

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
1/76

Backgrounding and Task Distribution
In Batch Jobs

James A. Lupo, Ph.D.
Assist Dir Computational Enablement

Louisiana State University

jalupo@cct.lsu.edu

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
2/76

Overview

● Description of the Problem Environment
● Quick Review of shell job control features
● WQ (WorkQueueing)

● Serial Example
● Multi-Threaded Example
● MPI Example
● Advanced Possibilities

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
3/76

The Problem Environment

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
4/76

LSU HPC Environment

● Linux operating system.
● Moab/Torque (PBS) environment.
● Clusters tuned for large-scale parallel tasks.
● Full nodes assigned - access to 8, 16, 20,

or even 48 cores per node, depending on
system.

How does one handle thousands of 1-core
tasks without going crazy?

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
5/76

Problem Schematic

Heap'O'Data

Serial
Process

Pile'O'Results

Single process applied to many input pieces!

Generates many output pieces.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
6/76

Manual Command Line

● 10's of thousands of input files processed
with the same command syntax:

$ myapp infile1 > outfile1
. . .
$ myapp infile1000 > outfile1000
. . .
(and many, many more)
. . .

Data sets could come from instruments,
automatically generated parameter sweep
studies, etc.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
7/76

Roadblocks to Overcome

● Most workflow tools not well suited to time-
limited batch queuing systems.

● Current approach: background or otherwise
manually distribute work in the PBS batch
script.
● Requires intermediate-level shell scripting skills
● Scripting (programming) is foreign to many

users of the point/click persuasion.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
8/76

Desired Solution

● Avoid detailed scripting requirements -
but allow flexibility and adaptability.

● Minimize customization and maximize
things done automagically.

● Make solution batch environment aware,
particularly wallclock time constraints.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
9/76

Shell Job Control

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
10/76

A Process

● A process is the memory, code instructions,
and system resources under system control for
a running instance of a program.

● Every process has a unique process ID (PID).
● Can see with ps (process status) command:

[jalupo@mike5 ~]$ ps ux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
jalupo 21000 0.0 0.0 110588 2136 ? S 08:13 0:00 sshd: jalupo@pt
jalupo 21001 0.0 0.0 114424 5800 pts/3 Ss 08:13 0:00 -bash
jalupo 21255 0.0 0.0 112312 1176 pts/3 R+ 08:15 0:00 ps ux

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
11/76

Shell Job Control => User Process
Control

● Not to be confused with batch jobs!
● Shell jobs are processes started by the current

shell :
● Job control related to the terms: background,

suspended, foreground.
● Typically used interactively, but available for

use in any shell script.
● Available in all shells: bash, csh, etc.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
12/76

Job States

● Interactive view of job states (modes):
● foreground (Running) - user / application

interaction via keyboard and display - limited to
direct control of 1 process.

● suspended (Stopped) - application is stopped,
but ready (in memory) to execute - user able to
run other processes.

● background (Running) - application runs
without user interaction - user is able to do other
things - multiprocessing!

● User may move jobs into and out of these
states as often as necessary, plus kill or delete.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
13/76

Common Job Control Commands

● Ctrl-Z .. suspends an interactive process.
● cmd & ... starts cmd in the background.
● jobs lists known jobs by number.
● bg %M ... backgrounds job #M.

● fg %N ... foregrounds job #N.

● kill %L . kills job #L.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
14/76

Example Scripts

Create a couple of small bash scripts, naming them demo.sh
and driver.sh, with the following content:

#! /bin/bash
PID=$$
echo "$PID is starting."
for N in $(seq 1 $1); do
 sleep 2
 echo "$PID slept $N times."
done
echo "$PID is ended."

demo.sh

#! /bin/bash
PID=$$
echo "Driver $PID is starting."
./demo.sh 3
./demo.sh 6
echo "Driver $PID has ended."

driver.sh

Make them executable:

 chmod u+x demo.sh driver.sh

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
15/76

Run demo.sh

● Try: $./demo.sh 3
● You should see:

3432 is starting.
3432 slept 1 times.
3432 slept 2 times.
3432 slept 3 times.
3432 is ended.

● 3432 is the process ID assigned when the
script started.

