
Introduction to Perl

Wei Feinstein

HPC User Services

LSU HPC/LONI

Louisiana State University

10/12/2016 Introduction to Perl

Outline

• Basic Syntax, Scripts
• Perl Variables
• Control Structures
• File I/O
• Functions
• Error Handling
• Advanced Perl – Modules, CPAN

10/12/2016 Introduction to Perl 2	

Perl Overview

•  High-level, general-purpose programming language
•  Similar to C language in syntax
•  Incorporate popular UNIX commands, such as sed, awk and etc
•  Practical Extraction and Report Language (PERL)

10/12/2016 Introduction to Perl 3	

Appropriate Use

• Scan system logs and report failed log-in attempts.
• Process data for web page displays.
• Read and summarize simulation edit data.
• Rapid Application Development/Prototyping

Inappropriate Use

• Multi-day production runs.
• Applications requiring numerical methods.

10/12/2016 Introduction to Perl 4	

Get help within Perl

$ man perl
$ perldoc perl

The perldoc command, in particular, gives detailed access to
language specifics and even user tutorials.

perldoc -f PerlFunc
perldoc -q FAQKeywords

10/12/2016 Introduction to Perl 5	

Listing Perl Document Subsections

$ perldoc

. . . output truncated . . .

$ perldoc perlsyn

10/12/2016 Introduction to Perl 6	

Perl Syntax

Warning: Perl syntax can be hazardous to your sanity.

It can be approached as any other programming language,
but may appear capricious with multiple legal ways to write
things.

This tutorial assumes some programming background, so it
takes a programmer approach with Perl'isms highlighted as
alternatives.

10/12/2016 Introduction to Perl 7	

Basic Perl Syntax

If you are comfortable programming in C, then you're in luck. The
Perl language syntax is almost (but not quite) identical to C. Some
basics elements:

•  Comments begin with “#” or (=anyword {code block;} =cut)
• Statements end with “;” (like C)
• Statement blocks are grouped with “{}” (like C, or gawk)
•  First character of variable names is a symbol determining the

variable type (unlike C, sort of like Fortran)
• Execute statements from command line (unlike C)

10/12/2016 Introduction to Perl 8	

Data::Dumper

•  Writes	out	varialbe	contents	in	perl	syntax	
– Very	useful	in	debugging	and	learning	

use Data::Dumper;
my $contacts = { 'Frank' => {'email'

'phone'
'Amy' => {'email'

'phone'

=> 'frank@lsu.edu',
=> '578-5655'},
=> 'amy@lsu.edu',
=> '578-1420'}

};
print Dumper($contacts);

#Output:
$VAR1 = {

'Amy' => {
'email' => 'amy@lsu.edu',
'phone' => '578-1420'

},
'Frank' => {

'email' => 'frank@lsu.edu',
'phone' => '578-5655'

}
};

10/12/2016 Introduction to Perl 9	

A Perl Script – Hello World (hw.pl)

#!/usr/bin/perl
use strict;
use warnings;
print “Hello World!\n”;

How to compile/run perl code:

$ perl –c hw.pl compile for syntax errors only
$ perl –w hw.pl compile for syntax and warnings
$ perl hw.pl compile and run

 Hello World!

10/12/2016 Introduction to Perl 10	

Command Line Run

Command line options let you run arbitrary Perl statements.
e.g., -e, indicates the command line argument is a Perl
statement:

$ perl -e '... statement ... ;'
$ perl -e 'print “Hello World!\n”;'; -e …

10/12/2016 Introduction to Perl 11	

Print statement

print “hello World!\n”;

“” Indicates a string of characters.
\n String literal that inserts a newline character.
; Marks the end of the Perl statement.

