0.0%
571 voxindex += step.X; 0.0% 0.0% 0.0%
572 tmax.x += tdelta.x; 0.0% 0.0% 0.0% ‘
0% 0.0% 0.010s] |

573 curpos = 0.1%| 0

575 nXp.y += pdeltaX.y; 0.0% 0.0% 0.0%

576 nXp.z += pdeltaX.z; 0.0% 0.0% 0.0%
577 } 0.0% 0.0% 0.0%
578 else if (tmax.z < tmax.y) { 0.0% 0.0% 0.0%
579 cur = g->cells[voxindex]; 0.3%]| 0.0% 0.0% 0.020s|
580 while (cur !'= NULL) { 2.0% [0.0% 0.0%
581 if (ry-smbox[cur->obj->id] != ry->serial) { 15.9% (NG 0.0% 0.0%
582 ry->mbox[cur->obj->id] = ry->serial; 6.7% GG 0.0% 0.0%
583 cur->obj->methods->intersect(cur->obj, ry); 3.1% 0.0% 0.0%
584 } 0.0% 0.0% 0.0%
585 cur = cur->next; 2.9% N 0.0% 0.0%

586 } 0.0% 0.0% 0.0% —

INFORMATION
TECHNOLOGY
SERVICES

L An example (pi_hybrid_off.c):

calculate the value of pi with integration method.
1
4.0
/ dr =
o (1422

U Set up a VTune project

* Create a VTune project: = ->New->Project
* Name the project, click on “Create Project”
* In the “Target System” pull-down menu, select “Intel Xeon Phi coprocessor (host launch)”

 Specify the application /path/to/pi_hybrid.off, click on “OK”

[Start a new analysis

* Click on “New Analysis”

* Select “Advanced Hotspots”, click on “Start”.

% Choose Analysis Type

A Analysis Type

v [Algorithm Analysis
¥4 Advanced Hotspots|

¥ Microarchitecture Analysi
& General Exploration
A Bandwidth
= Custom Analysis

Advanced Hotspots

Identify time-consuming code in your application. Advanced Hotspots analysis
(formerly, Lightweight Hotspots) uses the OS kernel support or VIune Amplifier kernel
driver to extend the Hotspots analysis by collecting call stacks, context switch and
statistical call count data as well as analyzing the CPI (Cycles Per Instruction) metric.
By default, this analysis uses higher frequency sampling at lower overhead compar...

CPU sampling interval, ms: \ 10

Select a level of details provided with
event-based sampling collection. Detailed
collection levels cause higher overhead.

@ Hotspots
O Hotspots, stacks and context switches

Event mode: All v

[J Analyze user tasks

Intel VTune Amplifier XE 2015

@ Start Paused

l Project Proertis

INFORMATION
TECHNOLOGY
SERVICES

®» Elapsed Time: 6.673s

CPU Time: 081.536s
Instructions Retired: 296,688,000,000
CPI Rate: 4.096

The CPl may be too high. This could be caused by issues such as memory stalls, instruction starvation, branch
misprediction or long latency instructions. Explore the other hardware-related metrics to identify what is causing high...

CPU Frequency Ratio: 1.000
Paused Time: Os
Overhead Time: 0.026s
Spin Time: 79.587s

» OpenMP Analysis. Collection Time: 6.673

Serial Time (outside any parallel region): 2.837s (42.5%)
Serial Time of your application is high. It directly impacts application Elapsed Time and scalability. Explore options for
parallelization, algorithm or microarchitecture tuning of the serial part of the application.

@ Parallel Region Time: 3.836s (57.5%)
Estimated Ideal Time: 3.718s (55.7%)
Potential Gain: 0.118s (1.8%)

INFORMATION
TECHNOLOGY
SERVICES

®» Top OpenMP Regions by Potential Gain

This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows
the elapsed time that could be saved if the region was optimized to have no load imbalance assuming no runtime overhead.

OpenMP Region Potential Gain (%) Elapsed Time
do_some_integratin$ompg$parallel@unknown:23:43 0.118s 1.8% 3.836s

®» Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in
improving overall application performance.

