

# Introduction to Deep Learning and Its Applications

Mingxuan Sun
Assistant Professor in Computer Science
Louisiana State University
11/09/2016

### DEEP LEARNING EVERYWHERE











INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery

#### **AUTONOMOUS MACHINES**

Pedestrian Detection Lane Tracking Recognize Traffic Sign

# Machine Learning

Input: X Output: Y





Label"motorcycle"

# Why is it hard?

#### You see this



| But | the | cam | nera | see | s thi | s:  |     |     |     |     |     |  |
|-----|-----|-----|------|-----|-------|-----|-----|-----|-----|-----|-----|--|
| 194 | 210 | 201 | 212  | 199 | 213   | 215 | 195 | 178 | 158 | 182 | 209 |  |
| 180 | 189 | 190 | 221  | 209 | 205   | 191 | 167 | 147 | 115 | 129 | 163 |  |
| 114 | 126 | 140 | 188  | 176 | 165   | 152 | 140 | 170 | 106 | 78  | 88  |  |
| 87  | 103 | 115 | 154  | 143 | 142   | 149 | 153 | 173 | 101 | 57  | 57  |  |
| 102 | 112 | 106 | 131  | 122 | 138   | 152 | 147 | 128 | 84  | 58  | 66  |  |
| 94  | 95  | 79  | 104  | 105 | 124   | 129 | 113 | 107 | 87  | 69  | 67  |  |
| 68  | 71  | 69  | 98   | 89  | 92    | 98  | 95  | 89  | 88  | 76  | 67  |  |
| 41  | 56  | 68  | 99   | 63  | 45    | 60  | 82  | 58  | 76  | 75  | 65  |  |
| 20  | 43  | 69  | 75   | 56  | 41    | 51  | 73  | 55  | 70  | 63  | 44  |  |
| 50  | 50  | 57  | 69   | 75  | 75    | 73  | 74  | 53  | 68  | 59  | 37  |  |
| 72  | 59  | 53  | 66   | 84  | 92    | 84  | 74  | 57  | 72  | 63  | 42  |  |
| 67  | 61  | 58  | 65   | 75  | 78    | 76  | 73  | 59  | 75  | 69  | 50  |  |

### Raw Image Representation





### Raw Image Representation





# Raw Image Representation





### Better Feature Representation?



# Feature Representations



Source: feature representations in computer vision(Honglak lee)

### Deep Learning: learn representations!



### So, 1. what exactly is deep learning?

And, 2. why is it generally better than other methods on image, speech and certain other types of data?

### The short answers

- 1. 'Deep Learning' means using a neural network with several layers of nodes between input and output
- 2. the series of layers between input & output do feature identification and processing in a series of stages, just as our brains seem to.

hmmm... OK, but:

3. multilayer neural networks have been around for 25 years. What's actually new?

we have always had good algorithms for learning the weights in networks with 1 hidden layer

but these algorithms are not good at learning the weights for networks with more hidden layers

what's new is: algorithms for training many-later networks



### Single Unit, Input, weights, activation function, output



#### A dataset

| Fields  |     | class |   |
|---------|-----|-------|---|
| 1.4 2.7 | 1.9 | 0     |   |
| 3.8 3.4 | 3.2 | 0     |   |
| 6.4 2.8 | 1.7 | 1     |   |
| 4.1 0.1 | 0.2 | 0     | J |
| etc     |     |       |   |
|         |     |       |   |

### Train the deep neural network



#### A dataset

| Fields  |     | class |
|---------|-----|-------|
| 1.4 2.7 | 1.9 | 0     |
| 3.8 3.4 | 3.2 | 0     |
| 6.4 2.8 | 1.7 | 1     |
| 4.1 0.1 | 0.2 | 0     |
| etc     |     |       |

Initialize with random weights



Compare with the target output

#### Adjust weights based on error



Repeat this thousands, maybe millions of times – each time taking a random training instance, and making slight weight adjustments

Algorithms for weight adjustment are designed to make changes that will reduce the error

#### **CIFAR 10 and Convolutional Neural Network**



#### **CIFAR 10 dataset:**

50,000 training images 10,000 testing images 10 categories (classes)

#### **Accuracies** from different methods:

Human: ~94%

Whitening K-mean: 80%

• • • • • •

**Deep CNN: 95.5%** 





**Convolutional Layer:** filters work on every part of the image, therefore, they are searching for the same feature everywhere in the image.