10/12/2016 Introduction to Perl 12	

String Literals
\n is just one of several string literal sequences that represent
special characters, usually control and other non-printable
characters. There are many more. Here's a few:

Literal Use Literal Use

\t Tab character \xnn Hexadecimal char code
\n Newline \c[Control char (i.e. ^[)
\r Carriage return \l Next char lower case
\f Form feed \u Next char upper case
\b Backspace \L Start all lower case
\a Alarm or Bell \U Start all upper case
\e Escape \E End all upper/lower case

\nnn Octal char code \\ Single backslash

10/12/2016 Introduction to Perl 13	

10/12/2016 Introduction to Perl 14	

• Basic Syntax, Scripts
• Perl Variables
• Control Structures
• File I/O
• Functions
• Error Handling
• Advanced Perl – Modules, CPAN

Perl Variable Concepts

Perl does lazy typing: it figures out what you mean when the
data is used (i.e., is a number or is it a character string).

Perl types have more to do with organization than type of
values:

• Scalar
• Array
• Associative Array

The type of a variable is indicated by the first character.

10/12/2016 Introduction to Perl 15	

Scalar Variable $var

The simplest type of Perl variable holds a single value, so it is
called a scalar variable. Must have a “$” as first letter of name:

$a = “Sum of x +y is ”;
$x = 15;
$y = 42.137;
$z = $x + $y + $w;

print $a, $z; #Sum of x + y is 57.137

Try scripting and running this. Are you surprised by the
answer?

10/12/2016 Introduction to Perl 16	

Array Variables @array
Array variables, also called lists, let you collect multiple items
so they can be referred to by one name. Use a “@” as the first
letter of the name:

= (Jan, Feb, Mar); @month
print
print
print

@month,”\n”;
“@month\n”;
“$month[2]\n”;

Note how a single element is indexed: $month[i]

Basically stores elements as strings, so this is legal:

@demo = (27, Monday, -38, football)

10/12/2016 Introduction to Perl 17	

Associative Array Variables %aa
One of the most powerful features of Perl (and other scripting
languages) is the associative array. Recall that we used
numbers to index into an array variable. An associative array is
said to store key:value pairs, and uses strings as indices. They
must have a “%” as the first letter of their name:

Consider an array to hold month names and number of days:

%dim=(Jan, 31, Feb, 28);

Indexing an associative element is different than an array:

print “$dim{Jan}\n”;

10/12/2016 Introduction to Perl 18	

Special Variables

The Perl language includes some 60+ special variable names
that we'll cover as the come up. The general form is a single
letter scalar variable, i.e.

@_ : List of arguments passed to a subroutine
$. : Current line number (file)
$_ : Default variable
$0 : Name of the Perl script from the command line
@ARGV: command-line args

Perl special vars quick reference

10/12/2016 Introduction to Perl 19	

Variable Scope

The scope of a variable means where in the script it is
recognized.

Perl variables have GLOBAL scope. A variable name is
recognized anywhere in a script, allowing its value to
be used or accessed at will.

This is very different from most languages.

10/12/2016 Introduction to Perl 20	

Quoting

10/12/2016 Introduction to Perl 21	

Syntax of 3 Little Quotes

As with shell scripting, string handling behavior is controlled by one of
3 different quote characters:

' ' .. Single quotes – suppresses variable expansion.
` ` .. Back quotes (back tics) – command substitutions.
“ “ .. Double quotes – allows variable and string literals.

The type of quote used changes the way the quote contents are
interpreted.

10/12/2016 Introduction to Perl 22	

Single Quotes

Perl uses the single quote character (`) to indicate a string. That is,
a sequence of characters that are to be interpreted exactly as
presented.

$n = 5; print '$n\n';

Will display exactly:

$n\n

10/12/2016 Introduction to Perl 23	

Back Quotes

Back quotes take the string, pass it to the shell as a system
command, and returns the execution result as a string.

 $dir = `pwd`;

pwd is the shell “print working directory” command and
outputs the directory it is run in.

10/12/2016 Introduction to Perl 24	

Double Quotes

The use of double quotes (“) causes Perl to scan the string before
using it and perform the following actions:

1.  If it finds any variable names, it will insert the value of the

variable in place of the name.
2.  If it sees any string literals, it will insert the value in place

of the literal.
3.  If it sees back-quotes, the command result is inserted in

place of the back-quoted string.

 variable expansion and command substitution.