Function CPU Time

do_some_integratin 886.166s
__kmp wait sleep 69.454s
[vmlinux] 12.599s
__kmp_static yield 5.149s

__kmp yield 2.793s

e

INFORMATION
TECHNOLOGY
SERVICES

Project Navigator

P =& @ | welcome roooah x

= Advanced Hotspots Hotspots viewpoint (change) @ Intel VTune Amplifier XE 2015

% o
fis /home/shaohao/intel/...
& matmul_native

> @& pi_offload @ Analysis Target| | © Analysis Type |2 Collection Log| | Summary E-RLIaCInBUd % Caller/Callee |+% Top-down Tree B Tasks and Frames

& ro00ah Grouping: | Function / Call Stack

I CPU Time x . cP.
Function / Call Stack ‘ Effective Time by Utilization Spin Ove... Inslgzt:f:;gns ls:tle Fr.» Module
| '@ldle @Poor DOk @Ideal @Over DL A e |
P[Outside any known module] 0.015s| 0s 0s 11,200,000 1.607 1.000 [Outside any kr
P[coi_daemon] | 0.003s| 0s 0s 0 0.000 1.000 coi_daemon [coi_daemon]
Pdo_some_integratin ' 886.166s [0s 0s 276,539,200,000 3.967 1.000 pi_hybrid.off do_some_integr
P[libcfs] 0.002s| 0s 0s 0 0.000 1.000 libcfs [libcfs]
P[libstdc++.50.6.0.16] 0.003s| 0s 0s 0 0.000 1.000 libstdc++.50.6.0.16 [libstdc++.50.6
P[libpthread-2.14.90.s0] 0s 0.005s Os 0 0.000 1.000 libpthread-2.14.90.s0 [libpthread-2.1¢
> kmp_stg_find 0Os 0s 0.002s 0 0.000 1.000 libiomp5.s0 _kmp_stg_ﬁndf
‘ P[ptirpc] 0.003s| Os Os 0 0.000 1.000 ptlrpc [ptirpc]
P[libcoi_device.s0.0] 0.010s| 0Os 0Os 5,600,000 2.143 1.000 libcoi_device.s0.0 [libcoi_device.s¢
‘f P[dma_module] 0.0055| 0s Os 0 0.000 1.000 dma_module [dma_module]
P[ringbuffer] 0.0025| 0s Os 0 0.000 1.000 ringbuffer [ringbuffer]
Selected 1 row(s):}‘ 886.166s 0s 0s 276,539,200,000 3.967 1.000 ~
] T2)| s ———— B
WOQFA-Qe 0.5s 1s S 5.5s 6s 6.5s Ruler Area
OMP Worke 2 ™ Region ...
S J|=[Thread [v]
o Qe Wane - Runniﬁg
g OMP Worke [¥] iuk CPU Time
= [OME Vorka [¥] ik Spin an...
OHP Worke [OJ% Hardwar...
OMP Worke =
OMP Worke |~ AL .
CPU Time [| MCP.U Time
@ i [¥] dud Spin an...

| No filter... applied. 3l Any Process |v | Any Thread | v | Any Module v |ISIEZIETHE Any Utilization | v IiE

& - : Call Stack Mode: VRIS LRSS line Mode: LRYIEES Functions only [v]

INFORMATION
TECHNOLOGY
SERVICES

Project Navigator

¥ o P B @ & @ | welcome roooah x

fis /home/shaohao/intel/... pm . : P
e @ Advanced Hotspots Hotspots viewpoint (change) @ Intel VTune Amplifier XE 2015

> & pi_offload

€ Analysis Target Analysis Type 8 Collection Log| | # Summary +% Bottom-up |+% Caller/Callee| ERIJEIIMIfIY B Tasks and Frames

