
Introduction to Xeon Phi programming
Part II

Shaohao Chen

High performance computing @ Louisiana State University

Outline of Xeon Phi Programming

Part I (last week)

• Intel Xeon Phi and its computing features

• Usage of Xeon Phi in HPC

• Xeon Phi programming: native mode, offloading

Part II (today)

• Xeon Phi programming: symmetric processing

• Optimization, Debugging and profiling

• Xeon-Phi enabled applications: LAMMPS, NAMD

Review of Native mode

execute natively

 Add flag -mmic to create MIC binary files.

 Log in (ssh) to MIC and execute MIC binary natively.

 Vectorization is critical.

Monitor MIC performance with micsmc.

MIC

Review of Offloading

 explicit offload

offload

CPU

MIC

CPU

Review: MPI + Offload

1st node

MPI tasks

2nd node nth node

......

......

......
Offload

Openmp
blocks

Offload
Openmp

blocks

Offload
Openmp

blocks

 Explicitly offload blocks by adding lines started with #pragma offload or
!dir$ offload in C or Forthran source codes respectively.

 Control data transfer with in, out and inout.

 Place valuables on MIC with attribute or declspec decorations.

 Use wait and offload_wait for asynchronous offload.

 Use offload_transfer for data-only offload.

 Auto offload MKL functions by setting MKL_MIC_ENABLE=1.

 Offload OpenMP blocks in MPI-OpenMP hybrid codes.

Summary for Offloading

Part II

• Xeon Phi programming: symmetric processing

• Optimization, Debugging and profiling

• Xeon-Phi enabled applications: LAMMPS, NAMD

Symmetric processing
 Distribute MPI tasks “symmetrically” on both CPUs and MICs.

1st node

MPI tasks

2nd node nth node

......

......

......

MPI communication

 Latency of short MPI messages and
bandwidth of long MPI messages
with DAPL InfiniBand

 Benchmark by Colfax

Compilation

 Use Intel MPI implementation

$ module switch mvapich2/2.0/INTEL-14.0.2 impi/4.1.3.048/intel64

$ module load impi/4.1.3.048/intel64

 Create CPU and MIC binaries separately

$ mpiicc name.c -o name.cpu # CPU binary, C code

$ mpiicc -mmic name.c -o name.mic # MIC binary, C code

$ mpiifort name.f90 -o name.cpu # CPU binary, Fortran code

$ mpiifort -mmic name.f90 -o name.mic # MIC binary, Fortran code

• Add the flag -openmp for an MPI-OpenMP hybrid code.

• There is no change from normal CPU source codes!

 a command provided by the Intel MPI

$ which mpiexec.hydra

/usr/local/compilers/Intel/cluster_studio_xe_2013.1.046/impi/4.1.3.048/intel64/bin/mpiexec.hydra

 Launch an MPI job to both host and MICs (from the host)

$ mpiexec.hydra -n 20 -host smic017 ./name.cpu : \

-n 30 -host smic017p-mic0 -env LD_LIBRARY_PATH $MIC_LD_LIBRARY_PATH ./name.mic : \

-n 30 -host smic017p-mic1 -env LD_LIBRARY_PATH $MIC_LD_LIBRARY_PATH ./name.mic

 Launch an MPI job only to one MIC (from the host)

$ mpiexec.hydra -n 30 -host smic017p-mic0 -env LD_LIBRARY_PATH $MIC_LD_LIBRARY_PATH ./name.mic

Exercise 1: run jobs with mpiexec.hydra

i) Compile pi_hybrid.c or pi_hybrid.f90, then run it with mpiexec.hydra
on one compute node. Observe the usage of MICs on the micsmc monitor.

ii) Vary the numbers of MPI tasks and OpenMP threads. Find out the best
combination of them so that the computational time is the shortest.

iii) Compare the computational time of the following cases:

1) use only CPU;

2) use only one MIC;

3) use CPU and one MIC;

4) use CPU and two MICs.

micrun.sym is a bash script for running symmetric jobs on SuperMIC.

$ which micrun.sym

/usr/local/compilers/Intel/cluster_studio_xe_2013.1.046/impi/4.1.3.048/intel64/bin/micrun.sym

 Automatically obtains the target names, sets up the environments and constructs the
complicated command lines.

 Easy for running heavy jobs with many nodes.

Exercise 2: run jobs with micrun.sym

i) Compile pi_hybrid.c or pi_hybrid.f90, then run it with micrun.sym on four
compute nodes. Observe the usage of MICs on the micsmc monitor.

ii) Vary the numbers of MPI tasks and OpenMP threads. Find out the best
combination of them so that the computational time is the shortest.

iii) Using both CPU and two MICs of each node, compare the computational
time of the following cases:

1) use only one node;

2) use four nodes;

3) 16 nodes.

Summary for symmetric processing

 Use Intel MPI (impi) implementation.

 Create CPU and MIC binaries with and without -mmic respectively.

 Run symmetric jobs on few nodes with mpiexec.hydra .