● Every running PID is unique.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
16/76

Run driver.sh

● Try: $./driver.sh

Driver 3485 is starting.
3486 is starting.
3486 slept 1 times.
3486 slept 2 times.
3486 slept 3 times.
3486 is ended.
3491 is starting.
3491 slept 1 times.
3491 slept 2 times.
3491 slept 3 times.
3491 slept 4 times.
3491 slept 5 times.
3491 slept 6 times.
3491 is ended.
Driver 3485 has ended.

3 process ID's:

 3485, 3486, 3491.

They ran sequentially.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
17/76

Launching in Background With &

● Jobs requiring interaction are suspended.
● Non-interactive jobs run in background.

● stdio* streams stay as is unless redirected.

● Parent shell determines how jobs are
handled when shell terminates.

Syntax: $ cmd [-switches] [args] [< stdin] [> stdout] &

* stdin, stdout, stderr

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
18/76

Try It

● Try: ./demo.sh 5 &
● Note how output gets mixed up on

the screen.
● Try: ./demo.sh 5 > foo &
● It runs, and output goes to file foo.
● Try a sequence of 3 commands:

1) ./demo.sh 15 > foo &

2) ./demo.sh 20 > bar &

3) jobs

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
19/76

Modify driver.sh

#! /bin/bash
PID=$$
echo "Driver $PID is starting."
./demo.sh 3 &
./demo.sh 2 &
echo "Driver $PID has ended."

driver.sh

host:~/Scratch$./driver.sh
Driver 4394 is starting.
Driver 4394 has ended.
host:~/Scratch$ 4395 is starting.
4396 is starting.
4395 slept 1 times.
4396 slept 1 times.
4395 slept 2 times.
4396 slept 2 times.
4396 is ended.
4395 slept 3 times.
4395 is ended.

Execution looks a little strange:

Having the driver script complete
before the processes it started is
not a good thing. If a job script,
all user processes will be killed
when it ends.

Need one more change.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
20/76

Modify driver.sh: Add wait

#! /bin/bash
PID=$$
echo "Driver $PID is starting."
./demo.sh 3 &
./demo.sh 2 &
wait
echo "Driver $PID has ended."

driver.sh

host:~/Scratch$./driver.sh
Driver 4473 is starting.
4474 is starting.
4475 is starting.
4475 slept 1 times.
4474 slept 1 times.
4474 slept 2 times.
4475 slept 2 times.
4475 is ended.
4474 slept 3 times.
4474 is ended.
Driver 4473 has ended.

Execution now looks like:

The wait is key to making sure
sub-processes finish before the
caller does.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
21/76

Keep Output Separate

#! /bin/bash
PID=$$
echo "Driver $PID is starting."
./demo.sh 3 > d3.out &
./demo.sh 2 > d2.out &
wait
echo "Driver $PID has ended."

driver.sh

host:~/Scratch$./driver.sh
Driver 4473 is starting.
Driver 4473 has ended.
host:~/Scratch$ ls
 driver.sh demo.sh
 d3.out d2.out

Execution now looks like:

Driver output is displayed on the
terminal. Application output goes
into individual files.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
22/76

PBS Script Running 4 Serial Programs

#! /bin/bash
#PBS -l nodes=1:ppn=4
#PBS . . . other settings . . .

myprog < infile1 > outfile1 &
myprog < infile2 > outfile2 &
myprog < infile3 > outfile3 &
myprog < infile4 > outfile4 &

wait

The wait makes sure all 4 tasks (shell jobs) have completed, else
when the script ends, the job manager will kill all the user's running
programs in preparation for the next job.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
23/76

Running 2 Multi-Threaded Programs

● With 16 cores there is the ability to run 2 8-
thread programs - almost as easy as running
serial programs.

#! /bin/bash
#PBS -l nodes=1:ppn=16
#PBS . . . other settings . . .

export OMP_NUM_THREADS=8
myprog < infile1 > outfile1 &
myprog < infile2 > outfile2 &

wait

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
24/76

Multi-Process MPI Programs

20-core node? Consider running 2 10-process
MPI apps.

#! /bin/bash
#PBS -l nodes=1:ppn=20
#PBS . . . other settings . . .