Grouping: ‘ Call Stack

& r000ah

| CPU Time: Totalv CPU Time: Self *7 Instr... Ins.. CPl G
Function Stack | Effective Time by Utilization Spin Ov.. Effective Time by Utilization Spi. Ov. Retir... Re.. Rat.. f
| | @idie BPoor DOk Wideal Over "™ TI™ gygic @poor MOk Wideal @Over TM-Tim. Tl Self Total {7
< Total - 91.9% I 5.1 0.0% 0s 0s 0s 100.0% 0 4.096 0
~do_some_integratin ' 90.3% I 0.0% 0.0% sse.lcos[N 0 0 932% 27.. 3.967 3
Py kmp_wait_sleep | 0.0% 7.8% 0.0% Os 69... 0s 5.8%15,.. 5533 5
> [vmlinux] I l.3%| 0.0% 0.0% 12.5995| Os 0s 0.8%2,3..6.5236
Py kmp_yield | 0.0% 0.3% 0.0% Os 2.7.. 0s 0.1% 40.. 8.636 8
P [libittnotify collector.so] ‘ 0.3%| 0.0% 0.0% 2.5825| Os 0s 0.0%64,.. 49.... 4
> v [libc-2.14.90.50] | 0.0%| 0.0% 0.0% 0.2555| 0Os 0s 0.0%64,.. 4.907 4
b [sep3_15] ‘ 0.0%| 0.0% 0.0% 0.1795| 0s 0s 0.0% 0 0.000 O
b [micscif] | 0.0%] 0.0% 0.0% 0.047s| 0s Os 0.0%16,.. 3.452 3
> [ld-2.14.90.s0] I 0.0%| 0.0% 0.0% 0.0195| 0s 0s 0.0%8,4.. 2.857 2:
P v [Outside any known module“: 0.0%| 0.0% 0.0% 0.015s| 0s 0s 0.0% 11,. 1.607 I
Highlighted 1 row(s):'} 90.3% 0.0% 0.0% 886.166s 0s 0s 93.2% 27.. 3.967 32
™ D a0 D)
QIQEQ-Q 0.5s 1s 1.5s 2s 2.5s 3s 3.55 4s 4.5s 5s 5.5s 65 6.5s |Ruler Area
OMP Worke ' ~ Region Insta...
OMP Worke || @ Thread V|
OMP Worke z i o
e
2 OME Worke [¥] ik Spin and Ove...
OHP Yok [J* Hardware Eve...
OMP Worke -
OMP Worke CPU Time '
) [¥] duk CPU Time
i ! = Gl [ius Spin and Ove...

l No filter... applied. |J&*3 Any Process | v | Any Thread | v | Any Module v |ISSIFETINH Any Utilization |

a - | ISRt User functions + 1 [nline Mode: RBTRVRLIN Functions only v

O Physics

% Chroma QCD

% QphiX-QCD

1 Computational chemistry
“* NWChem

[Molecular dynamics

% LAMMPS

¥ NAMD

* GROMACS

s AMBER

L COMPUTATIONAL FLUID DYNAMICS
¢ OpenlLB

* LBS3D

U Material science

¢ Quantum ESPRESSO

U Finance

¢ BlackScholes SP and DP
¢ Monte Carlo SP and DP
 Development tools

s DDT

** Matlab

R

s TAU

O Libraries

% Boost

<+ MAGMA

s MVPICH2

LS

INFORMATION
TECHNOLOGY
SERVICES

INFORMATION
TECHNOLOGY
SERVICES

J Static Libraries with Offload

S icc -c myobjectl.c myobject2.c

S ifort -c myobject1.f90 myobject2.f90

S xiar -qoffload-build libname.a myobjectl.0 myobject2.0

S icc name.c -L/path/to/lib -llibname -0 name

LSU INFORMATION
SERVICES

 Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a classical
molecular dynamics code distributed by Sandia National Laboratory.

1 Has potentials for solid-state materials (metals, semiconductors) and soft matter
(biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be used
to model atoms or, more generically, as a parallel particle simulator at the atomic,
meso, or continuum scale.

O Simulate the time evolution of the input system of atoms or other particles, as
specified in the input script, writing data, including atom positions, thermodynamic
quantities, and other statistics computations.

1 Runs on single processors or in parallel using message-passing techniques with a
spatial-decomposition of the simulation domain. The code is designed to be easy to
modify or extend with new functionality.

INFORMATION
TECHNOLOGY
SERVICES

A LAMMPS load balancer offloads part of neighbor-list and non-bond force
calculations to the Intel® Xeon Phi™ coprocessor for concurrent calculations with the
CPU. This is achieved by using offload directives to run calculations well suited for
many-core chips on both the CPU and the coprocessor. In this model, the same C++
routine is run twice, once with an offload flag, to support concurrent calculations.

1 The dynamic load balancing allows for concurrent 1) data transfer between host and
coprocessor, 2) calculations of neighbor-list, non-bond, bond, and long-range terms,
and 3) some MPI| communications. It continuously updates the fraction of offloaded
work to minimize idle times. A standard LAMMPS “fix” object manages concurrency
and synchronization.

 The Intel® package adds support for single, mixed, and double-precision calculations
on both CPU and coprocessor, and vectorization (AVX on CPU / 512-bit vectorization
on Phi™). This can provide significant speedups for the routines on the CPU, too.

d Load LAMMPS (MIC version) with module
module load impi/4.1.3.048/intel64
module load lammps/21Jan15/INTEL-14.0.2-impi-4.1.3.048-mic

J Prepare an input file:

Suffix:
omp = use only CPU with OpenMP
intel 2 use both CPU and MIC

Precision:
single
double

Number of MICs

mixed

package intel

I

package omp O
R suffix

mode

L S0

Fraction of offloading works:
0.0 = no offload

0.5 - offload half works to MIC
-1 = automatically balance

balance

module load impi/4.1.3.048/intel64

d Run with only CPU

$ export OMP_NUM_THREADS=2

S mpirun -np 10 Imp_intel _phi-inin.lc-vsomp-vmO0-vb 0
Use the input file in.lc .

