
Information Technology Services
LSU HPC Training Series, Fall 2016 p. 1/42

Performance Analysis of
Matlab Code

Xiaoxu Guan

High Performance Computing, LSU

October 26, 2016
1 tic;
2 nsize = 10000;
3 for k = 1:nsize
4 B(k) = sum(A(:,k));
5 end
6 toc;

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 2/42

Overview

� Why should we optimize the Matlab code?
� When should we optimize Matlab code?
� What can we do with the optimization of the Matlab

code?
� Pro�ling and benchmark Matlab applications
� General techniques for performance tuning
� Some Matlab-speci�c optimization techniques
� Remarks on using Matlab on LSU HPC and LONI

clusters
� Further reading

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 3/42

Why should we optimize the Matlab code?

� Matlab has broad applications in a variety of disciplines:
engineering, science, applied maths, and economics;

� Matlab makes programming easier compared to others;
� It supports plenty of builtin functions (math functions, matrix

operations, FFT, etc);
� Matlab is both a scripting and programming language;
� Newer version focuses on Just-In-Time (JIT) engine for

compilation ;
� Interfacing with other languages: Fortran, C, Perl, Java, etc;
� In some case, Matlab code may suffer more performance

penalties than other languages;
� Optimization means (1) increase FLOPs per second.

(2) make those that are impossible possible;

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 4/42

When should we optimize Matlab code?

� The �rst thing is to make your code work to some extent;
� Debug and test your code to produce correct results, even it

runs slowly;
� While the correct results are maintained , if necessary, try to

optimize it and improve the performance;
� Optimization includes (1) adopting a better algorithm, (2) to

implement the algorithm, data and loop structures, array
operations, function calls, etc, (3) how to parallelize it;

� Write the code in an optimized way at the beginning;
� Optimization may or may not be a post-processing

procedure;
� In some cases, we won't be able to get anywhere if we don't

do it right: make impossible possible ;

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 5/42

What to do with optimization of Matlab code?

� Most general optimization techniques applied;
� In addition, there are some techniques that are unique to

Matlab code;
� Identify where the bottlenecks are (hot spots);

� Data structure;

� CPU usage;

� Memory and cache ef�ciency;

� Input/Output (I/O);

� Builtin functions;
� Though we cannot directly control the performance of

builtin functions, we have different options to choose a
better one;

� Let Matlab use JIT engine as much as possible;

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 6/42

Pro�ling and benchmark Matlab applications

� Overall wall-clock time can be obtained from the job log, but
this might not be what we want;

� Matlab 5.2 (R10) or higher versions provide a builtin pro�ler :

$ matlab
$ matlab -nosplash % don't display logo
$ matlab -nodesktop -nosplash % turn desktop off
$ matlab -nodesktop -nosplash -nojvm % java engine off

� On a matlab terminal, let's run

>> profile on # turn the pro�ler on
>> nsize = 10000;
>> myfunction(nsize); # call a function
>> profile off # turn the pro�ler off
>> profile viewer # A GUI report

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 7/42

Pro�ling and benchmark Matlab applications

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 8/42

Pro�ling and benchmark Matlab applications

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 9/42

Pro�ling and benchmark Matlab applications

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 10/42

Pro�ling and benchmark Matlab applications

� The pro�ler sorts time elapsed for all functions, and reports
the number of calls, the time-consuming lines and block;

� Time is reported in both percentage and absolute value;
� It is not required to modify your code;
� A simple and ef�cient way to use the builtin functions:

tic and toc (elapsed time in seconds);

: : : : : : ; % initialize the array
tic; % start timer at 0
nsize = : : : : : :;
for k = 1:nsize

vectora(k,1) = matrix_b(k,5) + matrix_c(k,3);
end
toc; % stop timer
Elapsed time is 18.309452 seconds.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 11/42

Pro�ling and benchmark Matlab applications

� tic/toc can be used to measure elapsed time in a more
complicated way;

� Let's consider two nested loops: how to measure the outer
and inner loops separately:

nsize = 3235;
A=rand(nsize); b=rand(nsize,1); c=zeros(nsize,1);
tic;
for i = 1:nsize % outer loop