NPROCS=10
mpirun -np $NPROCS -machinefile $PBS_NODEFILE \

mprog < infile1 > outfile1 &
mpirun -np $NPROCS -machinefile $PBS_NODEFILE mprog \

< infile2 > outfile2 &

wait

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
25/76

Higher Core Counts

● Multiple multi-threaded or multi-process tasks
allows one script to take advantage of all
cores in a node.

● Depends on specs for a given clusters.
● Program types can be mixed, so long as the

required number of cores is consistent with
what the node provides.

● Scaling up (more nodes plus more cores) will
complicate the scripting required.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
26/76

Use Multiple Nodes?

On typical clusters, the work must be done on the compute
nodes. We could submit multiple single node job scripts, but
how about using more than one node at a time?

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
27/76

Multi-Node Considerations

● The mother superior node is only one given
all the job information, like environment
variables, list of node names, etc.

● Start programs on other nodes with remote
shell commands, like ssh.

● Account for shared and local file systems.
● Assure all programs finish before script exits.
● Be aware of efficiency (load balancing).

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
28/76

8 Serial Programs on Two 4-core Nodes

#! /bin/bash
#PBS -l nodes=2:ppn=4
#PBS . . . other settings . . .

export WORKDIR=/path/to/work/directory
cd $WORKDIR

myprog < infile1 > outfile1 &
myprog < infile2 > outfile2 &
myprog < infile3 > outfile3 &
myprog < infile4 > outfile4 &

Discover second host name, somehow, then

ssh -n $HOST2 “cd $WORKDIR; myprog < infile5 > outfile5” &
ssh -n $HOST2 “cd $WORKDIR; myprog < infile6 > outfile6” &
ssh -n $HOST2 “cd $WORKDIR; myprog < infile7 > outfile7” &
ssh -n $HOST2 “cd $WORKDIR; myprog < infile8 > outfile8” &

wait

-n suppresses reading from stdin and just starts the program.
The path to myprog is assumed known (.bashrc?)

Node 1
Mother Superior
4 Tasks

Node 2
Compute Node
4 Tasks

8 Cores Total

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
29/76

Some Real Scripting Required

● 40 programs on 2 nodes would clearly make
life complicated.

● Real shell magic needed to figure out host
names - maybe a little opaque:

NAMES=($(uniq $PBS_HOSTFILE))
HOST2=NAMES[1]

Assumes host names are assigned starting with the mother
superior, and in sorted order. More work if this is not the case!

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
30/76

Automating Multiple Nodes
Get the node names

NODES=($(uniq $PBS_NODEFILE))

Get the number of names

NUMNODES= $(uniq $PBS_NODEFILE) | wc -l | awk '{print $1-1}')

Do commands on first node:

cmd stuff &

. . . start as many as desired (but customize each line!). . . .

cmd stuff &

Loop over all the nodes, starting with the second name:

for i in $(seq 1 $((NUMNODES-1))); do

 ssh -n ${NODES[$i]} cmd stuff &

 ... start as many as desired (but customize each line!). . . .

 ssh -n ${NODES[$i]} cmd stuff &

done

wait

Really not fun if you don't like shell scripting, yet it gets worse!

Node N
Compute Node
4 Tasks

Node 1
Mother Superior
4 Tasks

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
31/76

Consider Multi-Threaded / MPI Task
Requirements

● Have to pass the thread count.
● Have to construct partial host name lists.
● Have to worry about CPU affinity!
● Involves basic shell programming, and maybe

gets involved with fussy quoting rules to get
everything passed correctly.

● Manual scripting doesn't really SCALE!

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
32/76

Solution Requirements

● Isolate the things that change with each task.
● Make user setup as simple as possible.
● Automate most of the magic.
● Try to deal with batch job walltime issues.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
33/76

Questions?

● Before we move on, any further clarifications
of the basic shell scripting concepts needed?

● Any concerns over difference between a shell
script and a PBS job script?

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
34/76

WQ and It's Components

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
35/76

What Is WQ?

● Dispatcher/Worker model - WQ roughly stands for
Work Queueing.

● Handles tasks – defined as the work necessary to
process one line from an input file.