Run 10 MPI tasks on CPU. Each MPI task uses 2 threads.

[Run with CPU and MIC

S export OMP_NUM_THREADS=2

S mpirun -np 10 Imp_intel_phi -inin.lc-vsintel-vm 1-vb -1
Run 10 MPI tasks on CPU. Each MPI task uses 2 threads.

And Run 10 MPI tasks on 1 MIC. Each MPI task uses 24 threads.

L5

INFORMATION
TECHNOLOGY
SERVICES

LSU TECITNOLOGY
SERVICES

(JExercise 3: Use LAMMPS to calculate liquid crystal structure

Run LAMMPS with the sample input file in.lc for the following cases,
then compare their computational time.

1) Use only CPU, with 20 MPI task and 1 Openmp thread.

2) Use only CPU, with 10 MPI tasks and 2 Openmp threads.

3) Use CPU and one MIC, with 10 MPI tasks and 2 Openmp threads.
4) Use CPU and two MICs, with 10 MPI tasks and 2 Openmp threads.

5) Run case 4) using four nodes.

INFORMATION
TECHNOLOGY
SERVICES

. NAMD (NAnoscale Molecular Dynamics program) is a freeware molecular
dynamics simulation package

1 Written using the Charm++ parallel programming model, noted for its parallel
efficiency and often used to simulate large systems (millions of atoms).

1 Simulates the life of bio-molecules
1 Forces on each atom calculated every step
[Positions and velocities updated and atoms migrated to their new positions

INFORMATION
TECHNOLOGY
SERVICES

(1 Satellite Tobacco Mosaic Virus (STMV) is a
small, icosahedral plant virus which worsens the

symptoms of infection by Tobacco Mosaic Virus.

1 The entire STMV particle consists of 60
identical copies of a single protein that make up
the viral capsid (coating), and a 1063 nucleotide
single stranded RNA genome which codes for
the capsid and one other protein of unknown

function.

 STMV is useful for demonstrating scaling to
thousands of processors.

Theoretical and Computational Biophysics Group
Beckman Institute
University of Illinois at Urbana-Champaign

LSU INFORMATION
SERVICES

J Load NAMD
module load namd/2.10/INTEL-14.0.2-ibverbs
module load namd/2.10/INTEL-14.0.2-ibverbs-mic

(J Run NAMD in a PBS script

cd SPBS_O_WORKDIR

for node in “cat SPBS_NODEFILE | uniqg’; do echo host Snode; done > nodelist
export NPROCS="wc -| SPBS_NODEFILE |gawk '//{print S1}"

‘which charmrun™ ++p SNPROCS ++nodelist nodelist ++remote-shell ssh “‘which namd2®
stmv.namd > output

) Note: Auto detect the number of MICs on a node. Use all available MICs and CPU.

INFORMATION
TECHNOLOGY
SERVICES

(JExercise 4: Use NAMD to calculate STMV benchmark

Run NAMD with the sample input files stmv.namd, stmv.pdb and stmv.psf
for the following cases, then observe the scaling of computational time.

1) Run the CPU version, using 2 nodes.
2) Run the CPU version, using 8 nodes.
3) Run the MIC version, using 2 nodes.

4) Run the MIC version, using 8 nodes.

INFORMATION
TECHNOLOGY
SERVICES

References

PARALLEL PROGRAMMING
AND OPTIMIZATION WITH

, s R S e e
| O o f y ;

e INTEL XEON PHI
High Performance COPROCESSORS

HANDBOOK ON THE
DEVELOPMENT AND
OPTIMIZATION OF
PARALLEL
APPLICATIONS FOR
INTEL" XEON'
PROCESSORS
AND INTEL'
XEON PHI"
COPROCESSORS

Jim Jeffers, James Reinders

COLFAX INTERNATIONAL
FOREWORD BY JAMES REINDERS, INTEL CORPORATION

MORGAN KAUTMANN

® User guide of SuperMIC: http://www.hpc.lsu.edu/docs/guides.php?system=SuperMIC

