INFORMATION
TECHNOLOGY
SERVICES

Basic Shell Scripting

Le Yan/Xiaoxu Guan
HPC User Services @ LSU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Why Shell Scripting

* Imagine your research requires you to run
simulations with a set of different parameters,
one job for each possible combination of values

* For each job, the (laborious and repetitive) tasks
include

— Create a directory
— Copy input files there

— Create a job script with proper parameters and
commands then submit it

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
PN Y
SRR FS
] o0 Y 1] y

Why Shell Scripting

$./13-job-script-autogen.bash -t 270 -nt 5 -dt 10 -v
Tue Sep 20 13:54:32 CDT 2016

A Total of 5 simulations will be run under /Zhome/lyanl/traininglab/bash_scripting_fall 2016:
Temps = 270 280 290 300 310

Using allocation myallocation

Script: /home/lyanl/traininglab/bash_scripting fall _2016/Sim _T270/job.T270.pbs
Job: myprogram.T270

Creating the job script in /Zhome/lyanl/traininglab/bash_scripting_ fall _2016/Sim_T270

e A script can be your friend
— Process command line arguments
— Set up working directories
— Generate job scripts

LSl — Submit jobs

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

=TT S
Why Shell Scripting

* Shell scripts are great for
— Productivity and efficiency enhancement
— System administration
— Repetitive tasks

* Not good for
— Heavy-duty floating point operations
— Extensive file operations (line-by-line operations)
— Visualization

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION

TECHNOLOGY

SERVICES
O tI .

* Recap of Linux Basics
e Shell Scripting
— “Hello World!”
— Special characters
— Arithmetic Operations
— Testing conditions
— Flow Control
— Command Line Arguments
— Arrays
— Functions
— Pattern matching (regular expression)
— Beyond the basics

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

Operating Systems

Application
Shell

* Operating systems
work as a bridge
between hardware
and applications

— Kernel: hardware
Hardware drivers etc.

— Shell: user interface to
kernel

— Some applications
(system utilities)

Kernel

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

: Operating System

INFORMATION
TECHNOLOGY
SERVICES

* Kernel
— The kernel is the core component of most operating systems

— Kernel’s responsibilities include managing the system’s
resources

— It provides the lowest level abstraction layer for the resources
(especially processors and 1/O devices) that application software
must control to perform its functions

— |t typically makes these facilities available to application
processes through inter-process communication mechanisms
and system calls

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

e Shell

— Shell is a fundamental interface for users or applications to
interact with OS kernels;

— Shell is a special program that accepts commands from
users’ keyboard and executes it to get the tasks done;

— Shell is an interpreter for command languages that reads
instructions and commands;

— Shell is a high-level programming language (compared to
C/C++, Fortran, . . .);

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Type of Shell

e sh (Bourne Shell)
— Developed by Stephen Bourne at AT\&T Bell Labs
e csh (CShell)
— Developed by Bill Joy at University of California, Berkeley
e ksh (Korn Shell)
— Developed by David Korn at AT&T Bell Labs
— Backward-compatible with the Bourne shell and includes many features of the C shell
e bash (Bourne Again Shell)

— Developed by Brian Fox for the GNU Project as a free software replacement for the Bourne
shell

— Default Shell on Linux and Mac OSX

— The name is also descriptive of what it did, bashing together the features of sh, csh and ksh
e tcsh (TENEX C Shell)

— Developed by Ken Greer at Carnegie Mellon University

— Itis essentially the C shell with programmable command line completion, command-line
editing, and a few other features.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Shell Comparison
-““mmm

Programming language y y y
Shell variables y y y y y
Command alias n y y y Y
Command history n y y y y
Filename auto-completion n y* y* y y
Command line editing n n y* y y
Job control n y y y y

*: not by default

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Variables

* Linux allows the use of variables
— Similar to programming languages
* Avariable is a named object that contains data
— Number, character or string
* There are two types of variables: ENVIRONMENT and user defined

 Environment variables provide a simple way to share configuration
settings between multiple applications and processes in Linux
— Environment variables are often named using all uppercase letters
— Example: PATH, LD LIBRARY_PATH, DISPLAY etc.

* To reference a variable, prepend $ to the name of the variable, e.g.
$PATH, $LD LIBRARY_ PATH

— Example: $PATH, $LD_LIBRARY_PATH, $DISPLAY etc.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Variables Names

* Rules for variable names
— Must start with a letter or underscore
— Number can be used anywhere else
— Must not use special characters such as @,#,%,S
— Case sensitive

— Example

e Allowed: VARIABLE, VAR1234able, var name,
_ VAR

* Not allowed: 1var, %name, $myvar, var@NAME

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

=TT S
Editing Variables (1)

* How to assignh values to variables depends on the

shell
Type Jbash
Shell name=value
Environment export name=value

* Shell variables is only valid within the current
shell, while environment variables are valid for all
subsequently opened shells.

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Editing Variables (2)

 Example: to add a directory to the PATH variable

export PATH=/path/to/executable:${PATH}

— no spaces except between export and PATH
— Use colon to separate different paths

— The order matters: if you have a customized version of
a software say per |l in your home directory, if you
append the perl path to PATH at the end, your
program will use the system wide per |l not your
locally installed version

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Basic Commands

« Command is a directive to a computer program acting as an
interpreter of some kind, in order to perform a specific task

* Command prompt is a sequence of characters used in a
command line interface to indicate readiness to accept
commands

— lts intent is literally to prompt the user to take action

— A prompt usually ends with one of the characters S,%#,:,> and
often includes information such as user name and the current
working directory

 Each command consists of three parts: name, options and
arguments

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
T'Eid _II‘\)| :__':i;'=

List of Basic Commands
| Name | Funcion

Is Lists files and directories

cd Changes the working directory

mkdir Creates new directories

rm Deletes files and directories

cp Copies files and directories

mv Moves or renames files and directories
pwd prints the current working directory

echo prints arguments to standard output
cat Prints file content to standard output

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

File Permission (1)

Since *NIX OS's are designed for multi user environment, it is
necessary to restrict access of files to other users on the system.