● Multiple workers execute the tasks - one worker per
simultaneous task on all nodes.
● Workers request a task from the Dispatcher.
● Workers share task times with Dispatcher.
● Dispatcher won't assign a new task if it estimates

that insufficient time remains to complete it.

High Performance Computing @ Louisiana State University

25 February 2015
36/76

WQ Schematic

Heap'O'Data

Dispatcher

Pile'O'Results

TaskWorker

TaskWorker

TaskWorker

TaskWorker

Request Data

Assign Data

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
37/76

Design Assumptions

● Task viewed as application + data
● Consider one app, many input file names.

● Dispatcher manages an input file with file
names, handing out one per request.

● A Worker submits a request, and reports
run time of last task executed.

● Dispatcher tracks longest task time. Uses
it, and a safety margin of 1.25, to decide if
there is sufficient time before handing out
another task.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
38/76

node015 (Mother Superior) node107

node213node342

Dispatcher

Worker
0 Worker

1

Worker
0

Worker
1

Worker
0

Worker
1

Worker
0 Worker

1

Worker
0 Worker

1

Worker
0

Worker
1

Task Requests

WQ Runtime Schematic

Worker ID's?
 node342_00
 node342_01

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
39/76

WQ Components
● wq.py – A Python script that implements the dispatcher

and workers - no user servicable parts inside!.

● wq-pbs.sh - The PBS specific part of WQ - no user
servicable parts inside!

● wq.pbs – A PBS batch script template with a few user
required variable settings and call to wq-pbs.sh built in.

● wq.sh – A user created script (could be a program) that
accepts an input file line as it's argument.

● wq.list – A user created file containing input file names,
one per line (suggest using absolute path names).

● wq.log.N - Output file of WQ actions. N = PBS job number.

The names of files can be changed – just keep consistent with the
contents of the PBS script – wq.py and wq-pbs.sh must be executable
and in PATH.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
40/76

wq.pbs : PBS Preamble Section

#! /bin/bash
##
#
Begin WQ Prologue section
##
#
#PBS -A hpc_myalloc_03
#PBS -l nodes=4:ppn=16
#PBS -l walltime=00:30:00
#PBS -q workq
#PBS -N WQ_Test

The PBS script itself must be set executable, as it will be run by nodes
other than the mother superior, if necessary.

The PBS script is divided into 2 parts: the WQ prologue (which
includes the PBS preamble), and the WQ epilogue. Only the first two
contain items the user changes:

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
41/76

wq.pbs : Prologue Section

“Workers Per Node” - WPN * processes = cores (PPN)

WPN=4

Set the working directory:

WORKDIR=/work/user

Use a file with 82 names listed:

FILES=${WORKDIR}/82_file_list

Name the task script each worker is expected to run on the file
name provided as it's only argument.

TASK=${WORKDIR}/wq_timing.sh

START=1

VERBOSE=0

5

3

4

2

1

6

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
42/76

● Serious magic happens in the Epilogue section – it consists of a
single incantation:

wq-pbs.sh $0 $WPN $WORKDIR $FILES $START $TASK $VERBOSE $1

● What does wq-pbs.sh do? In summary:

● Some sanity checking of settings.

● Determines if running on mother superior node.

● Preps information exchange process

● Starts job script on all other compute nodes.

● Starts dispatcher, and local workers.

● Compute nodes start their workers.

● All workers start the request - execute cycle until walltime
runs out or there are no more tasks to assign.

wq.pbs : Epilogue Section

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
43/76

wq.sh

This name represents an actual shell script, program, or any
other type of executable which works on the provided input file
line. What it does should be consistent with the settings (i.e.
multi-threaded, multi-process, serial) in wq.pbs.

Before launching, it can/should be tested with a single line*:

 $./wq.sh line of text from file

If it works manually, it should function correctly when called by
a worker.

*A shell programmer would see this as a command and 5 arguments!

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
44/76

wq.list

This is nothing more than a file containing lines of data, let's say file
names. Could generate one with the find command:

 $ find `pwd` -name '*.dat' -print > wq.list

In many cases, using absolute paths for the file names is best since
the script can extract information about the location from the name
(hence the use of `pwd` to get the current working directory).