**MaxPooling:** usually present after the convolutional layer. It provides a down-sampling of the convolutional output





**Dropout:** randomly drop units along with their connections during training. It helps to learn more robust features by reducing complex co-adaptations of units and alleviate overfitting issue as well.





**Fully-connected layer (dense):** each node is fully connected to all input nodes, each node computes weighted sum of all input nodes. It has one-dimensional structure. It helps to classify input pattern with high-level features extracted by previous layers.

### Why GPU Matters in Deep Learning?

```
X_train shape: (50000, 3, 32, 32)
50000 train samples
10000 test samples
Using real-time data augmentation.
Epoch 1/200
                                734s
50000/50000 [============]
Epoch 2/200
                                733s
Epoch 3/200
733s
Epoch 4/200
50000/50000 [====================
                                733s
```



```
_train shape: (50000, 3, 32, 32)
50000 train samples
10000 test samples
Using real-time data augmentation.
Epoch 1/200
50000/50000 [================
                                          27s
Epoch 2/200
50000/50000 [==============================
                                          27s
Epoch 3/200
50000/50000 [===========]
                                          27s
Epoch 4/200
50000/50000 [=================
                                          27s
```

Running time without GPU

Running time with GPU

With GPU, the running time is 733/27=27.1 times faster then the running time without GPU!!!

#### Again, WHY GPUs?

- 1. Every set of weights can be stored as a matrix (m,n)
- 2. GPUs are made to do common parallel problems fast. All similar calculations are done at the same time. This extremely boosts the performance in parallel computations.

# Summary: 2010s Deep Learning

Make it deep (many layers)

Way more labeled data (1 million)

A lot better computing power (GPU clusters)

# THANK YOU VERY MUCH!



# Deep Learning For Recommender Systems

Fei Li
M.S. Student in Computer Science
Supervisor: Dr. Mingxuan Sun
Louisiana State University
11/09/2016

# Recommender System



### Recommender System



- Total price: \$40.05

  Add all three to Cart

  Add all three to List
- This item: Numerical Methods for Scientists and Engineers (Dover Books on Mathematics) by R. W. Hamming Paperback \$14.31
- Partial Differential Equations for Scientists and Engineers (Dover Books on Mathematics) by Stanley J. Farlow Paperback \$10.26
- Ordinary Differential Equations (Dover Books on Mathematics) by Morris Tenenbaum Paperback \$15.48

#### Customers Who Bought This Item Also Bought



<

Partial Differential
Equations for Scientists
and Engineers (Dover...
> Stanley J. Farlow
132
Paperback
\$10.26 \( \frac{Prime}{Prime} \)



Ordinary Differential
Equations (Dover Books on
Mathematics)
Morris Tenenbaum

115

Paperback

\$15.48 **Prime** 



FOURIER SERIES

Books on Mathematics)
Georgi P. Tolstov
61
#1 Best Seller in

#1 Best Seller (in Functional Analysis... Paperback \$3.99



An Introduction to Information Theory:
Symbols, Signals and...