* In *NIX OS's, you have three types of file permissions
— Read (r)
— Write (w)
— Execute (x)
e for three types of users
— User (u) (owner of the file)
— Group (g) (group owner of the file)
— World (o) (everyone else who is on the system)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATIO
TECHNOLOG
SERVICES

total 4056
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

drwxr-xr-x
—-rW-r-—-r--
drwxr-xr-x
—rWXr-=-Xr-X

File Permission (2)

[lyanl@mike2 ~]$ Is -al

lyanl
root

lyanl
lyanl
lyanl
lyanl
lyanl

Admins 4096
root 16384
root 4096
Admins 4096
Admins 12
Admins 4096

Admins 627911

Sep
Aug
Apr
Jun
Aug
May
Aug

29

12
28
28

13:30 .

13:31
13:07

2013
13:53
10:13
10:13

* The first column indicates the type of the file
— d for directory
— I for symbolic link
— - for normal file

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016

HPC training series Fall 2016

adminscript
allinea
a.m

.ansys
a.out

N
¥

INFORMATION
TECHNOLOGY
VICF
achviLEs

File Permission (2)

[lyanl@mike2 ~]$ Is -al

total 4056

drwXr-xXr-x lyanl Admins 4096 Sep 2 13:30 .
drwxr-xXr-x root root 16384 Aug 29 13:31 ..
drwxr-xr-x lyanl root 4096 Apr 7 13:07 adminscript
drwxr-xXr-x lyanl Admins 4096 Jun 4 2013 allinea
-rw-r—-r-- lyanl Admins 12 Aug 12 13:53 a.m
drwxr-xr-x lyanl Admins 4096 May 28 10:13 .ansys
—FrWXr-Xr-X lyanl Admins 627911 Aug 28 10:13 a.out

* The next nine columns can be grouped into
three triads, which indicates what the owner,
the group member and everyone else can do

LSL T

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

File Permission (2)

[lyanl@mike2 ~]$ Is -al

total 4056

drwXr-xXr-x lyanl Admins 4096 Sep 2 13:30 .
drwxr-xXr-x root root 16384 Aug 29 13:31 ..
drwxr-xXr-x lyanl root 4096 Apr 7 13:07 adminscript
drwxr-xXr-x lyanl Admins 4096 Jun 4 2013 allinea
-rw-r—-r-- lyanl Admins 12 Aug 12 13:53 a.m
drwxr-xr-x lyanl Admins 4096 May 28 10:13 .ansys
—FrWXr-Xr-X lyanl Admins 627911 Aug 28 10:13 a.out

* We can also use weights to indicate file permission
— r=4, w=2, x=1
— Example: rwx=442+1=7,r-x=4+1=5,r--=4
— This allows us to use three numbers to represent the permission
— Example: rwxr-xr-w = 755

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Input & Output Commands (1)

The basis I/O statement are echo for displaying to screen and read
for reading input from screen/keyboard/prompt
« echo

— The echo <arguments> command will print arguments to screen

or standard output, where arguments can be a single or multiple
variables, string or numbers

e read

— The read statement takes all characters typed until the Enter key is
pressed

— Usage: read <variable name>
— Example: read name

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Input & Output Commands (2)

e Examples

$ echo $SHELL

/bin/bash

$ echo Welcome to HPC training
Welcome to HPC training

$ echo "Welcome to HPC training”
Welcome to HPC training

* By default, echo eliminates redundant whitespaces (multiple
spaces and tabs) and replaces it with a single whitespace between
arguments.

— To include redundant whitespace, enclose the arguments within
double quotes

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

I T S
/O Redirection

* There are three file descriptors for I/O streams (remember
everything is a file in Linux)
— STDIN: Standard input
— STDOUT: standard output
— STDERR: standard error

* 1 represents STDOUT and 2 represents STDERR

* |/O redirection allows users to connect applications
— <:connects a file to STDIN of an application
— >:connects STDOUT of an application to a file
— >>: connects STDOUT of an application by appending to a file

— |: connects the STDOUT of an application to STDIN of another
application.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

Outline

e Shell Scripting
— “Hello World!”
— Special characters
— Arithmetic Operations
— Testing conditions
— Flow Control
— Command Line Arguments
— Arrays
— Functions
— Pattern matching (regular expression)
— Beyond the basics

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
PN Y
SRR FS
] o0 Y 1] y

Writing and Executing a Script

$ cat 0l1-hello-world.bash

#1/bin/bash

Print Hello world ...

echo

echo ""Hello World!"

echo "Greetings from" $USER "in" “pwd™ "on" $HOSTNAME
echo "Today is" “date +"%A %B-%d-%Y" "

echo

$ chmod a+x 0l1-hello-world.bash

$./01-hello-world.bash

Hello World!

Greetings from lyanl in /home/lyanl/traininglab/bash_scripting fall 2016 on
mike5
Today is Tuesday September-20-2016

* Three steps
— Create and edit a text file
— Set the appropriate permission

Lsu — Execute the script

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
VI1CE
achviLEs

Shell Script Components

#1/bin/bash

Print Hello world ...

echo

echo ""Hello World!"

echo "'Greetings from"™ $USER "in" “pwd~ "on" $HOSTNAME
echo "Today is'"™ “date +"%A %B-%d-%Y" "

echo

* Shebang line: the first line is called the "Shebang” line.
It tells the OS which interpreter to use.

e Comments: the second line is a comment. All
comments begin with "#".

e Commands: the third line and below are commands.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

sy [ESTEE
Be A GOOd ”SC ri pto rn

e Add comments and annotations so that

people, yourself included, can understand
what the script does

* Print helpful, human-readable information to
screen

— Don’t print garbage though!