A(i,i) = A(i,i) - sum(sum(A));
for j = 1:nsize % inner loop

c(i,1) = c(i,1) + A(i,j)*b(j,1);
end
end
toc; tictoc_loops_v0.m

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 12/42

Pro�ling and benchmark Matlab applications

� tic/toc can be used to measure elapsed time in a more
complicated way:

timer_inner = 0; timer_outer = 0;
for i = 1:nsize % outer loop

tic;
A(i,i) = A(i,i) - sum(sum(A));
timer_outer = timer_outer + toc;
tic; tictoc_loops_v1.m

for j = 1:nsize % inner loop
c(i,1) = c(i,1) + A(i,j)*b(j,1);

end
timer_inner = timer_inner + toc;

end
fprintf('Inner loop % f seconds\n', timer_inner);
fprintf('Outer loop % f seconds\n', timer_outer);

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 13/42

General techniques for performance tuning

� We discuss some general aspects of optimization techniques
that are applied to Matlab and other codes;

� It is mostly about loop-level optimization:

� Hoist index-invariant code segments
outside of loops.

� Avoid unnecessary computation.

� Nested loops and change loop orders .

� Optimize the data structure if
necessary.

� Loop merging/split (unrolling).

� Optimize branches in loops.

� Use inline functions.

� Spatial and temporal data locality .

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 14/42

General techniques for performance tuning
� Hoist index-invariant code segments outside of loops;
� Consider the same code tictoc_loops_v1.m and then _v2.m:

timer_inner = 0; timer_outer = 0;
for i = 1:nsize % outer loop

tic;
A(i,i) = A(i,i) - sum(sum(A));
timer_outer = timer_outer + toc;
tic; tictoc_loops_v1.m

for j = 1:nsize % inner loop
c(i,1) = c(i,1) + A(i,j)*b(j,1);

end
timer_inner = timer_inner + toc;

end
fprintf('Inner loop % f seconds\n', timer_inner);
fprintf('Outer loop % f seconds\n', timer_outer);

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 15/42

General techniques for performance tuning
� Hoist index-invariant code segments outside of loops;
� Consider the same code tictoc_loops_v1.m and then _v2.m:

timer_inner = 0; timer_outer = 0;
for i = 1:nsize % outer loop

tic;
A(i,i) = A(i,i) - sum(sum(A)) ; % out of the loop
timer_outer = timer_outer + toc;
tic; tictoc_loops_v2.m

for j = 1:nsize % inner loop
c(i,1) = c(i,1) + A(i,j)*b(j,1);

end
timer_inner = timer_inner + toc;

end
fprintf('Inner loop % f seconds\n', timer_inner);
fprintf('Outer loop % f seconds\n', timer_outer);

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 16/42

General techniques for performance tuning
� Hoist index-invariant code segments outside of loops;
� Consider the same code tictoc_loops_v1.m and then _v2.m:
� tictoc_loops_v1.m:

>> The time elapsed for inner loop is 0.926248 s.
>> The time elapsed for outer loop is 5.810867 s.
>> The total time is 6.769521 s.

� tictoc_loops_v2.m:

>> The time elapsed for inner loop is 0.488543 s.
>> The time elapsed for outer loop is 0.002263 s.
>> The total time is 0.521508 s.

� The overall speedup is 13� : we only touched the outer loop;
� Why does it affect the inner loop in a positive way?
� How can we optimize the inner loop?

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 17/42

Avoid unnecessary computation

� This might be attributed to reengineering your algorithms:
� Let's consider a vector operation: vout = exp (iz1)exp (iz2)

nsize = 8e+6;
: : : : : :;
cvector_inp_1 = complex(vector_zero,vector_inp_1);
cvector_inp_2 = complex(vector_zero,vector_inp_2);
for i = 1:nsize

cvector_out_1(i,1) = exp(cvector_inp_1(i,1)) ;
end
for i = 1:nsize

cvector_out_2(i,1) = exp(cvector_inp_2(i,1)) ;
end avoid_unness_v0.m

cvectort_out_3 = cvector_out_1 .* cvector_out_2 ;

>> Elapsed time is 2.303156 s.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 18/42