/work/jalupo/WQ/Examples/Timing/chr13/chr13_710.bf
/work/jalupo/WQ/Examples/Timing/chr13/chr13_727.bf
/work/jalupo/WQ/Examples/Timing/chr13/chr13_2847.bf
/work/jalupo/WQ/Examples/Timing/chr13/chr13_711.bf

Sample:

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
45/76

wq.log.N

wq.py provides a record of activity in wq.log.N (N is
job number). All lines have the form:

<src>:<tag>:<data1>:...:<dataM>

where:

<src> : Dispatcher or Worker

<tag> : Data indicator

<data> : Specific pieces of data

What gets displayed is controlled by the setting of
VERBOSE.

See user manual on how to decode all lines.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
46/76

A Serial Task Example

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
47/76

A Simple wq.sh

Let's not try to do much except waste some time
and show what can be done with a file name:

#! /bin/bash

Argument 1 is assumed to be a path name.

FILE=$1
DIR=`dirname ${FILE}`
BASE=`basename ${FILE}`

Now just echo the important vars, and sleep.

echo "DIR=${DIR}; BASE=${BASE}"
echo "WQ_NUMACTL=${WQ_NUMACTL}; WQ_CPT=${WQ_CPT}"
echo "That's all, folks!"
T=`expr 2 + $RANDOM % 10`
echo "Sleeping for $T seconds."
sleep $T

backticks NOT single quotes!

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
48/76

An Input File List

Let's look for files with .bf extensions:

 $ find /work/user -name '*.bf' -print > file_list

And assume it produces 82 names like so:

 /work/user/chr13/chr13_710.bf

 /work/user/chr13/chr13_727.bf

 /work/user/chr13/chr13_2847.bf

 /work/user/chr13/chr13_711.bf

 /work/user/chr13/chr13_696.bf

 . . .

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
49/76

A Serial wq.pbs

Assume system has 16 cores per node, we could request 2 nodes
to run 32 tasks at a time. The PBS preamble option would look
like:

#PBS -l nodes=2:ppn=16

(2x16=32!) Now we just need to set the 6 PBS prologue variables
accordingly:

WPN=16
WORKDIR=/work/user
FILES=${WORKDIR}/file_list
TASK=${WORKDIR}/wq.sh
START=1
VERBOSE=0

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
50/76

Serial Example wq.log Lines

Worker:Timings:80:mike150_3:1449778034.03:1449778042.04:8.01
Worker:Stdout:80:mike150_3:True
 DIR=/work/jalupo/WQ/Examples/Timing/chr23; BASE=chr23_707.bf
 WQ_NUMACTL=numactl --physcpubind=12-15 -- ; WQ_CPT=4
 That's all, folks!
 Sleeping for 8 seconds.
Worker:Stderr:80:mike150_3
Dispatcher:Last:82
Dispatcher:Shutdown:82:4.81:1.01:10.01:54.74:52.06:58.09

Worker:Timings -- task 80 timing information.
Worker:Stdout -- task 80 was successful, followed by stdout lines.
Worker:Stderr -- stderr lines (none in this case).
Dispatcher:Last -- last task was task 82.
Dispatcher:Shutdown -- number of tasks and runtime info.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
51/76

A Multi-Threaded Example

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
52/76

Adjust For Multi-Threading

● wq.sh – set up for multi-threading. We'll
use OpenMP for this example.

● wq.pbs - adjust so number of threads and
number of workers is consistent with
number of cores on the nodes.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
53/76

Multi-Threaded Example wq.sh
#! /bin/bash

Set a variable as the absolute path to the blastn executable:

BLASTN=/usr/local/packages/bioinformatics/ncbiblast/2.2.28/gcc-4.4.6/bin/blastn

export OMP_NUM_THREADS=${WQ_CPT}

FILE=$1
DIR=`dirname ${FILE}`
BASE=`basename ${FILE}`

Build the rather complex command line.