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
P HINOLE N ¥ Y
SERVICES

Special Characters and Operators (1)

1 Starts a comment line.

$ Indicates the name of a variable.

\ Escape character to display next character literally

{} Used to enclose name of variable

’ Command separator, which allows one to put two or more commands on

the same line.
> Terminator in a case option

] “dot” command. Equivalent to source (for bash only)

CENTER FOR COMPUTATION :
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

LN PURMAL TN
P HINOLE N ¥ Y
SEFRVICES

Special Characters and Operators (2)

$? Exit status of the last executed command.

$$ Process ID the current process.

1] Test enclosed expression.

(11 Test enclosed expression. Has more functionalities than []
$[1, Integer expansion

$CO)

&& Logical AND

11 Logical OR

! Logical NOT

CENTER FOR COMPUTATION
& TECHNOLOGY

LS50 i

9/21/2016 HPC training series Fall 2016

 Double quotes
— Enclosed string is expanded
* Single quotation “~

— Enclosed string is read literally

~

* Back quotation -

— Enclose string is executed as a command

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
P HINOLE N ¥ Y
SERVICES

Special Characters - Examples

$ Hil=Hello

$ echo HI

HI

$ echo $HI
Hello

$ echo \$HI
$H1

$ echo "$HI"
Hello

$ echo "$HI™"
$H1

$ echo "$HILe™

$ echo "${HI1}Le"
HelloLe

$ echo “pwd”
/home/lyanl/traininglab/bash_scripting fall 2016

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INF(‘\.1% 5\
I'E{ l‘\

Arithmetic Operations (1)

* You can carry out a number of numeric integer
operations

L5LU)

CENTER FOR COMPUTATION

& TECHNOLOGY

9/21/2016

Addition +
Subtraction =
Multiplication *
Division /
Exponentiation ** (bash only)
Modulo %

HPC training series Fall 2016

INFORMATION
TECHNOLOGY
VIR
achviLEs

Arithmetic Operations (2)

$((.)) or$[..] commands

— Addition: $((1+2))

— Multiplication: $[$a*$b]

— The S sign can be dropped: $[a*b]

e Orusethe let command: let c=%a-$b

Or use the expr command: c=“expr $a - $b*“

* You can also use C-style increment operators:
let c+=1 orlet c--

* Space required around operator in the eXpr command

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Arithmetic Operations (3)

* For floating numbers

— You would need an external calculator like the GNU bc

e Add two numbers
echo "3.8 + 4.2" | bc

* Divide two numbers and print result with a precision of 5 digits:
echo "'scale=5; 2/5" | bc

* Call bc directly:
bc <<< “scale=5; 2/5”

 Usebc -1 toseeresultin floating point at max scale:
bc -1 <<< ""2/5"

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Declare command

* Use the declare command to set variable and functions
attributes
* Create a constant variable, i.e. read-only
— declare -r var
— declare -r varName=value
 Create an integer variable
— declare -1 var
— declare -1 varName=value

* You can carry out arithmetic operations on variables declared as
integers

$ j=10/5; echo $j
10/5
$ declare -1 j; j=10/5; echo $j

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Test Conditions

* Command: test
— Evaluate a conditional expression

* Use the exit status variable ($?) to check
results

$ x=1

$ test $x == 1"

$ echo $?

0

$ test $x -eq ""0"; echo $?
1

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

File Tests

opertion

File exists -e .bashrc
File is a regular file -f _bashrc
File is a directory -d /home

File is not zero size -s .bashrc
File has read permission -r .bashrc
File has write permission -w .bashrc
File has execute permission -X .bashrc

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

Integer Comparisons

Operation basn

Equal to 1 —eq 2

Not equal to $a —ne $b
Greater than $a —gt $b
Greater than or equal to 1 —ge $b
Less than $a -1t 2
Less than or equal to $a —le $b

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

String Comparisons

Operation basn

Equal to $a == $b
Not equal to $a = $b
Zero length or null -z $a
Non zero length -n $a

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

Logical Operators

Operation basn

I (NOT) I -e _bashrc
—-a (AND) -f _bashrc —a -s .bashrc
-0 (OR) -f .bashrc -o -t _bash _profile

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Flow Control

* Shell scripting languages execute commands in
sequence similar to other programming languages

— Control constructs can change the order of command
execution

* Control constructs in bash are
— Conditionals: 1T
— Loops: for, while, until
— Switches: case, switch

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

sy [T B
1T..else..T1 Constructs

e Tests whether the exit status of a list of commands is O,
and if so, execute one or more commands

iIT [condition 1]; then
some commands

elif [condition 2]; then
some commands

else
some commands

i

* Note the space between condition and the brackets

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

NFORMATIO
SFRVICES

Create a directory 1T 1t does not exist
it ! [-e /path/to/directory];
then
mkdir /path/to/directory
Ti

iIT [$x —ge 10] —a [$x —gt 100] ; then
echo “something”

else
echo “something else”

Ti

Equivalent to the construct above

if [[$x —ge 10 && $x —gt 100]] ; then
echo “something”

else
echo “something else”

Ti

LS

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

Loop Constructs

* Aloop is a block of code that iterates a list of
commands

* When to stop depends on the loop control
condition

* Loop constructs
— bash: for, while anduntil

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
SERVICES

For Loop

 The For loop is the basic looping construct in bash

for arg in list
do

some commands
done

* The For and do lines can be written on the same line:
for arg 1n list; do
» Tor loops can also use C style syntax

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INF(.'.“\
'E(n:\

For Loop

for 1 In "seq 1 10" for 1 In ((i=1;i<=10;i++))
do do

echo $i echo $i
done done

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

While Loop

 The whi e construct tests for a condition at the top of
a loop and keeps going as long as that condition is true.