John R. Pierce

1 90
Paperback

\$3.99 **Prime** 



Linear Algebra (Dover Books on Mathematics) Georgi E. Shilov 全文章文章 45 Paperback

\$14.35 *Prime* 

**Recommender Systems**: Software tools and techniques providing suggestions for items to be of use to a user.

### Input Data:

- 1. A set of users  $U=\{u_1,u_2,...,u_m\}$
- 2. A set of items  $V=\{v_1, v_2, ..., v_n\}$
- 3. The history preference ratings  $R_{ij}$

#### **Output Data:**

Given user u and item v Predict the rating or preference  $r_{uv}$ 



Ricci et al. Introduction to Recommender Systems Handbook. 2011

# Collaborative Filtering

|        |       | Airplane | Matrix | Room with a View | <br>Shrek   |
|--------|-------|----------|--------|------------------|-------------|
|        |       | Comedy   | Action | Romance          | <br>Cartoon |
| Joe    | 27, M | 5        | 4      | 1                | 2           |
| Carol  | 53, F | 2        |        | 4                | 4           |
| Tim    | 40, M |          |        |                  |             |
| Kumar  | 25, M | 5        | 3      |                  |             |
| Nancy  | 33, F | 1        |        | 4                | ?           |
| Stella | 20, F |          |        |                  |             |

Explicit or implicit feedbacks

# Collaborative Filtering

|        |       | Airplane | Matrix | Room with a View | <br>Shrek   |
|--------|-------|----------|--------|------------------|-------------|
|        |       | Comedy   | Action | Romance          | <br>Cartoon |
| Joe    | 27, M | 5        | 4      | 1                | 2           |
| Carol  | 53, F | 2        |        | 4                | 4           |
| Tim    | 40, M |          |        |                  |             |
| Kumar  | 25, M | 5        | 3      |                  |             |
| Nancy  | 33, F | 1        |        | 4                | ?           |
| Stella | 20, F |          |        |                  |             |

Favorites of users like you

### **Matrix Factorization**

**m** users and **n** items, each has **p** features. user data U is a matrix with size m\*p Item data V is a matrix with size n\*p

For user  $u_i \in U$  and item  $v_j \in V$ Predicting rating  $r_{ij} = u_i^* v_j^T$ Error=  $u_i^* v_i^T - R_{ii}$ 



$$\min \ \sum_{i}^{m} \sum_{j}^{n} I_{_{ij}} [ (u_{i}v_{j}\text{-R}_{ij})^{2} + \lambda \ (\| \|u_{i}\| \|^{2} + \| \|v_{j}\| \|^{2}) ]$$

 $I_{ij} = 1$  if  $u_i$  has rating on  $v_i$ , otherwise 0

**Limitations** of Collaborative Filtering Method:

**Cold-start Problem**: the user-item rating matrix could be extremely large and sparse. For new users and new items, this could be even worse.

Netflix: rating number is 1.1% of all possible ratings

#### **Solutions:**

Adding extra features to item: review, image, etc.



### **Collaborative Filtering with Deep Learning**





### **Text Feature Learning**

### **Stack Fully-Connected Autoencoder**





### Visual Feature Learning

#### Stack Convolutional Autoencoder





compressed feature vector





### Results





### Results





22072 users
14613 items
82811 ratings
0.03% of all possible ratings



#### **Summary:**

1. A hybrid recommender system which integrated collaborative filtering and deep learning has been implemented.

2. With extra features from texts and images, this system outperforms the traditional collaborative filtering method, especially when the rating matrix is extremely sparse.





# Deep Learning Practice on LONI QB2

Feng Chen
HPC User Services
LSU HPC & LONI
sys-help@loni.org

Louisiana State University
Baton Rouge
November 9, 2016





#### **Outline**

#### Overview of LONI QB2

- QB2 node specs
- Cluster architecture
- A few words about GPU

#### Access QB2 cluster

- Connect to QB2 clusters using ssh
- Load python modules with Theano, Tensorflow and Keras installed
- GPU Queues on QB2

#### Submitting jobs to QB2

- PBS script examples
  - Theano backend
  - Tensorflow backend
- How to monitor your jobs







Deep Learning Examples on LONI QB2

### **Overview of LONI QB2**

11/09/2016





#### **QB2 Hardware Specs**

- QB2 came on-line 5 Nov 2014.
  - It is a 1.5 Petaflop peak performance cluster containing 504 compute nodes with
    - 960 NVIDIA Tesla K20x GPU's, and
    - Over 10,000 Intel Xeon processing cores. It achieved 1.052 PF during testing.
- Ranked 46th on the November 2014 Top500 list.
- 480 Compute Nodes, each with:
  - Two 10-core 2.8 GHz E5-2680v2 Xeon processors.
  - 64 GB memory
  - 500 GB HDD
  - 2 NVIDIA Tesla K20x GPU's