CMD="${WQ_NUMACTL}
CMD="${CMD} ${BLASTN} -task blastn -outfmt 7 -max_target_seqs 1"
CMD="${CMD} -num_threads ${OMP_NUM_THREADS}"
CMD="${CMD} -db /project/special/db/img_v400_custom/img_v400_custom_GENOME"
CMD="${CMD} -query ${FILE}"
CMD="${CMD} -out ${DIR}/IMG_genome_blast.${BASE}"

For testing purposes, use "if false". For real runs, use "if true":

if true ; then
 eval "${CMD}"
else
 echo "${CMD}"
 # This just slows things way down for testing.
 sleep 1
fi

Production
vs

Testing

Keep
It

Readable

Threads

Shortcut

???

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
54/76

WQ_NUMACTL & WQ_CPT

● OpenMP, and MPI, should be told what cores to
run on if multiple processes share a node.

● Each worker determines the cores it should use
and sets two environment variables for the
benefit of the task scripts:
● WQ_NUMACTL - numactl string to set CPU

affinity. Add to front of the task command!
● WQ_CPT - the number of "cores per task" that

are available. Use to set MPI process or OpenMP
thread counts.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
55/76

Multi-Threaded Example wq.pbs

Assume the system has 16 cores per node. That means we
could run 4 4-thread tasks per node. On 2 nodes we could
run 8 tasks at a time, so let's set that up in the PBS
preamble:

#PBS -l nodes=2:ppn=16

Now we just need to make the PBS prologue variables agree:

WPN=4
WORKDIR=/work/user
FILES=${WORKDIR}/file_list
TASK=${WORKDIR}/wq.sh
START=1
VERBOSE=0

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
56/76

An MPI Example

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
57/76

Adjust For MPI

● wq.sh – set up for small number (same
node only) of MPI processes per task.

● wq.pbs - adjust so number of processes
and number of workers is consistent with
number of cores on the nodes.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
58/76

MPI Example wq.sh
#! /bin/bash

FILE=$1
DIR=`dirname ${FILE}`
BASE=`basename ${FILE}`

PROCS=${WQ_CPT}
HOSTNAME=`uname -n`
HOSTLIST=""
for i in `seq 1 ${PROCS}`; do
 HOSTLIST="${HOSTNAME},${HOSTLIST}"
done
HOSTLIST=${HOSTLIST%,*}

CMD="${WQ_NUMACTL} mpirun -host ${HOSTLIST}"
CMD="${CMD} -np ${PROCS} mb < ${FILE} > ${BASE}.mb.log"

cd $DIR

Clean out any previous run.

rm -f *.[pt] *.log *.ckp *.ckp~ *.mcmc

For testing purposes, use "if false". For production, use "if true"

if false ; then
 eval "${CMD}"
else
 echo "${CMD}"
 echo "Faking It On Hosts: ${HOSTLIST}"
 sleep 2
fi

Build
Host
Lists

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
59/76

MPI Example wq.pbs

WPN=2
WORKDIR=/work/user
FILES=${WORKDIR}/wq.lst
TASK=${WORKDIR}/wq_mb.sh
START=1
VERBOSE=0

Assume the system has 16 cores per node. That means we
could run 2 8-process tasks per node. On 2 nodes we could
run 4 tasks at a time, so let's set that up in the PBS
preamble:

 #PBS -l nodes=2:ppn=16

Now we just need to make the PBS prologue variables agree:

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
60/76

Advanced Usage

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
61/76

Advanced Usage Possibilities

● Many tasks do not depend on only file names.
● Not a problem - use a line for anything!

● Multiple arguments!
● Complete command lines!

● The dispatcher sends the entire line to the
worker. The task just has to know how to
handle it.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
62/76

Parameter Sweep

● Parameter sweeps adjust input variables over
some range of values to see how the output
changes.

● One example: for given cannon ball weight,
the range of a cannon depends on powder
load and elevation.

● Assume: range.sh -e X -p Y
● X is elevation in degrees.
● Y is pounds of powder load.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
63/76

range.sh

#! /bin/bash
#
This does nothing but reflect the
command line arguments.

echo "range.sh called. The arguments
provided were:"
echo "args: $*"

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
64/76

Generate Parameters

#! /bin/bash

echo "" > args.lst

for elevation in `seq 5.0 5 85.0`; do

 for pounds in `seq 1.5 0.1 5.0`; do

 echo "$elevation $pounds" >> args.lst

 done

done

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
65/76

args.lst

● Generated 612 lines:
5.0 1.5
5.0 1.6
5.0 1.7
5.0 1.8
5.0 1.9
5.0 2.0
5.0 2.1
5.0 2.2
5.0 2.3
5.0 2.4
5.0 2.5
... and many more ...