* In contrast to a For loop, awhi le loop finds use in

situations where the number of loop repetitions is not
known beforehand.

while [condition]
do

some commands
done

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

LN PURMAL TN
P HINOLE N ¥ Y
SERVICES

While Loop - Example

$ cat factorial.sh
#1/bin/bash

read counter

factorial=1

while [$counter -gt 0]

do
factorial=3$(($factorial * $counter))
counter=$(($counter - 1))

done

echo $factorial

$./factorial.sh
A

LS *

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016

HPC training series Fall 2016

Until Loop

 The unti I construct tests for a condition at the top of a
loop, and keeps looping as long as that condition is false
(the opposite of whi le loop)

until[condition]
do

some commands
done

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Switching Constructs - bash

 The case and select constructs are technically not loops since
they do not iterate the execution of a code block

* Like loops, however, they direct program flow according to
conditions at the top or bottom of the block

case construct
case variable 1In

iy - ', # select construct
conditionl™) _ _
select variable [list]
some commands do
“condition2™) some commands
break
some commands
. done
esac

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016

HPC training series Fall 2016

INFORMATION
PN Y
SRR FS
] o0 Y 1] y

$./dooper.sh

Print two numbers

4 8

What operation do you want to do?

1) add 3) multiply 5) exponentiate 7) all
2) subtract 4) divide 6) modulo 8) quit
#? 3

4 * 8 = 32

#? 7

4 + 8 = 12

4 - 8 = -4

4 * 8 = 32

4 ** 8 = 65536

4/ 8=0

4 % 8 = 4

#? 8

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Command Line Arguments

* bash can take command line arguments
— Execute ./myscript argl arg2 arg3

— Within the script, the positional parameters $0, $1,
$2, $3 correspondto ./myscript, argl, arg2,
and arga3, respectively.

— $#: number of command line arguments
— $*: all of the positional parameters, seen as a single word
— $@: same as $* but each parameter is a quoted string.

— shi1ft N: shift positional parameters from N+1 to $# are
renamed to variable names from $1to$# - N + 1
LSL) :

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

— | INFORMATION
$ cat shift.sh =U s nipepat
#1/bin/bash SERVICES

USAGE=""USAGE: $0 <at least 1 argument>"
it [["$#" -1t 1]]; then
echo $USAGE

exit
fi
echo "Number of Arguments: ' $#
echo "List of Arguments: " $0@
echo "Name of script that you are running: " $0

echo ""Command You Entered:" $0 $*

while ["$#" -gt 0]; do
echo "Argument List is: " $0
echo "Number of Arguments: " $#
shift

done

$./shift.sh “seq 4 6~

Number of Arguments: 3

List of Arguments: 4 5 6

Name of script that you are running: ./shift.sh
Command You Entered: ./shift.sh 4 5 6

Argument List is: 4 5 6

Number of Arguments: 3

Argument List is: 5 6

Number of Arguments: 2
Lsu Argument List i1s: 6

CENTER FOR COMPUTATION Number of Arguments: 1
& TECHNOLOGY

9/21/2016

HPC training series Fall 2016

Arrays (1)

* bash supports one-dimensional arrays

* Array elements may be initialized with the varirable[1]
notation
— Example: Xxarray[4]=1

* Orinitialize an array during declaration
— Example: name=($firstname ”last name?”)

« Reference an element 1 of an array name: ${name[1]}

* Print the whole array

— Example: ${name[@]}
* Print length of array

— Example: ${#name[@] }

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
P HINOLE N ¥ Y
SERVICES

$ cat name.sh
#1/bin/bash

echo "Print your first and last name"
read firstname lastname
name=($firstname $lastname)

echo "Hello " ${name[@]}

echo "Enter your salutation®

read title

echo "Enter your suffix"

read suffix

name=($title "${name[@]}" F$suffix)
echo "Hello " ${name[@]}

unset name[2]

echo "Hello " ${name[@]}

$./name.sh

Print your first and last name
Le Yan

Hello Le Yan

Enter your salutation

Mr .

Enter your suffix

I su Hello Mr. Le Yan R
Hello Mr. Le [
CENTER FOR COMPUTATION

& TECHNOLOGY

9/21/2016

HPC training series Fall 2016

Arrays (2)

* Print length of element 1 of array name:
${#name[1]}
— ${#name} prints the length of the first element of
the array

 Add an element to an existing array

— Example: name=($title ${name[@]})
* Copy the values of an array to another

— Example: user=(${name[@]}H)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Arrays (3)

* Concatenate two arrays
— Example: nameuser=(${name[@]}

${user[@1})
* Delete an entire array: unset name

* Remove an element i from an array
—unset name|[1]

* Note: bash array index starts from O

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Functions (1)

* A functionis a code block that implements a set of
operations, a “black box” that performs a specified task.

* Consider using a function
— When there is repetitive code
— When a task repeats with only slight variations in procedure

 Two ways to declare a function:

function function _name { function_name () {
some commands some commands

} }

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

$ cat shiftl0.sh U NEORM
#1/bin/bash :

usage

O A1
echo "USAGE: $0 [atleast 11 arguments]™

exit

}

[["$#" -1t 11]] && usage

echo
echo
echo
echo
echo
echo
${11}

echo
echo
shift
echo
echo

& TECHNOLOGY

9/21/2016

“"Number of Arguments: " $#

"List of Arguments: " $@

""Name of script that you are running: " $0
"Command You Entered:" $0 $*

"First Argument™ $1

"Tenth and Eleventh argument”™ $10 $11 ${10}

“"Argument List is: " $0
“"Number of Arguments: " $#

9

"Argument List is: " $0
"Number of Arguments: " $#

L5SL) s ./shifti0.sh

cenTeR FOR compuTaTld USAGE -

./shift_.sh <at least 1 argument>

Functions (2)

* You can also pass arguments to a function as if it were
a script
— Exampe: func argl arg2 arg3

 All function parameters can be accessed via S1, $2,

$3...