Avoid unnecessary computation

� This might be attributed to reengineering your algorithms:
� Let's consider a vector operation: vout = exp (iz1)exp (iz2)

nsize = 8e+6; avoid_unness_v1.m
: : :;
vector_out_real = zeros(nsize,1);
vector_out_imag = zeros(nsize,1);
vector_inp_3 = zeros(nsize,1);
vector_inp_3 = vector_inp_1 + vector_inp_2;
for i = 1:nsize

vector_out_real(i,1) = cos(vector_inp_3(i,1));
vector_out_imag(i,1) = sin(vector_inp_3(i,1));

end

>> Elapsed time is 0.835313 s. 2:8�

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 19/42

Nested loops and change loop orders

� Consider a very simple case: sum over all matrix elements:

a = rand(4000,6000); loop_order_v0.m
n = size(a,1);
m = size(a,2);
tic;
total = 0.0;
for inrow = 1:n
for incol = 1:m

total = total + a(inrow,incol); % row-wise sum
end
end

>> Elapsed time is 0.700789 s.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 20/42

Nested loops and change loop orders

� Consider a very simple case: sum over all matrix elements:

a = rand(4000,6000); loop_order_v1.m
n = size(a,1);
m = size(a,2);
tic;
total = 0.0;
for incol = 1:m
for inrow = 1:n % two loops were swapped
total = total + a(inrow,incol); % column-wise sum

end
end

>> Elapsed time is 0.317501 s. 2:2�
� In matlab, multi-dimensional arrays are stored in column

wise (same as Fotran); What happens to sum(sum(a))?

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 21/42

Nested loops and change loop orders

� Let's consider the problem of string vibration with the �xed
ends: @2u=@t2 = c2 @2u=@x2, x 2 [0; a] and t 2 [0; T];

� Initial conditions: u(x; 0) = sin(�x), @u(x; 0)=@t= 0;
� Boundary conditions: u(0; t) = u(a; t) = 0 .
� Finite differences in both spatial and temporal coordinates;
� x i = i � x and tk = k� t lead to u(x i ; tk) = uik ;

@2u(x i ; tk)
@x2

'
1

� x2 [ui +1 ;k � 2ui;k + ui � 1;k]; (1)

@2u(x i ; tk)
@t2

'
1

� t2 [ui;k +1 � 2ui;k + ui;k � 1]; (2)

ui;k +1 = fu i +1 ;k + 2(1 � f)ui;k + fu i � 1;k � ui;k � 1; (3)

and f = (c� t=� x)2.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 22/42

Nested loops and change loop orders

� Let's consider the problem of string vibration with the �xed
ends: @2u=@t2 = c2 @2u=@x2, x 2 [0; a] and t 2 [0; T];

� Initial conditions: u(x; 0) = sin(�x), @u(x; 0)=@t= 0;
� Boundary conditions: u(0; t) = u(a; t) = 0 .
� Finite differences in both spatial and temporal coordinates;
� x i = i � x and tk = k� t lead to u(x i ; tk) = uik ;

x

t

u(x i ; tk)

x

t

u(x i ; tk)

u(x i +1 ; tk� 1)

u(x i ; tk� 1)

u(x i ; tk� 2)

u(x i � 1; tk� 1)

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 23/42

Nested loops and change loop orders

for jt = 1:Ntime; string_vib_v0.m
u(jt,1) = 0.0; u(jt,Nx) = 0.0;
end
for ix = 2:Nx-1
u(1,ix) = sin(pi*x_step);
u(2,ix) = 0.5*const*(u(1,ix+1) + u(1,ix-1)) : : :

+ (1.0-const)*u(1,ix);
end
for jt = 2:Ntime-1
for ix = 2:Nx-1
u(jt+1,ix) = 2.0*(1.0-const)*u(jt,ix) : : :

+ const*(u(jt,ix+1) + u(jt,ix-1)) - u(jt-1,ix);
end
end How can we optimize it?

>> Elapsed time is 19.222726 s.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 24/42

Nested loops and change loop orders

for jt = 1:Ntime; string_vib_v1.m
u(1,jt) = 0.0; u(Nx,jt) = 0.0;
end
for ix = 2:Nx-1
u(ix,1) = sin(pi*x_step);
u(ix,2) = 0.5*const*(u(ix+1,1) + u(ix-1,1)) : : :

+ (1.0-const)*u(ix,1);
end
for jt = 2:Ntime-1
for ix = 2:Nx-1
u(ix,jt+1) = 2.0*(1.0-const)*u(ix,jt) : : :

+ const*(u(ix+1,jt) + u(ix-1,jt)) - u(ix,jt-1);
end
end

>> Elapsed time is 0.291292 s. 66�

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 25/42

Optimize branches in loops
� Loop merging/split (unrolling). Optimize branches in loops;
� Consider a summation: � = 4(1 � 1

3 + 1
5 � 1

7 + 1
9 � . . .).