10/12/2016 Introduction to Perl 25	

Example

$dir = “My current dir”;
= `ls`; $files

print “$dir contains:\n$files\n”;

What is output?

10/12/2016 Introduction to Perl 26	

Alternative Quotes

Just in case you decide you don't like fussing with actual characters,
Perl provides alternate quoting mechanisms:

q(stuff) ... Same as single quotes (' ')
.. Same as double quotes (“ “) qq(stuff)

qx(stuff) .. Same as back quotes (` `)

) to bracket your quote, you could And, if you don't want to use (
use / /:

<= all the same
$dir
$dir
$dir

= qx/pwd/;
= qx(pwd);
= `pwd`;

10/12/2016 Introduction to Perl 27	

Operators and Expressions

10/12/2016 Introduction to Perl 28	

Operators
Operator Description Associativity
() [] {} Function call, array indices Left to right

++ -- Increment, decrement None

! ~ - logical not, bitwise not, negation Right to left

** exponentiation Right to left

=~ !~ match, not match Left to right

* / % x multiply, divide, modules, times Left to right

+ - . add, subtract, string concat. Left to right

<< >> bit shift left, bit shift right Left to right

-r -w -x -o -f -e -z -s
-d -l -p -S -b -c -u -g
-k -t -T -B -M -A -C

file test operators (e.g. (-r $fname) is true if file
fname is readable.)

None

< <= > >= lt le gt ge numeric/string relative comparison None

== != <=> eq ne cmp numeric/string comparison None

& | ̂ bitwise and, or, exclusive or Left to right

&& || logical and, or Left to right

.. range None

x?y:z ternary test Right to left

= += -= /= %= .= *= **= x=
<<= >>= &= |= ^=

assignment (e.g. $num **= 2 means square
value in $num, assign to $num)

Right to left

, (comma) Evaluate left, discard, evaluate right. Left to right

10/12/2016 Introduction to Perl 29	

Expressions

An expression is any Perl construct that produces a value. If an
assignment is made, the value assigned is the result of the expression:

4 + 9 An arithmetic expression, value 13.
$x = 4 + 9; Also arithmetic, also value 13.

= 'a' . 'b' .. String concatenation, value is 'ab'
> 12
== 14

......... TRUE (non-null)
........ FALSE (null)

'a' Single letter, value is 'a'.
$s
$x
$x
-x “/bin/ls” TRUE if file /bin/ls is executable.

10/12/2016 Introduction to Perl 30	

10/12/2016 Introduction to Perl 31	

• Basic Syntax, Scripts
• Perl Variables
• Control Structures
• File I/O
• Functions
• Error Handling
• Advanced Perl – Modules, CPAN

If…elsif…else (conditional construct)

block }

block 1 }

The if statements can take one of 3 forms:

if (expression) { statement

if (expression) { statement

else { statement block 2 }

 if (expression 1) { stmt block 1 }
elsif (expression 2) { stmt block 2 }
. . .
elsif (expression N)
else { statement block

{ stmt block N }
}

10/12/2016 Introduction to Perl 32	

Comparison Operators

numbers	 			strings	

Equal	 ==	 eq	

Not	equal	 !=	 ne	

Greater	than	 >	 gt	

Greater	than	or	equal	 >=	 ge	

Less	than	 <	 lt	

Less	than	or	equal	 <=	 le	

10/12/2016 Introduction to Perl 33	

Unless Control Structure (if not)

unless (expression) { statement block }

block 1 } unless (expression) { statement
else { statement block 2 }

10/12/2016 Introduction to Perl 34	

Loop Control Structures

while (expression) { statement block }

(expression) { statement block } until

for (init expr; test expr; incr expr)

{ statement block }

foreach $varnam (@array) { statement block }

10/12/2016 Introduction to Perl 35	

Loop Control

•  next –	jump	to	the	next	iteraDon	
•  redo –	jump	to	the	start	of	the	same	iteraDon	
•  last –	jump	out	of	the	loop	