#### Inside A QB Cluster Rack







#### Inside A QB2 Dell C8000 Node







#### **Cluster Nomenclature**

| Term    | Definition                                                                                                  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Cluster | The top-level organizational unit of an HPC cluster, comprising a set of nodes, a queue, and jobs.          |  |  |  |  |  |  |
| Node    | A single, named host machine in the cluster.                                                                |  |  |  |  |  |  |
| Core    | The basic computation unit of the CPU. For example, a quad-core processor is considered 4 cores.            |  |  |  |  |  |  |
| Job     | A user's request to use a certain amount of resources for a certain amount of time on cluster for his work. |  |  |  |  |  |  |
| GPU     | Graphics processing unit that works together with CPU to accelerate user applications                       |  |  |  |  |  |  |







### **GPU Computing History**

- ➤ The first GPU (Graphics Processing Unit)s were designed as graphics accelerators, supporting only specific fixed-function pipelines.
- Starting in the late 1990s, the hardware became increasingly programmable, culminating in NVIDIA's first GPU in 1999.
- Researchers were tapping its excellent floating point performance.
  The General Purpose GPU (GPGPU) movement had dawned.
- NVIDIA unveiled CUDA in 2006, the world's first solution for generalcomputing on GPUs.
- CUDA (Compute Unified Device Architecture) is a parallel computing platform and programming model created by NVIDIA and implemented by the GPUs that they produce.





### Add GPUs: Accelerate Science Applications

**CPU** 

















### Why is GPU this different from a CPU?

- Different goals produce different designs
  - GPU assumes work load is highly parallel
  - CPU must be good at everything, parallel or not
- > CPU: minimize latency experienced by 1 thread
  - big on-chip caches
  - sophisticated control logic
- GPU: maximize throughput of all threads
  - # threads in flight limited by resources => lots of resources (registers, bandwidth, etc.)
  - multithreading can hide latency => skip the big caches
  - share control logic across many threads





#### Overview of the GPU nodes

- CPU: Two 2.6 GHz 8-Core Sandy Bridge Xeon 64-bit Processors (16)
  - 64GB 1666MHz Ram
- GPU: Two NVIDIA Tesla K20Xm
  - 14 Streaming Multiprocessor (SMX)
  - 2688 SP Cores
  - 896 DP Cores
  - 6G global memory



**SMX (192 SP, 64 DP)** 

#### **K20Xm GPU Architecture**







#### **CUDA Execution Model**

- Sequential code executes in a Host (CPU) thread
- Parallel code executes in many Device (GPU) threads across multiple processing elements







### Heterogeneous Computing

```
#include <iostream>
#include <algorithm>
using namespace std;
#define RADIUS 3
#define BLOCK_SIZE 16
global void stencil 1d(int *in, int *out) {
        __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
        int gindex = threadldx.x + blockldx.x * blockDim.x;
        int lindex = threadIdx.x + RADIUS;
        temp[lindex] = in[gindex];
        if (threadIdx.x < RADIUS) {
                temp[lindex - RADIUS] = in[gindex - RADIUS];
                temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
        // Synchronize (ensure all the data is available)
        _syncthreads();
        // Apply the stencil
        int result = 0:
        for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
               result += temp[lindex + offset];
        out[gindex] = result;
void fill_ints(int *x, int n) {
        fill n(x, n, 1):
int main(void) {
    int *in, *out;
                          // host copies of a, b, c
        int *d in. *d out:
                              // device copies of a, b, c
        int size = (N + 2*RADIUS) * sizeof(int);
        // Alloc space for host copies and setup values in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
        out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
        // Alloc space for device copies
        cudaMalloc((void **)&d_in, size);
        cudaMalloc((void **)&d_out, size);
        cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
        cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);
        // Launch stencil 1d() kernel on GPLI
        stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
        // Copy result back to host
        cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
        free(in); free(out);
        cudaFree(d_in); cudaFree(d_out);
        return 0:
```