n = 500000; pi_v0.m
total = 0.0; k= 0;
for id =1:2:n

k = k + 1;
if mod(k,2)==0 tmp = -1.0/double(id);
else tmp = 1.0/double(id);
end
total = total + tmp;

end
total = 4.0 * total;
fprintf('%15.12f', total);

>> Elapsed time is 0.043757 s.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 26/42

Optimize branches in loops
� Loop merging/split (unrolling). Optimize branches in loops;
� Consider a summation: � = 4(1 � 1

3 + 1
5 � 1

7 + 1
9 � . . .).

n = 500000; pi_v1.m
total = 0.0;
for id =1:4:n

tmp = 1.0/double(id);
total = total + tmp;

end
for id =3:4:n

tmp = -1.0/double(id);
total = total + tmp;

end
total = 4.0 * total;
fprintf('%15.12f', total); loop split

>> Elapsed time is 0.023158 s. 1:9�

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 27/42

Optimize branches in loops
� Loop merging/split (unrolling). Optimize branches in loops;
� Consider a summation: � = 4(1 � 1

3 + 1
5 � 1

7 + 1
9 � . . .).

n = 500000; pi_v2.m
total = 0.0;
fac = 1.0;
for id =1:2:n

tmp = fac/double(id);
total = total + tmp;
fac = -fac;

end
total = 4.0 * total;
fprintf('%15.12f', total);

>> Elapsed time is 0.020947 s. 2:0�
� In the last two versions, the branches were removed from the

loops.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 28/42

Use inline functions

� Consider the computation of distances between any two
points a(3; ncol) and b(3; ncol) in 3D space:

ncol = 2000; norm_v0.m
a = rand(3,ncol);
b = rand(3,ncol);

tic;
for i = 1:ncol
for j = 1:ncol

c(i,j) = norm(a(:,j)-b(:,i));
end
end
toc;

>> Elapsed time is 15.803001 s.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 29/42

Use inline functions

� Consider the computation of distances between any two
points a(3; ncol) and b(3; ncol) in 3D space:

ncol = 2000; norm_v1.m
a = rand(3,ncol);
b = rand(3,ncol);
tic;
c = zeros(ncol,ncol); % allocate c array �rst
for i = 1:ncol
for j = 1:ncol

c(i,j) = norm(a(:,j)-b(:,i));
end
end
toc;

>> Elapsed time is 13.185580 s. 1:2�

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 30/42

Use inline functions

� Consider the computation of distances between any two
points a(3; ncol) and b(3; ncol) in 3D space:

ncol = 2000; norm_v2.m
a = rand(3,ncol);
b = rand(3,ncol);
tic;
c = zeros(ncol,ncol); % allocate c array �rst
for j = 1:ncol
for i = 1:ncol

c(i,j) = norm(a(:,j)-b(:,i));
end
end
toc;

>> Elapsed time is 13.153847 s. 1:2�

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 31/42

Use inline functions

� Consider the computation of distances between any two
points a(3; ncol) and b(3; ncol) in 3D space:

tic; norm_v3.m
c = zeros(ncol,ncol); % allocate c array �rst
for j = 1:ncol
for i = 1:ncol

x = a(1,j) - b(1,i);
y = a(2,j) - b(2,i);
z = a(3,j) - b(3,i);
c(i,j) = sqrt(x*x + y*y + z*z); % replace norm

end
end
toc;

>> Elapsed time is 0.472565 s. 33�

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 32/42

Exercise: solving a set of linear equations

� Let's consider using the iterative Gauss-Seidel method to
solve a linear system A x = b (assume that aii 6= 0,
i = 1; 2;. . . ,n);

x(k+1)
i =

1
aii

�
bi �

X

j<i
aij x(k+1)

j �
X

j>i
aij x(k)

j

�
: (4)

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 33/42

Exercise: solving a set of linear equations

� Let's consider using iterative Gauss-Seidel method to solve
a linear system A x = b (assume that aii 6= 0, i = 1; 2;. . . ,n);

function x = GaussSeidel(A,b,es,maxit)
: : : : : :
while (1) GaussSeidel_v0.m
xold = x; adapted from Chapra's Appliced Numerical

for i = 1:n; Methods with MATLAB (2nd ed. p.269)
x(i) = d(i) - C(i,:)*x;
if x(i) � = 0;
ea(i) = abs((x(i) -xold(i))/x(i)) * 100;
end
end

iter = iter + 1; How can we optimize it?
if max(ea) <= es | iter >= maxit, break, end
end