* $0 always point to the shell script name
* $* or $@ holds all parameters passed to a function

* $# holds the number of positional parameters passed
to the function

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

Functions (3)

* Array variable called FUNCNAME contains the names of
all shell functions currently in the execution call stack.

* By default all variables are global.

* Modifying a variable in a function changes it in the
whole script.

* You can create a local variables using the local
command
local var=value
local varName

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

$ cat factorial3.sh
#1/bin/bash

usage) {
echo "USAGE: $0 <integer>"

exit

}

factorial({
local i=%1
local T
declare -1 1
declare -1 T

if [["$i” -le 2 && "$i" -ne 0]]; then
echo $i
elif [["$i" -eq 0 1]; then
echo 1
else
=3((C $1 - 1))
f=$(factorial $f)
=3(($f * $i))
echo $Ff
i

}

9/21/2016

HPC training series Fall 2016

it [["$#" -eq 0]]; then
usage
else
for 1 in $@ ; do
x=$(factorial $i)
echo "Factorial of $i is $x"
done
i
$./factorial3.sh
USAGE: ./factorial3.sh <integers>
$./factorial3.sh 1 2 4 6 7
Factorial of 1 1s 1
Factorial of 2 i1s 2
Factorial of 4 i1s 24
Factorial of 6 1s 720
Factorial of 7 1s 5040

A function may recursively call
itself even without use of local
variables.

Regular Expressions

* Aregular expression (regex) is a extremely powerful method of
using a pattern to describe a set of strings.

* Regular expressions enable strings that match a particular pattern
within textual data records to be located and modified.

* Regular expressions are constructed analogously to arithmetic
expressions by using various operators to combine smaller
expressions

* Regular expressions are often used within utility programs that
manipulate textual data.
— Command line tools: grep, egrep, sed
— Editors: vi, emacs

— Languages: awk, perl, python, php, ruby, tcl, java,
Javascript, _NET

LS50

CENTER FOR COMPUTATION l
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

Bracket Expression

.

— Matches a single character that is contained within the brackets. For
example, [abc] matches "a", "b", or "c". [a-z] specifies a range

which matches any lowercase letter from "a" to "z".

— These forms can be mixed: [abcx-z] matches "a", "b", "c", "x", "y",
or "z", as does [a-cx-2] .
- []
— Matches a single character that is not contained within the brackets.
For example, [*abc] matches any character other than "a", "b", or
"c¢".[Ma-z] matches any single character that is not a lowercase

letter from "a" to "z".

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Metacharacters

; Any character except \n

Start of a line

$ End of a line

\S | Any whitespace \S | Any non-whitespace

\d | Any digit \D | Any non-digit

\w | Any word \W | Any non-word

\b | Any word boundary \B | Anything except a word boundary

Special characters suchas ., ©, % need to be
escaped by using “\” if the literals are to be

Lsu matched

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

INFORMATION
I'Ed INOLOH Y
SERVICFES

Regex Examples

Pattern Matches Does not match
line Feline animals Three LINEs

Two Binebackers FeLine animals
~ine line 1 has eight characters feline animals

l inebackers two lines of text
\bline\b There are one line of text Three lines of text

The file has only one line.

1.ne line

lane

I1$ne

\$\d\.\d\d $3.88

LS50 |

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

Quantifiers

* Allow users to specify the number of

occurrence
* Zero or more
+ One or more
? Zero or one

{n} | Exactly ntimes
{n,} | Atleastn times
{n,m} | At least n, but at most m times

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

INFORMATION
PN Y
SRR FS
] o0 Y 1] y

Regex Examples

Pattern Matches
ca?t ct
cat
ca*t ct
cat
caat
ca+t cat
caat
caaat
ca{3}t caaat

\d{3}-?\d{3}-7\d{4} 2255787844
000-000-0000
291-1938183
573384-2333
(:ENT%&W&%»HTMN ' :
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

Alternation

* Use “]” to match either one thing or another

— Example: pork] chicken will match pork or
chicken

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

Grouping And Capturing Matches

e Use parentheses () to
— Group atoms into larger unit
— Capture matches for later use

Pattern Matches
(ca?t){2,3} ctct

ctctct

catcat

catcatcat
A\d*\.)?\d+ Integers or decimals

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

INFORMATION
[ECHNOLOGY
SERVICES

A Great Learning Source

e http://www.regexr.com/

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

e grepisa Unix utility that searches through either information piped to it or files.
* egrepis extended grep (extended regular expressions), same as grep -E

* Use zgrep for compressed files.

* Usage: grep <options> <search pattern> <files>

e Commonly used options

-1 ignore case during search

-r,-R search recursively

-V invert match i.e. match everything except pattern

-1 list files that match pattern

-L list files that do not match pattern

-Nn prefix each line of output with the line number within its input file.

-A num print num lines of trailing context after matching lines.

-B num print num lines of leading context before matching lines.