10/12/2016 Introduction to Perl 36	

for Loop

The for statement implements a classical do-loop.

for ($i = 0; $i < 10; $i++)
{ $j += $i + 3; print “$j\n”; }

10/12/2016 Introduction to Perl 37	

foreach in Arrays

The foreach statement is quite powerful, as it steps through an array
one element at a time. You need not know how many elements it
contains:

#! /usr/bin/perl
@months
foreach

= (Mar, Apr, May, 17);
$m (@months) { print "$m\n"; }

The elements print out in the same order they were stored.

10/12/2016 Introduction to Perl 38	

foreach in Associative Arrays

Scan through associative arrays require the help of two functions:

keys – to extract a list (scalar array) of all keys in the array,
values – to extract a list (scalar array) of all values in the array:

Example:

#! /usr/bin/perl

Mar, 31, Apr, 30); %dim = (Jan, 31,
foreach $m (keys

Feb, 28,
%dim)

{ print "$m has $dim{$m} days.\n"; }

What do you think will be output?

10/12/2016 Introduction to Perl 39	

Random Order

Associative arrays are implemented as hash tables, so the order in
which elements are added is NOT maintained. Here is the actual
result of running the previous script:

Mar has 31 days.
Feb has 28 days.
Apr has 30 days.
Jan has 31 days.

10/12/2016 Introduction to Perl 40	

10/12/2016 Introduction to Perl 41	

• Basic Syntax, Scripts
• Perl Variables
• Control Structures
• File I/O
• Functions
• Error Handling
• Advanced Perl – Modules, CPAN

Standard File I/O

In general, Perl follows the Unix/Linux model by supporting 3 I/O
streams. A particular stream is referenced via a file handle.

STDIN
STDOUT
STDERR

... The standard input stream (i.e. keyboard)
.. The standard output stream (i.e. terminal)
.. The standard error stream (i.e. terminal)

Having these 3 streams implies than running any Perl script can make full use
of shell I/O redirection. User defined file handles are also allowed.

Note: these are string literals and do not need a “$” in front of name.

10/12/2016 Introduction to Perl 42	

Read from STDIN

Reading from STDIN is nearly as easy as writing to STDOUT. Try
this little snippet in a script:

“Enter first name: “;
= <STDIN>; #Jone

“Enter last name: “;
= <>; #Smith

print
$first
print
$last
print “$first, $last”;

10/12/2016 Introduction to Perl 43	

Chop()
The output looks funny because the read operation retains the
newline character from the input. Unfortunately, the user must
take steps to deal with this. Try using the chop function and
see if there is a difference:

$first = <>;
chop($first);

and/or
chop($last=<>);

10/12/2016 Introduction to Perl 44	

Create file handles

open($handle, $direction, $name);

) ... Open for input.
) ... Open for output.

open(
open(
open(

$fh,
$fh,
$fh,

“<”,
“>”,
“>>”,

“foobar”
“barfoo”
“fiefum”) .. Open to append.

10/12/2016 Introduction to Perl 45	

Other ways
The open command is used to associate file names with I/O
streams. Other allowed forms for input include:

open($fh, $name);
$fh = $name;
open($fh, “> new.lst”);
open($fh, “>> append.lst”);
close ($fh);
close $fh;

 10/12/2016 Introduction to Perl 46	

Open For Pipe I/O

“date |”);

Input from a command pipe:

open($inpipe,

Output to a command pipe:

open($outpipe, “| wc -l”);

10/12/2016 Introduction to Perl 47	

Putting Pieces Together

10/12/2016 Introduction to Perl 48	

Sample Data File (grade.dat)

Jones, Alpha
Doe, Betty

Charlie

: 90 : 90 : 100 : 50 : 90 : 100 : 95
: 89 : 91 : 99 : 60 : 70 : 100 : 90

98 : 95 : 95 Johnson,
Miller, Daniel :