● Treat as two arguments per command line.

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
66/76

Multiple Argument Task Script
#! /bin/bash

CANNON=dalhgren

Make sure directory exists.

if [! -d ${CANNON}] ; then
 echo "This directory must exist before running job: ${CANNON}"
 exit 1
fi

Expect elevation as 1st argument, poundage as 2nd argument:

CMD="./range.sh -e $1 -p $2 ${CANNON}.dat > ${CANNON}/${1}_${2}.dat"

if true ; then
 eval "${CMD}"
else
 echo "CMD=${CMD}"
 T=`expr 2 + $RANDOM % 10`
 echo "Sleeping for $T seconds."
 sleep $T
fi

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
67/76

Sample Result:

● dalgren/5.0_1.5.dat contains:

range.sh called. The arguments provided were:
args: -e 5.0 -p 1.5 dalhgren.dat

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
68/76

Full Command Line Task Script

#! /bin/bash
#
This script treats all args as a complete command line.

CMD="$*"

'if true' execute the command. 'if false' just echo it back.

if false ; then
 eval "${CMD}"
else
 echo "CMD=${CMD}"
 T=`expr 2 + $RANDOM % 10`
 echo "Sleeping for $T seconds."
 sleep $T
fi

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
69/76

Generate Full Command Lines

#! /bin/bash

echo "" > cmdlines.lst

for elevation in `seq 5.0 5 85.0`; do

 for pounds in `seq 1.5 0.1 5.0`; do

 echo "./range.sh -e $elevation -p $pounds \

 cannon.dat" >> cmdlines.lst

 done

done

High Performance Computing @ Louisiana State University

30 Mar 2016 (WQ Revision 264)
70/76

cmdlines.lst

● Generated 612 lines:
./range.sh -e 5.0 -p 1.5 cannon.dat
./range.sh -e 5.0 -p 1.6 cannon.dat
./range.sh -e 5.0 -p 1.7 cannon.dat
./range.sh -e 5.0 -p 1.8 cannon.dat
./range.sh -e 5.0 -p 1.9 cannon.dat
./range.sh -e 5.0 -p 2.0 cannon.dat
./range.sh -e 5.0 -p 2.1 cannon.dat
./range.sh -e 5.0 -p 2.2 cannon.dat
./range.sh -e 5.0 -p 2.3 cannon.dat
./range.sh -e 5.0 -p 2.4 cannon.dat
... and many more ...

High Performance Computing @ Louisiana State University

25 February 2015
71/76

An Aside on Load-Balancing

High Performance Computing @ Louisiana State University

25 February 2015
72/76

Load Balancing Issues

● The more uniform the task times are
across all tasks, the more likely a job will
end gracefully.

● Take a look at the concepts.
● Illustrate potential problem.
● Discuss how to analyze a job's efficiency.

High Performance Computing @ Louisiana State University

25 February 2015
73/76

Task Run Times

Imagine a set of 8 tasks, number for identification only, and
represented by bars propotional to their run times.

High Performance Computing @ Louisiana State University

25 February 2015
74/76

Insufficient Walltime

PBS walltime sets the maximum wallclock time a job is allowed.
Imagine the tasks get assigned in the following order:

Dashed bars show
estimated times for next
task - they all appear to fit
remaining time.

Bad estimate for Task
8!

High Performance Computing @ Louisiana State University

25 February 2015
75/76

Sufficient Walltime

5 estimates
sufficient time
remains, but 6-8 do
not!

5 requests 1 more
task, but 6-8 stop!

High Performance Computing @ Louisiana State University

25 February 2015
76/76

Load Balance Implications

● Order by longest running first, if possible.
● Run many tasks so representative times

are seen early in the job.
● If range of times not known, there is no

good way to make absolutely sure jobs
complete gracefully.

● Output format allows analysis.