### Performance Comparison

- Comparison of runtime for our deep learning example
  - CIFAR10, 1 Epoch







Deep Learning Examples on LONI QB2

### **Access LONI QB2**





#### **LONI Cluster Architectures**

#### Major architecture

Intel x86\_64 clusters

Vendor: Dell

Operating System: Linux (RHEL 4/5/6)

Processor: Intel





### Accessing cluster using ssh (Secure Shell)

- On Unix and Mac
  - use ssh on a terminal to connect
- Windows box (ssh client):
  - Putty, Cygwin
     (<a href="http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html">http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html</a>)
  - MobaXterm (<u>http://mobaxterm.mobatek.net/</u>)

Use this command to ssh to QB2:

```
ssh username@qb.loni.org
```





### Connect to QB2 using ssh (windows)







### Connect to QB2 using ssh (Linux/Mac)







#### Using Environment Modules on QB2

- ➤ Environment Modules on QB2 is the framework to manage what software is loaded into a user's environment. Its functionality includes
  - List all software packages currently available in the Environment Modules system,
  - List all software packages loaded into a user's environment,
  - Load/Unload/Switch software packages into a user's environment
  - Unload a software package from a user's environment.
- Recall the following commands:
  - module avail {name}
  - module load <module key>
  - module unload <module\_key>
  - module disp <module key>
  - module swap <module\_key1> <module\_key2>





### Use The Correct Python Module

Use the following commands to load the correct python module to your environment:

```
Must use this python key to import
                                                          theano, tensorflow and keras!
[fchen14@qb001 ml tut]$ module av python
  ----- /usr/local/packages/Modules/modulefiles/apps
python/2.7.10-anaconda python/2.7.12-anaconda python/2.7.7-anaconda
[fchen14@qb001 ml tut]$ module load python/2.7.12-anaconda
[fchen14@qb001 ml tut]$ which python
/usr/local/packages/python/2.7.12-anaconda/bin/python
[fchen14@qb001 ml tut]$ python
Python 2.7.12 | Anaconda 4.1.1 (64-bit) | (default, Jul 2 2016, 17:42:40)
Please check out: http://continuum.io/thanks and https://anaconda.org
>>> import keras, theano, tensorflow
Using Theano backend.
I tensorflow/stream executor/dso loader.cc:111] successfully opened CUDA library libcurand.so.7.5 locally
I tensorflow/stream executor/dso loader.cc:111] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream executor/dso loader.cc:111] successfully opened CUDA library libcufft.so.7.5 locally
I tensorflow/stream executor/dso loader.cc:111] successfully opened CUDA library libcudnn.so.5.1 locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcublas.so.7.5 locally
>>>
```





Deep Learning Examples on LONI QB2

### Job Queues on QB2

11/09/2016





#### Cluster Environment

- Multiple compute nodes
- Multiple users
- Each user may have multiple jobs running simultaneously
- Multiple users may share the same node







#### Job submission basics

- Find appropriate queue
- Understand the queuing system and your requirements and proceed to submit jobs
- Monitor jobs during execution





#### Job Queues

- Nodes are organized into queues. Nodes can be shared.
- > Each job queue differs in
  - Number of available nodes
  - Max run time
  - Max running jobs per user
  - Nodes may have special characteristics: GPU/Xeon Phi's, Large memory, etc.
- Jobs need to specify resource requirements
  - Nodes, time, queue