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

grep Examples (1)

» Search files that contain the word node in the examples directory

$ egrep node *

checknodes.pbs:#PBS -0 nodetest.out

checknodes.pbs:#PBS -e nodetest.err

checknodes.pbs:for nodes in "${NODES[@]}"; do
checknodes.pbs: ssh -n $nodes “echo $HOSTNAME *$i” ~ &
checknodes.pbs:echo "Get Hostnames for all unique nodes"

* Repeat above search using a case insensitive pattern match and print line
number that matches the search pattern

$ egrep -in node *

checknodes.pbs:20:NODES=(“cat ""$PBS_NODEFILE"“)
checknodes.pbs:21:UNODES=(“uniq ""$PBS_NODEFILE™“)
checknodes.pbs:23:echo ""Nodes Available: " ${NODES[@]}
checknodes.pbs:24:echo "Unique Nodes Available: " ${UNODES[@]}
checknodes.pbs:28:for nodes in "${NODES[@]}"; do
checknodes.pbs:29: ssh -n $nodes “echo $HOSTNAME ’$i”> ~ &
checknodes.pbs:34:echo "Get Hostnames for all unique nodes"
Lsu checknodes.pbs:39: ssh -n ${UNODES[$i]} “echo $HOSTNAME *$i~” ~

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

grep Examples (2)

e Print files that contain the word "counter”

$ egrep -1 counter *

factorial2.sh
factorial .csh
factorial .sh

e List all files that contain a comment line i.e. lines that begin with "#“

$ egrep -1 “™g¢” *

backups.sh
checknodes.pbs
dooperl.sh
dooper.csh
dooper.sh
factorial2.sh
factorial3.sh
factorial .csh
factorial.sh
hello.sh
name.csh N
LSU =5 |
CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

grep Examples (3)

e List all files that are bash or csh scripts i.e. contain a line that end in
bash or csh

$ egrep -1 “bash$|csh$” *

backups.sh
checknodes.pbs
dooperl.sh
dooper.csh
dooper.sh
factorial2.sh
factorial3.sh
factorial .csh
factorial .sh
hello.sh
name.csh
name.sh
nestedloops.csh
nestedloops.sh
quotes.csh
quotes.sh

Lsu shift10.sh l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

INFORMATION
[ECHNOLOGY
SERVICES

Outline

— Beyond the basics

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

9/21/2016 HPC training series Fall 2016

INFORMATION
TECHNOLOGY
VICF
achviLEs

» sed ("stream editor") is Unix utility for parsing and
transforming text files.

— Also works for either information piped to it or files

» sed is line-oriented - it operates one line at a time and
allows regular expression matching and substitution.

* sed has several commands, the most commonly used
command and sometime the only one learned is the
substitution command, S

echo day | sed “s/day/night/”

night

CENTER FOR COMPUTATION l
& TECHNOLOGY .

3/4/2015 HPC training series Spring 2015

INFORMATION
SFRVICES

List of sed commands and flags

Flags Operation Command Operation

-e combine multiple commands S substitution

o i read commands from file g global replacement

-h print help info p print

-n disable print i ignore case

-V print version info d delete

-r use extended regex G add newline
w write to file
X exchange pattern with hold buffer
h copy pattern to hold buffer
, separate commands

& TECHNOLOGY =

3/4/2015 HPC training series Spring 2015

sed Examples (1)

* Double space a file

$ sed G hello.sh

#1/bin/bash

My First Script

echo "Hello World!"

* Triple space a file sed 'G;G’

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

sed Examples (2)

 Add the -e to carry out multiple matches.

cat hello.sh | sed -e ’s/bash/tcsh/g” -e ’“s/First/First tcsh/g’

#1/bin/tcsh
My First tcsh Script
echo ""Hello World!"

e Alternate form
sed “s/bash/tcsh/g; s/First/First tcsh/g” hello.sh

#1/bin/tcsh
My First tcsh Script
echo ""Hello World!"

* The default delimiter is slash (/), but you can change it to whatever you want
which is useful when you want to replace path names

sed “s:/bin/bash:/bin/tcsh:g” hello.sh

#1/bin/tcsh
My First Script

Lsu echo ""Hello World!™ l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

sed Examples (3)

* If you do not use an alternate delimiter, use backslash (\) to escape the
slash character in your pattern

sed *s/\/bin\/bash/\/bin\/tcsh/g” hello.sh

#1/bin/tcsh
My First Script
echo ""Hello World!"

* If you enter all your sed commands in a file, say sedscript, you can
use the —T flag to sed to read those commands

cat sedscript
s/bash/tcsh/g
sed -T sedscript hello.sh

#1/bin/tcsh
My First Script

I su echo ""Hello World!" l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

sed Examples (4)

e sed can also delete blank lines from a file
sed */"$/d” hello.sh

#1/bin/bash
My First Script
echo ""Hello World!"

 Delete line n through min a file
sed *2,4d” hello.sh

#1/bin/bash
echo ""Hello World!"

* Insert a blank line above every line which matches pattern

sed “/First/{x;p;x} hello.sh

#1/bin/bash

Lsu # My First Script l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

echo ""Hello World!"

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

sed Examples (5)

* |nsert a blank line below every line which matches
pattern

sed */First/G” hello.sh
#1/bin/bash

My First Script

echo ""Hello World!"

* Insert a blank line above and below every line which
matches pattern

sed */First/{x;p;%x;G}> hello.sh

#1/bin/bash

My First Script

Lsu echo ""Hello World!™ l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

sed Examples (6)

* Print only lines which match pattern (emulates grep)

sed -n */echo/p” hello.sh

echo ""Hello World!"

e Print only lines which do NOT match pattern (emulates grep -v)
sed -n */echo/!p” hello.sh

#1/bin/bash
My First Script

* Print current line number to standard output

sed -n */echo/ =" quotes.sh

5
6
7
8
9
10
11 8.
= T l
CENTER FOR COMPUTATION 13

& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

INFORMATION
I'Ed INOLOH Y
SERVICFES

sed example (7)

* |f you want to make substitution in place, i.e. in the file,
then use the —1 command. If you append a suffix to -1,
then the original file will be backed up as
fi1lename.suffix.

cat hellol.sh

#1/bin/bash

My First Script

echo "Hello World!"

sed -1.bak -e ’“s/bash/tcsh/g” -e *s/First/First tcsh/g” hellol.sh
cat hellol.sh

#1/bin/tcsh

My First tcsh Script

echo ""Hello World!"

cat hellol.sh.bak

I 5' #1/bin/bash
CENTER FOR COME # My First SCI"Ipt i
& TECHNOL(echo ""Hello World!"