 Run symmetric jobs on many nodes with micrun.sym .

 Balance works on CPU and MICs to obtain the best performance.

Remarks for Xeon Phi programming

MKL

 If your use MKL, congratulations! MKL functions are automatically offloaded
to Xeon Phi and are optimized.

Non-MKL: If your code is ……

 parallel with OpenMP, explicitly offload the OpenMP blocks to Xeon Phi.

 parallel with pure MPI, run it symmetrically on both CPUs and Xeon Phis.

 parallel with hybrid MPI and OpenMP, either explicitly offload the OpenMP
blocks to Xeon Phi or run it symmetrically on both CPUs and Xeon Phis.

 serial, most likely it becomes slower, because the frequency of one Xeon Phi
core is much lower than that of one CPU core.

Optimization

 In general, a computer program may be optimized so that it
executes more rapidly, or is capable of operating with less
memory storage or other resources, or draw less power.

Optimized codes can be accelerated for both CPU and Xeon
Phi.

Optimization Level

 icc -O3 source.c -o mycode

 The default optimization level -O2

optimization for speed

automatic vectorization

inlining

constant propagation

dead-code elimination

loop unrolling

optimization level -O3

Enables more aggressive optimization

loop fusion

block-unroll-and-jam

if-statement collapse

Using the const Qualifier

slower faster

Common Subexpression Elimination

slower faster

Lower precision is faster

Float is faster than double.

Debugging and Profiling

 Intel VTune Amplifier

 Intel Trace Analyzer and Collector

 GDB: GNU Debug

 TotalView

 Paraview

Intel® VTune™ Amplifier

• Intuitive CPU & coprocessor performance tuning, multi-core scalability,
bandwidth and more

• Quick performance insight with advanced data visualization

• Automate regression tests and collect data remotely

Start VTune Amplifier on SuperMIC

$ ssh –X smic100

$ source
/usr/local/compilers/Intel/parallel_studio_xe_2015/vtune_amplifier_xe_
2015.1.0.367959/amplxe-vars.sh # set up environments

$ amplxe-gui & # graphic interface

$ amplxe-cl # command line interface

 Currently VTune only works for two compute nodes on SuperMIC:
smic099 and smic100.

A example for using VTune: tachyon

 Fast, high quality parallel ray tracer.

 Renders an image, calculating reflections.

A VTune project for CPU

 Set up a VTune project

• Create a VTune project: ->New->Project

• Name the project, click on “Create Project”

• In the “Target System” pull-down menu, select “Local”

• Specify the application /path/to/tachyon_find_hotspots , click on “OK”

 Start a new analysis

• Click on “New Analysis”

• Select “Basic Hotspots”, click on “Start”.

VTune analysis: summary

 CPU time is the sum of the time every thread consumes. (single-threaded in this case).

 Elapsed time > CPU time. Idle time is large.

 grid_intersect shows up at the top of the list as the hottest function.

VTune analysis: summary

 Ran mostly on one logical CPU, which is classified by the VTune Amplifier as a Poor
utilization for a multicore system.

VTune analysis: Bottom-up

 All functions are marked with red bars, which means that the processor cores
were underutilized.

VTune analysis: source code

 Double click the hottest function.

A VTune project for offloading to Xeon Phi

 An example (pi_hybrid_off.c):

calculate the value of pi with integration method.

 Set up a VTune project

• Create a VTune project: ->New->Project

• Name the project, click on “Create Project”

• In the “Target System” pull-down menu, select “Intel Xeon Phi coprocessor (host launch)”

• Specify the application /path/to/pi_hybrid.off , click on “OK”

 Start a new analysis

• Click on “New Analysis”

• Select “Advanced Hotspots”, click on “Start”.

VTune analysis: summary

Vtune result analysis: summary

VTune result analysis: Bottom-up

VTune analysis: Top-down tree

Xeon-Phi enabled applications

 Physics

 Chroma QCD

 QphiX-QCD

 Computational chemistry

 NWChem

 Molecular dynamics

 LAMMPS

 NAMD

 GROMACS

 AMBER

COMPUTATIONAL FLUID DYNAMICS

OpenLB

LBS3D

 Material science

 Quantum ESPRESSO

Finance

 BlackScholes SP and DP

 Monte Carlo SP and DP

 Development tools

 DDT

 Matlab

R

TAU

 Libraries

 Boost

 MAGMA

 MVPICH2

Build Libraries for Xeon-Phi

 Static Libraries with Offload

$ icc -c myobject1.c myobject2.c

$ ifort -c myobject1.f90 myobject2.f90

$ xiar -qoffload-build libname.a myobject1.o myobject2.o

$ icc name.c -L/path/to/lib -llibname -o name

Molecular dynamics simulation I: LAMMPS

 Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a classical
molecular dynamics code distributed by Sandia National Laboratory.

 Has potentials for solid-state materials (metals, semiconductors) and soft matter
(biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be used
to model atoms or, more generically, as a parallel particle simulator at the atomic,
meso, or continuum scale.