: 88 : 92 : : 70 : 80
87 : 93 : 97 : 80 : 90 : 60 : 80

10/12/2016 Introduction to Perl 49	

What is the average for each student ?

grade-avg.pl:

10/12/2016 Introduction to Perl 50	

10/12/2016 Introduction to Perl 51	

• Basic Syntax, Scripts
• Perl Variables
• Control Structures
• File I/O
• Functions
• Error Handling
• Advanced Perl – Modules, CPAN

Built-in Functions

Much of the power, and steepest barrier to learning, lies in using
the appropriate Perl function for the task at hand. We've seen
several already:

%dim = (Jan, 31, Feb, 28, Mar, 31, Apr, 30);
Remember “()” are optional! @months = keys(%dim);

@numdays = values(%dim);
chop($string);

“string”;

close($handle

print
open($handle);

);

10/12/2016 Introduction to Perl 52	

Numeric Functions

•  Again	the	usual	suspects	
abs Absolute	value	

cos, sin, tan Trigonometric	

exp ExponenDaDon	

log Logarithm	

rand Random	number	generator	

sqrt Square	root	

10/12/2016 Introduction to Perl 53	

Examples of Build-in Functions
split: my $s = “The black cat climbed the green tree”;
my @array = split “ “,$s; print $array[1]; # black

join: my @names = (‘Frank’, ‘John’, ‘Amy’, ‘Olivia’);
print join ‘:’,@names; # Frank:John:Amy:Olivia
String operations:

concatenation (.): $f=“jone”; $l=“Smith”;
$name=$f.” “.$l; #Jone sSith

repeat(x): $A=“a”; print “$A” x 3; #aaa
Length: $name=“Smith”; print length $name; #6

reverse: @array = (2, 5, 3, 1);
@reversed = reverse @array; #(1, 3, 5, 2)

10/12/2016 Introduction to Perl 54	

Array Functions

		pop,	push,	shiJ,	unshiJ	
my @names = (‘Frank’, ‘John’);

#pop: remove and return last element
print pop @names; # will print ‘John’
#push: add a new element to the end
push @names,’Amy’; # @names is now (‘Frank’,’Amy’)
#shift: remove and return first element say
shift @names; # will print ‘Frank’
#unshift: add a new element to the start
unshift @names,’Fred’; @names is now (‘Fred’,’Amy’)

10/12/2016 Introduction to Perl 55	

@_	

•  The default array

– Within	a	funcDon,	@_	contains	the	parameters		
passed	to	that	subrouDne	

– Many	array	operaDons	within	the	funcDon	use	its		
value	if	none	is	provided	

10/12/2016 Introduction to Perl 56	

Custom Function

#! /usr/bin/perl

shift(

sub max {
my ($m, $n);
$m = @_);
foreach $n (@_) {

$m = $n if $m < $n;
}
return $m;

}

86, 103);
print
$m = max(42, 17,

$m, "\n";

Define a subroutine:
Declare local $m, :

@_ is list of arguments passed
find maximum:

Return value:

Call the function:

Print out the result:

10/12/2016 Introduction to Perl 57	

Return	>	one	values	

10/12/2016 Introduction to Perl 58	

#!/usr/bin/perl -w
 use strict;

 # Subroutine prototypes
 sub get_two_arrays();

 # Get two variables back
 my ($one, $two) = get_two(); #call sub
 print "One: $one\n";
 print "Two: $two\n";

 sub get_two() { #define sub
 return ("one", "two");
 }

Return	>	1	arrays	

10/12/2016 Introduction to Perl 59	

#!/usr/bin/perl -w
 use strict;
 # Subroutine prototypes
 sub get_two_arrays();

 # Get two variables back
 my ($one_ref, $two_ref) = get_two_arrays();

 my @one = @$one_ref; #derefernece returned array
 my @two = @$two_ref;
 print "First: @one\n";
 print "Second: @two\n";

 sub get_two_arrays() {
 my @array1 = ("a", "b", "c", "d");
 my @array2 = (1, 2, 3, 4);
 return (\@array1, \@array2); #return by reference
 }