3/4/2015 HPC training series Spring 2015

sed Examples (8)

* Print section of file between patternl and pattern2

cat nh3-drc.out | sed -n */START OF DRC CALCULATION/,/END OF ONEELECTRON INTEGRALS/p~

START OF DRC CALCULATION

R R R R R R R R R R R R R R R R R

TIME MODE Q P KINETIC POTENTIAL TOTAL

FS BOHR*SQRT(AMU) BOHR*SQRT(AMU)/FS E ENERGY ENERGY
0.0000 L 1 1.007997 0.052824 0.00159 -56.52247 -56.52087
L 2 0.000000 0.000000

L 3 -0.000004 0.000000

L 4 0.000000 0.000000

L 5 0.000005 0.000001

L 6 -0.138966 -0.014065

7.0 0.00000 0.00000 0.00000 0.00000 0.00000 -0.00616
1.0 -0.92275 1.59824 0.00000 0.00000 0.00000 0.02851
1.0 -0.92275 -1.59824 0.00000 0.00000 0.00000 0.02851
1.0 1.84549 0.00000 0.00000 0.00000 0.00000 0.02851

UNITS ARE HARTREE/BOHR E’X E’Y E’Z
l 1 NITROGEN 0.000042455 0.000000188 0.000000000
2 HYDROGEN 0.012826176 -0.022240529 0.000000000

CENTER| 3 HYDROGEN 0.012826249 0.022240446 0.000000000
&| 4 HYDROGEN -0.025694880 -0.000000105 0.000000000
...... END OF ONE-ELECTRON INTEGRALS

sed Examples (9)

* Print section of file from pattern to end of file

cat h2o-opt-freq.nwo | sed -n */CITATION/,$p’

CITATION

Please use the following citation when publishing results

obtained with NWChem:

. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma,
. valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, P. Nichols,

. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan, R. J. Harrison,

. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan,

. Wu, T. Van Voorhis, A. A. Auer, M. Nooijen,

. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao,

. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell,

. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan,
. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe,

. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield,

. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing,

. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong,
and Z. Zhang,

"NWChem, A Computational Chemistry Package for Parallel Computers,

Version 5.1" (2007),
Ls Pacific Northwest National Laboratory,

CcENTER FOR co| RIchland, Washington 99352-0999, USA.
& TECHNG Total times cpu: 3.4s wall: 18.5s

3/4/2015 HPC training series Spring 2015

OXTWAXRXROTOTMO=ZOmMEM

INFORMATION
TECHNOLOGY
SERVICES

sed One-liners

* sed one-liners:
http://sed.sourceforge.net/sed1line.txt

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

awk

* The awk text-processing language is useful for such tasks as:
— Tallying information from text files and creating reports from the results.
— Adding additional functions to text editors like "vi".
— Translating files from one format to another.
— Creating small databases.
— Performing mathematical operations on files of numeric data.
 awk has two faces:
— It is a utility for performing simple text-processing tasks, and
— Itis a programming language for performing complex text-processing tasks.
 awk comes in three variations
— awk : Original AWK by A. Aho, B. W. Kernighnan and P. Weinberger from AT&T
— nawk : New AWK, also from AT&T

— gawk : GNU AWK, all Linux distributions come with gawk. In some distros,
awk is a symbolic link to gawk.

LS50

CENTER FOR COMPUTATION l
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

s 0000 [ESTEE
awk Syntax

* Simplest form of using awk

—awk pattern {action}
« pattern decides when action is performed

— Most common action: print
— Print file dosum.sh: awk *{print $0}* dosum.sh

— Print line matching bash in all . sh files in current
directory: awk ’/bash/{print $0}> *.sh

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/4/2015 HPC training series Spring 2015

NFORMATIO
SFRVICES

awk Patterns

BEGIN special pattern which is not tested against input. Action will be performed
before reading input.

END special pattern which is not tested against input. Action will be performed
after reading all input.

/regular expression/ the associated regular expression is matched to each input line that is read

relational used with the if, while relational operators
expression
&& logical AND operator used as patternl && pattern2. Execute action if patternl

and pattern2 are true

11 logical OR operator used as patternl || pattern2. Execute action if either
patternl or pattern2 is true

logical NOT operator used as !pattern. Execute action if pattern is not matched

?: Used as patternl ? pattern2 : pattern3. If patternl is true use pattern2 for
testing else use pattern3

patternl, pattern2 Range pattern, match all records starting with record that matches patternl
continuing until a record has been reached that matches pattern2

L>L l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

Awk Examples

* Print list of files that are csh script files

awk /"M\I\/bin\/tcsh/{print FILENAME}~ *

dooper.csh
factorial .csh
hellol.sh
name.csh
nestedloops.csh
quotes.csh
shift.csh

* Print contents of hello.sh that lie between two patterns

awk “/™"M\1\/bin\/bash/,/echo/{print $0}” hello.sh

#1/bin/bash
My First Script
echo ""Hello World!"

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

How awk Works

* awk reads the file being processed line by line.

* The entire content of each line is split into columns
with space or tab as the delimiter. The delimiter can be
changed as will be seen in the next few slides.

 To print the entire line, use $0.

* The intrinsic variable NR contains the number of
records (lines) read.

* The intrinsic variable NF contains the number of fields
or columns in the current line.

CENTER FOR COMPUTATION
& TECHNOLOGY

Lsu l we
b >
",

3/4/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Changing Field Delimiter

* By default the field delimiter is space or tab.
To change the field delimiter use the

-F<delimriter> command.