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 34/42

Exercise: solving a set of linear equations

� Let's consider using iterative Gauss-Seidel method to solve
a linear system A x = b (assume that aii 6= 0, i = 1; 2;. . . ,n);

nsize = 6000;
A = zeros(nsize); b = zeros(nsize,1);
es = 0.00001; maxit = 100; driver_GaussSeidel.m
for i = 1:nsize

b(i) = 3.0 - 2.0*sin(double(i)*15.0);
for j = 1:nsize
A(j,i) = cos(double(i-j)*123.0);
end

end
tic;
xsolution = GaussSeidel_v0(A,b,es,maxit);
toc;

>> Elapsed time is 18.823522 s (: : : _v0.m).

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 35/42

Optimization techniques speci�c to Matlab

� In addition to understanding general tuning techniques, there
are techniques unique to Matlab programming;

� There are always multiple ways to solve the same problem;

� Fast Fourier transform (FFT).

� Convert numbers to strings.

� Dynamic allocation of arrays.

� Construct a sparse matrix.

� : : :

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 36/42

FFT

� Let's consider the FFT of a series signal:
tic; fft_v0.m
nsize = 3e6; nsizet = nsize + 202;
a = rand(1,nsize);
b = fft(a,nsizet);
toc;
>> Elapsed time is 0.650933 s.

tic; fft_v1.m
nsize = 3e6;
n = nextpow2(nsize); nsizet = 2�n;
a = rand(1,nsize);
b = fft(a,nsizet);
toc;

>> Elapsed time is 0.293406 s. 2:2�

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 37/42

Preallocation of arrays

� Matlab supports dynamical allocation of arrays;
� It is both good and bad in terms of easy coding and

performance :
My_data=importdata('input.dat'); array_alloc_v0.m
tic;
Sortx=zeros(1,1);
k=0; s=1;
while k<=My_data(1,1)

Sortx(s,1)=My_data(s,4);
s=s+1;
k=My_data(s,1);

end
toc;

>> Elapsed time is 0.056778 s.

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 38/42

Preallocation of arrays

� It is always a good idea to preallocate arrays:
tic; array_alloc_v1.m
k=0; s=1;
while k<=My_data(1,1)

s=s+1; k=My_data(s,1);
end
Sortx=zeros(s-1,1);
k=0; s=1;
while k<=My_data(1,1)

Sortx(s,1)=My_data(s,4);
s=s+1;
k=My_data(s,1);

end
toc;

>> Elapsed time is 0.027005 s. 2:1�

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 39/42

Convert numbers to strings

� Matlab provides a builtin function num2str:
tic; num2str_v0.m
i = 12345.6;
A = num2str(sin(i+i),'%f');
toc;

>> Elapsed time is 0.019238 s.

tic; num2str_v1.m
i = 12345.6;
A = sprintf('%f',sin(i+i));
toc;

>> Elapsed time is 0.005372 s. 3:6�

� In this case, sprintf is much better than num2str;

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 40/42

What we haven't covered

� There are other Matlab techniques that are not covered here:

� Parallel programming in Matlab.

� Matlab vectorization.

� File I/O.

� Matlab indexing techniques.

� Object oriented programming in Matlab.

� Binary MEX code.

� Matlab programming on GPUs.

� Graphics.

� : : :

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 41/42

Remarks on LSU HPC and LONI clusters

� All LSU HPC and LONI clusters don't have parallel toolboxes;
� Therefore, we can only run Matlab code on a single node;
� You can run Matlab jobs on multiple cores but without

multi-threading programming. Choose queue properly;
� On LSU HPC and LONI clusters we don't support explicitly

parallel programming in Matlab at least at this point;
� However, it is possible that Matlab automatically spawns

several threads;
� If you use single queue on Mike-II or QB-2, please always

add -singleCompThread in your matlab command line;
� For LONI users on QB-2, for instance, you have to provide

your own license �le;
� Matlab on LSU HPC website

Information Technology Services
LSU HPC Training Series, Fall 2016 p. 42/42

Further reading

� Matlab bloggers: http://blogs.mathworks.com
� Accelerating MATLAB Performance

(Y. Altman, CRC Press, 2015)
� Matlab Central (File Exchange)

Questions?
sys-help@loni.org

	Overview
	Overview