 Correct:	First:	a	b	c	d								 	 	Wrong:	First:	a	b	c	d	1	2	3	4	
	 	 	 							Second:	1	2	3	4 	 															Second: 	

10/12/2016 Introduction to Perl 60	

• Basic Syntax, Scripts
• Perl Variables
• Control Structures
• File I/O
• Functions
• Error Handling
• Advanced Perl – Modules, CPAN

Dealing with Errors: Programmer Way

Programs on a Unix-like system are expected to return a status code
when they terminate. A value of 0 is taken to mean success. Any non-
zero value is taken to mean there was a problem. The actual value
indicates the type of problem:

 if (…) exit(expression);

 e.g., exit 1;

10/12/2016 Introduction to Perl 61	

The Perl Way: die/warn/eval

Die: a script to exit if a test statement is true.

die.pl:

#! /usr/bin/perl
$x = -42;
if ($x < 0) { die “x is $x, stopped”; }

The output:

x is -42, stopped at ./d line 3

The text in red was added by the die function.

10/12/2016 Introduction to Perl 62	

Dealing With Errors: warn

warn.pl

#! /usr/bin/perl

“”) {
is empty, but continuing”; }

$name = “”;
if ($name ==

warn “name

The output:

name is empty, but continuing at ./w line 3.

10/12/2016 Introduction to Perl 63	

Dealing With Errors: eval
The script:

eval{ ($x ==

#! /usr/bin/perl
$x = 0;

if
if ($@) { warn

is 0!”; } }
msg

print “Pressing

0) { die “x
$@; } # just

on . . .\n”;

The output:

x is 0!
Pressing

at ./ev line 3.
on . . .

10/12/2016 Introduction to Perl 64	

10/12/2016 Introduction to Perl 65	

• Basic Syntax, Scripts
• Perl Variables
• Control Structures
• File I/O
• Functions
• Error Handling
• Advanced Perl

Advanced Perl

There are features that move Perl closer to a general purpose
language, among them:

 Regex
 Modules and the CPAN.

10/12/2016 Introduction to Perl 66	

Regex

•  Regex	stand	for	REGular	Expression	
– Powerful	tool	for	text	processing	
– Allows	users	to	define	a	paWern	to	describe		
characterisDcs	of	a	text	segment	

– Can	be	used	to	match	or	modify	text	
– Perl	regex	documentaDon:	perlretut,		
perlreref,	perlre

10/12/2016 Introduction to Perl 67	

Regular Expressions
You may have run into this concept under the name “wild cards”
used in file name searches on DOS or Unix. Perl takes the concept
much further. They support matching and substitution. First m:
$_ =~ /alpha/

$_ =~ /^alpha/

..	Does a sequence of characters in
$_	match with “alpha”.

..	Match only if “alpha” at start of line.

m/alpha/
m?alpha?

.... “m” is optional if “/” are used.

.... does same thing (any character pair will
do). For instance, m;/alpha; lets you
match a pattern containing “/”.

10/12/2016 Introduction to Perl 68	

Substitution

Substitution takes the same form as matching, but allows the
matched text to be replaced with something else. Use s
instead of m, and most of the rules still apply:

s/pat/repl/ ... Replace first occurance of pat with repl.
s/pat/repl/g .. Replace all occurrances of pat with repl.
s!pat!repl! ... Use ! instead of /

10/12/2016 Introduction to Perl 69	

Metacharacters

.
^
$
[abc]
[^abc]

........
.......

x?
x*
x+
x{m,n}
hat|cat|bat
(str)
\2 (or $2) ...
\b
\d

Match any letter.
Match at start of string.
Match at end of string.
Match any letter in the set.
Match any letter NOT in the set.
Match 0 or 1 occurence of “x”
Match 0 or more occurrences of “x”
Match 1 or more occurrences of “x”
Match at least m, but no more than n, “x”

.. Match one of the words.
Mark a pattern occurrence
Insert result of second occurrence
Match a word boundary.
Match a digit.