#### Available Queues on QB2

"qstat -q" to check available queues on QB2

```
[fchen14@qb1 ~]$ qstat -q
server: qb3
Oueue
           Memory CPU Time Walltime Node Run Que Lm State
single
    -- -- 168:00:0 1 2 0 -- E R
checkpt -- -- 72:00:00 256 68
                                   0 -- E R
    -- -- 72:00:00 128 61 0 -- E R
worka
           -- -- 72:00:00 4 0 0 -- E R
phi
           -- -- 72:00:00 4 3 0 -- E R
k40
bigmem -- -- 72:00:00 1 4 2 -- E R
            -- -- 24:00:00 -- 0 0 -- E R
admin
preempt -- -- 72:00:00 -- 0 0 -- E R
           -- -- 168:00:0 128 0 0 -- E R
priority
                               138
```

- Each node on QB2:
  - In workq queue has 2 k20xm NVidia GPUs
  - In k40 queue has 2 k40 NVidia GPUs
- Use either workq or k40 queue to submit today's job script as we are using GPUs today





Deep Learning Examples on LONI QB2

### **Submit and Monitor Your Jobs**

11/09/2016





#### Two Job Types

#### Interactive job

- Set up an interactive environment on compute nodes for users
  - Advantage: can run programs interactively
  - Disadvantage: must be present when the job starts
- Purpose: testing and debugging, compiling
  - Do not run on the head node!!!
  - Try not to run interactive jobs with large core count, which is a waste of resources)

#### Batch job

- Executed without user intervention using a job script
  - Advantage: the system takes care of everything
  - Disadvantage: can only execute one sequence of commands which cannot changed after submission
- Purpose: production run





# PBS Script (CIFAR10) Tensorflow Backend

```
#!/bin/bash
#PBS -l nodes=1:ppn=20
#PBS -l walltime=72:00:00
#PBS -q workq
#PBS -N cnn.tf.gpu
#PBS -o cnn.tf.gpu.out
#PBS -e cnn.tf.gpu.err
#PBS -A loni_loniadmin1
```

Tells the job scheduler how much resource you need.

How will you use the resources?

```
cd $PBS_O_WORKDIR
```

```
# use the tensorflow backend
export KERAS_BACKEND=tensorflow
# use this python module key to access tensorflow, theano and keras
module load python/2.7.12-anaconda
python cifar10_cnn.py
```





# PBS Script (CIFAR10) Theano Backend

```
#!/bin/bash
#PBS -l nodes=1:ppn=20
#PBS -l walltime=72:00:00
#PBS -q workq
#PBS -N cnn.th.gpu
#PBS -o cnn.th.gpu.out
#PBS -e cnn.th.gpu.err
#PBS -A loni_loniadmin1
```

Tells the job scheduler how much resource you need.

How will you use the resources?

```
cd $PBS_O_WORKDIR
```

```
# use this python module key to access tensorflow, theano and keras
module load python/2.7.12-anaconda
# use the theano backend
export KERAS_BACKEND=theano
export THEANO_FLAGS="mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=1"
python cifar10_cnn.py
```





#### Steps to Submit Jobs

```
[fchen14@qb1 ml tut]$ cd /project/fchen14/machine learning/ml tut
[fchen14@qb1 ml tut]$ qsub sbm cifar10 cnn tensorflow.pbs
305669.qb3
[fchen14@qb1 ml tut]$ qstat -u fchen14
qb3:
                                                                        Req'd Req'd
                                                                                       Elap
Job ID
                    Username
                                Oueue
                                         Jobname
                                                          SessID NDS
                                                                       TSK
                                                                              Memory Time S Time
305667.qb3
                    fchen14
                                worka
                                        cnn.tf.gpu
                                                           25633
                                                                                 -- 72:00 R
                    fchen14
                                k40
                                         cnn.tf.gpu
305669.qb3
                                                                           20
                                                                                 -- 72:00 R
[fchen14@qb1 ml tut]$ qshow 305669.qb3
PBS job: 305669.qb3, nodes: 1
Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)
ab002
           24 0.32 205 4 fchen14:python:166G:1.6G:0.1 fchen14:305669:103M:1M
```