 Simulate the time evolution of the input system of atoms or other particles, as
specified in the input script, writing data, including atom positions, thermodynamic
quantities, and other statistics computations.

 Runs on single processors or in parallel using message-passing techniques with a
spatial-decomposition of the simulation domain. The code is designed to be easy to
modify or extend with new functionality.

LAMMPS for Xeon Phi

 A LAMMPS load balancer offloads part of neighbor-list and non-bond force
calculations to the Intel® Xeon Phi™ coprocessor for concurrent calculations with the
CPU. This is achieved by using offload directives to run calculations well suited for
many-core chips on both the CPU and the coprocessor. In this model, the same C++
routine is run twice, once with an offload flag, to support concurrent calculations.

 The dynamic load balancing allows for concurrent 1) data transfer between host and
coprocessor, 2) calculations of neighbor-list, non-bond, bond, and long-range terms,
and 3) some MPI communications. It continuously updates the fraction of offloaded
work to minimize idle times. A standard LAMMPS “fix” object manages concurrency
and synchronization.

 The Intel® package adds support for single, mixed, and double-precision calculations
on both CPU and coprocessor, and vectorization (AVX on CPU / 512-bit vectorization
on Phi™). This can provide significant speedups for the routines on the CPU, too.

Run LAMMPS

 Load LAMMPS (MIC version) with module

module load impi/4.1.3.048/intel64 # Intel MPI

module load lammps/21Jan15/INTEL-14.0.2-impi-4.1.3.048-mic # MIC-enabled LAMMPS

package intel $m mode mixed balance $b
package omp 0
suffix $s
……

 Prepare an input file:

Number of MICs

Fraction of offloading works:
0.0 no offload
0.5 offload half works to MIC
-1 automatically balance

Precision:
single
double
mixed

Suffix:
omp use only CPU with OpenMP
intel use both CPU and MIC

Run LAMMPS

module load impi/4.1.3.048/intel64

 Run with only CPU

$ export OMP_NUM_THREADS=2

$ mpirun -np 10 lmp_intel_phi -in in.lc -v s omp -v m 0 -v b 0

Use the input file in.lc .

Run 10 MPI tasks on CPU. Each MPI task uses 2 threads.

 Run with CPU and MIC

$ export OMP_NUM_THREADS=2

$ mpirun -np 10 lmp_intel_phi -in in.lc -v s intel -v m 1 -v b -1

Run 10 MPI tasks on CPU. Each MPI task uses 2 threads.

And Run 10 MPI tasks on 1 MIC. Each MPI task uses 24 threads.

Exercise 3: Use LAMMPS to calculate liquid crystal structure

Run LAMMPS with the sample input file in.lc for the following cases,
then compare their computational time.

1) Use only CPU, with 20 MPI task and 1 Openmp thread.

2) Use only CPU, with 10 MPI tasks and 2 Openmp threads.

3) Use CPU and one MIC, with 10 MPI tasks and 2 Openmp threads.

4) Use CPU and two MICs, with 10 MPI tasks and 2 Openmp threads.

5) Run case 4) using four nodes.

 NAMD (NAnoscale Molecular Dynamics program) is a freeware molecular
dynamics simulation package

Written using the Charm++ parallel programming model, noted for its parallel
efficiency and often used to simulate large systems (millions of atoms).

 Simulates the life of bio-molecules

 Forces on each atom calculated every step

 Positions and velocities updated and atoms migrated to their new positions

Molecular dynamics simulation II: NAMD

 Satellite Tobacco Mosaic Virus (STMV) is a
small, icosahedral plant virus which worsens the
symptoms of infection by Tobacco Mosaic Virus.

 The entire STMV particle consists of 60
identical copies of a single protein that make up
the viral capsid (coating), and a 1063 nucleotide
single stranded RNA genome which codes for
the capsid and one other protein of unknown
function.

 STMV is useful for demonstrating scaling to
thousands of processors.

NAMD: STMV (virus) benchmark

Run NAMD

 Load NAMD

module load namd/2.10/INTEL-14.0.2-ibverbs # use CPU version

module load namd/2.10/INTEL-14.0.2-ibverbs-mic # use MIC version

 Run NAMD in a PBS script

cd $PBS_O_WORKDIR

for node in `cat $PBS_NODEFILE | uniq`; do echo host $node; done > nodelist

export NPROCS=`wc -l $PBS_NODEFILE |gawk '//{print $1}'`

`which charmrun` ++p $NPROCS ++nodelist nodelist ++remote-shell ssh `which namd2`
stmv.namd > output

 Note: Auto detect the number of MICs on a node. Use all available MICs and CPU.

Exercise 4: Use NAMD to calculate STMV benchmark

Run NAMD with the sample input files stmv.namd, stmv.pdb and stmv.psf
for the following cases, then observe the scaling of computational time.

1) Run the CPU version, using 2 nodes.

2) Run the CPU version, using 8 nodes.

3) Run the MIC version, using 2 nodes.

4) Run the MIC version, using 8 nodes.

References