A subset of the list:

10/12/2016 Introduction to Perl 70	

Define Patterns

•  The	qr//	operator	define	paWerns	that	can	be		
used	and	reused	for	later	match	

my $http = qr/^http:\/\//;
my $www = qr/www/;
while (<FILE>) {

print if /$http$www/;
}

10/12/2016 Introduction to Perl 71	

Examples (pattern)

10/12/2016 Introduction to Perl 72	

Awk in Perl

10/12/2016 Introduction to Perl 73	

my $line=“1 2 3 4 5 6”;
my $third_last=`echo “$line”|awk ‘{print \$(NF-3)}’`;
print $third_last

Result: 4

Perl Modules .pm

•  Think	Perl	modules	as	libraries	–	reusable		
codes	

•  CPAN	–	tons	of	modlues	developed	by	the	Perl		
community	(www.cpan.org)	
– Before	se_ng	out	to	write	something	serious,		
check	CPAN	first	

10/12/2016 Introduction to Perl 74	

Installing Modules

•  OpDon	1:	manual	installaDon	
– Download	the	tarball	and	extract	the	content	
– Create	a	Makefile	
– Make,	make	test	and	make	install	
– No	root	access,	e.g.	perl	Makefile.PL	prefix=…	

•  OpDon	2:	use	the	“cpan”	module	
– Provides	a	console	to	search,	download	and	install		
modules	and	their	dependencies	automaDcally	

10/12/2016 Introduction to Perl 75	

Use a Perl Module

use	Text::CSV;	
my	$file	=	'directory.csv';			
my	$csv	=	Text::CSV->new();	
open	(my	$fh,	"<",	$file)	or	die	$!;			
while	(<$fh>)	{	

if($csv->parse($_))	{	
my	@columns	=	$csv->fields();			
print	join("|",@columns)	.	"\n";	

}	
}	
close	$fh;	

Someone has done the heavy lifting and created Text::CSV.

 #! /usr/bin/perl

 use lib “/home/wfeinste/perl-local/share/perl5";
load module:

set file name:
create parser:
open to
scan by
parse

read:
line:
line:

access fields:
reprint:

12345678|Doe, Joe C.|Engineer|EE Dept
23456789|Jane, Mary S.|Engineer|Manufactoring
34567890|Kilgore, Was H.|Artist|Marketing

The output =>

10/12/2016 Introduction to Perl 76	

Module Hiding Places

The use function finds the named module much the same way
as the shell finds commands: it searches a list of directories.
When Perl is installed, it creates a list, @INC, with the names
of all the include directories. The contents can be reviewed
from the command line:

$ perl -le 'print foreach @INC'

10/12/2016 Introduction to Perl 77	

Custom Module Use
Normally it requires a system administrator to install Perl and add
extension modules. Such actions update @INC automagically.

Users are free to install their own modules and have multiple ways of
telling Perl where to search for them:

PERL5LIB An environment variable with “:”
separated directory names. Searched
before the contents of @INC.

-I dirname A command line option used at script
runtime, either with Perl, or on the
shebang line in the script.

use lib dirname .. Perl command in the script to name
directory.

10/12/2016 Introduction to Perl 78	

Custom Examples

These 4 approaches all accomplish the same thing:

$ export PERL5LIB=/home/$USER/Perl
or

or
$ perl –I ~/Perl directory.pl

#! /usr/bin/perl -I /home/$USER/Perl

or
#! /usr/bin/perl
use lib “/home/$USER/Perl”

10/12/2016 Introduction to Perl 79	

Closing
Perl syntax is flexible (maybe too flexible?).

Do some research before writing something new – may find it
available, or at least a good starting point.

Be aware of Perl version differences.

Get comfortable with a good Perl reference or two or three

hWp://perldoc.perl.org	
hWp://learn.perl.org	

10/12/2016 Introduction to Perl 80	