PBS\_job=305669.qb3 user=fchen14 allocation=loni\_loniadmin1 queue=k40 total\_load=0.32 cpu\_hours=0.11 wall hours=0.05 unused nodes=0 total nodes=1 ppn=20 avg load=0.32 avg cpu=205% avg mem=1647mb

avg vmem=170438mb top proc=fchen14:python:qb002:166G:1.6G:0.1hr:205%

toppm=msun:python:qb002:169456M:1190M node\_processes=4





#### Job Monitoring - Linux Clusters

Check details on your job using qstat

```
$ qstat -n -u $USER : For quick look at nodes assigned to you
$ qstat -f jobid : For details on your job
$ qdel jobid : To delete job
```

Check approximate start time using showstart

```
$ showstart jobid
```

Check details of your job using checkjob

```
$ checkjob jobid
```

Check health of your job using qshow

```
$ qshow jobid
```

- Dynamically monitor node status using top
  - See next slides
- > Monitor GPU usage using nvidia-smi
  - See next slides
- Please pay close attention to the load and the memory consumed by your job!





### Using the "top" command

### The top program provides a dynamic real-time view of a running system.

```
[fchen14@qb1 ml_tut]$ ssh qb002
Last login: Mon Oct 17 22:50:16 2016 from qb1.loni.org
[fchen14@qb002 ~]$ top
top - 15:57:04 up 24 days, 5:38, 1 user, load average: 0.44, 0.48, 0.57
Tasks: 606 total, 1 running, 605 sleeping, 0 stopped, 0 zombie
Cpu(s): 9.0%us, 0.8%sy, 0.0%ni, 90.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 132064556k total, 9759836k used, 122304720k free, 177272k buffers
Swap: 134217720k total, 0k used, 134217720k free, 5023172k cached
```

| PTD   | USFR    | PR | NT | VTRT  | RES  | SHR  | 5 | %CPU 9 | <u>KMFM</u> | TIME+ COMMAND     |
|-------|---------|----|----|-------|------|------|---|--------|-------------|-------------------|
| 21270 | fchen14 | 20 | 0  | 166g  | 1.6g | 237m | S | 203.6  | 1.3         | 16:42.05 python   |
| 22143 | fchen14 | 20 | 0  | 26328 | 1764 | 1020 | R | 0.7    | 0.0         | 0:00.76 top       |
| 83    | root    | 20 | 0  | 0     | 0    | 0    | S | 0.3    | 0.0         | 16:47.34 events/0 |
| 97    | root    | 20 | 0  | 0     | 0    | 0    | S | 0.3    | 0.0         | 0:25.80 events/14 |
| 294   | root    | 39 | 19 | 0     | 0    | 0    | S | 0.3    | 0.0         | 59:45.52 kipmi0   |
| 1     | root    | 20 | 0  | 21432 | 1572 | 1256 | S | 0.0    | 0.0         | 0:01.50 init      |
| 2     | root    | 20 | 0  | 0     | 0    | 0    | S | 0.0    | 0.0         | 0:00.02 kthreadd  |





#### Monitor GPU Usage

#### Use nvidia-smi to monitor GPU usage:

```
[fchen14@qb002 ~]$ nvidia-smi -1
Thu Nov 3 15:58:52 2016
 NVIDIA-SMI 352.93 Driver Version: 352.93
  -----+
GPU Name Persistence-M Bus-Id Disp.A | Volatile Uncorr. ECC |
Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
0 Tesla K40m On | 0000:03:00.0 Off |
| N/A 34C P0 104W / 235W | 11011MiB / 11519MiB | 77% Default |
  1 Tesla K40m On | 0000:83:00.0 Off | 0 |
| N/A 32C P0 61W / 235W | 10950MiB / 11519MiB | 0% Default |
       ______
 Processes:
                                       GPU Memory
 GPU PID Type Process name
                                       Usage
 0 21270 C python
                                         10954MiB
  1 21270 C python
                                         10893MiB
```





#### **Future Trainings**

- > This is the last training for this semester
  - Keep an eye on future HPC trainings at:
    - http://www.hpc.lsu.edu/training/tutorials.php#upcoming
- > Programming/Parallel Programming workshops
  - Usually in summer
- Visit our webpage: www.hpc.lsu.edu