CENTER FOR COMPUTATION
& TECHNOLOGY

Lsu l e,
N S

3/4/2015 HPC training series Spring 2015

r_l "l B
uptime

11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11, 0.17
uptime | awk {print $1,NF}’

11:19am 0.17

uptime | awk -F: *{print $1,NF}’

11 0.12, 0.10, 0O.16

for 1 in $(seq 1 10); do touch File${i}.dat ; done
Is file*

TfilelO.dat file2.dat filed4_dat file6.dat file8.dat
Tfilel_.dat file3.dat file5.dat file7.dat file9.dat

for 1 In file* ; do

> prefix=$(echo $i | awk -F. “{print $1}°)
> suffix=%$(echo $i | awk -F. “{print NF}”)
> echo $prefix $suffix $i

> done

filelO dat filelO.dat
filel dat filel.dat
file2 dat file2.dat
file3 dat file3.dat
filed4 dat file4.dat
file5 dat file5.dat
file6 dat file6.dat
file7 dat file7.dat
cei File8 dat file8.dat
file9 dat file9.dat

4720 HPC training series Spring 20

Formatting Output (1)

* Printing an expression is the most common
action in the awk statement. If formatted output
is required, use the printf format.

* The print command puts an explicit newline
character at the end while the printf
command does not.

echo hello 0.2485 5 | awk “{printf “%s %f %d %05d\n”,$1,%$2,$3,$3}"

hello 0.248500 5 00005

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/4/2015 HPC training series Spring 2015

INFORMATION
P HINOLE N ¥ Y
SERVICES

Formatting Output (2)

* Format specifiers are similar to the C-
programming language

%d, % decimal number

%e , %E floating point number of the form [-]d.dddddd.e[]dd. The %E
format uses E instead of e.

%F floating point number of the form [-]ddd.dddddd

%g , %G Use %e or %f conversion with nonsignificant zeros truncated. The

%G format uses %E instead of %e

%s character string

CENTER FOR COMPUTATION :

& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

Formatting Output (3)

* Format specifiers have additional parameter which may lie between the %
and the control Letter

0 A leading O (zero) acts as a flag, that indicates output should be padded with
zeroes instead of spaces.

width The field should be padded to this width. The field is normally padded with
spaces. If the O flag has been used, it is padded with zeroes.

.prec A number that specifies the precision to use when printing.

* String constants supported by awk
\\ Literal backslash
\n newline
\r carriage-return

Lsu \t horizontal tab [

CENTER FOR COMPUTATION \V ve rtlca I ta b

& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

sy [ESTEE
awk Variables

* Like all progamming languages, awk supports the use of variables. Like
shell, variable types do not have to be defined.

 awk variables can be user defined or could be one of the columns of the
file being processed.

* Unlike Shell, awk variables are referenced as is i.e. no $ prepended to
variable name (except for the special variables such as $1, $2 etc).

awk “{print $1} hello.sh

#1/bin/bash
#
echo

awk “{col=%$1;print col,$2}” hello.sh

#1/bin/bash
My

Lsu echo ""Hello l

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

Conditionals and Loops (1)

 awk supports
— 1F ... else 1T .. else conditionals.
— while and for loops
* They work similar to that in C-programming
* Supported operators: ==, =, >, >=, <, <=, ~ (string matches), !~
(string does not match)

awk *{if (NR > 0){print NR,”:”, $0}}” hello.sh
1 : #1/bin/bash

2 :

3 - # My First Script

4 -

5

: echo "Hello World!"

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

INFORMATION
TECHNOLOGY
VIR
achviLEs

Conditionals and Loops (2)

* The for command can be used for processing
the various columns of each line

cat << EOF | awk *{for (i=1;i<=NF;i++){if (i==1){a=S%i}else if (i==NF){print a}else{a+=%$i}}}’

123456
7 8 9 10
EOF

15

24

echo $(seq 1 10) | awk ’BEGIN{a=6}{for (i=1;i<=NF;i++){a+=8$i}}END {print a}’

61

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/4/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

awk One-liners

e awk one-liners:
http://www.pement.org/awk/awk1line.txt

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

The awk Programming Language

 awk can also be used as a programming language.

* The first line in awk scripts is the shebang line (#!) which indicates the location of
the awk binary.

* To support scripting, awk has several built-in variables, which can also be used in
one line commands
— ARGC : number of command line arguments
— ARGV : array of command line arguments
— FILENAME : name of current input file
— FS: field separator
— OFS : output field separator
— ORS : output record separator, default is newline
« awk permits the use of arrays
» awk has built-in functions to aid writing of scripts

* GNU awk also supports user defined function

CENTER FOR COMPUTATION l

& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

Further Reading

e Bash Programming: http://tldp.org/HOWTO/Bash-Prog-Intro-
HOWTO.html

e Advanced Bash-Scripting Guide: http://tldp.org/LDP/abs/html/

* Regular Expressions: http://www.grymoire.com/Unix/Regular.html
AWK Programming: http://www.grymoire.com/Unix/Awk.html

e awk one-liners: http://www.pement.org/awk/awk1line.txt

e sed: http://www.grymoire.com/Unix/Sed.html

e sed one-liners: http://sed.sourceforge.net/sed1line.txt

* Wiki Books: http://en.wikibooks.org/wiki/Subject:Computing

CENTER FOR COMPUTATION
& TECHNOLOGY

LS i

3/4/2015

HPC training series Spring 2015

Getting Help

* User Guides
— LSU HPC: http://www.hpc.Isu.edu/docs/guides.php#thpc
— LONI:http://www.hpc.lsu.edu/docs/guides.php#loni
 Documentation: http://www.hpc.lsu.edu/docs
* Online courses: http://moodle.hpc.lsu.edu
* (Contact us

— Email ticket system: sys-help@Ioni.org
— Telephone Help Desk: 225-578-0900

— Instant Messenger (AIM, Yahoo Messenger, Google Talk)
e Add “Isuhpchelp”

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015 HPC training series Spring 2015

INFORMATION
TECHNOLOGY
SERVICES

Questions?

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/4/2015

HPC training series Spring 2015

