
HPC User Environment 2

Feng Chen

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

February 3, 2015

Outline

 Review HPC User Environment 1 topics

– Available HPC resources

– Accounts and Allocations

– Cluster architecture

– Connect to clusters

– Software management using softenv and module

 Things to be covered in this training

– More on job management

• Job queues

• Submit and monitor your jobs

• Job scheduling basics

– Job priority

– Backfill

– Compiling and analyze codes on cluster

• Serial program

• Parallel program

2/3/2016 HPC User Environment 2 Spring 2016 2

Brief Review of Session 1

HPC User Environment 2

2/3/2016 3

Inside A Cluster Rack

1/27/2015 HPC User Environment 1 Spring 2016 4

Rack

Infiniband

Switch

Compute

Node

Inside A Compute Node

1/27/2015 HPC User Environment 1 Spring 2016 5

Network

Card

Processor
Memory

Storage

Accelerator

(GPU/Xeon Phi)

Cluster Nomenclature

1/27/2015 HPC User Environment 1 Spring 2016 6

Term Definition

Cluster
The top-level organizational unit of an HPC cluster,

comprising a set of nodes, a queue, and jobs.

Node A single, named host machine in the cluster.

Core
The basic computation unit of the CPU. For example, a

quad-core processor is considered 4 cores.

Job
A user's request to use a certain amount of resources for a

certain amount of time on cluster for his work.

HPC Cluster Architectures

 Two major architectures

– Intel x86_64 clusters

• Vendor: Dell

• Operating System: Linux (RHEL 4/5/6)

• Processor: Intel

– IBM PowerPC clusters

• Vendor: IBM

• Operating System: AIX

• Processor: IBM power7

2/3/2016 HPC User Environment 2 Spring 2016 7

Accessing cluster using ssh (Secure Shell)

 On Unix and Mac

– use ssh on a terminal to connect

 Windows box (ssh client):

– Putty

(http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html)

– MobaXterm (http://mobaxterm.mobatek.net/)

– Cygwin

 Host name

– LONI: <cluster_name>.loni.org

• <cluster_name> can be:

– eric.loni.org

– qb.loni.org

– LSU HPC: <cluster_name>.hpc.lsu.edu

• <cluster_name> can be:

– mike.hpc.lsu.edu

– smic.hpc.lsu.edu

– philip.hpc.lsu.edu

1/27/2015 HPC User Environment 1 Spring 2016 8

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://mobaxterm.mobatek.net/

More on Job Queues

HPC User Environment 2

2/3/2016 9

Cluster Environment

 Multiple compute nodes

 Multiple users

 Each user may have multiple jobs running simultaneously

 Multiple users may share the same node

2/3/2016 HPC User Environment 2 Spring 2016 10

Job management basics

 Find appropriate queue

 Understand the queuing system and your requirements and proceed

to submit jobs

 Monitor jobs during execution

2/3/2016 HPC User Environment 2 Spring 2016 11

Job Queues

 Nodes are organized into queues. Nodes can be shared.

 Each job queue differs in

– Number of available nodes

– Max run time

– Max running jobs per user

– Nodes may have special characteristics: GPU’s, Large memory, etc.

 Jobs need to specify resource requirements

– Nodes, time, queue

 Its called a queue for a reason, but jobs don’t run on a “First Come

First Served” policy,

– This will be detailed in later slides

2/3/2016 HPC User Environment 2 Spring 2016 12

Queue Characteristics – LONI clusters

2/3/2016 HPC User Environment 2 Spring 2016 13

Machine Queue
Max

Runtime
ppn

Max

running

jobs

Max

nodes

per job

Use

Eric

workq

3 days

8
16

24 Unpreemptable

checkpt 8 48 Preemptable

single 1 32 1 ppn < =8

QB2

workq
3 days

20

44

128 Unpreemptable

checkpt 20 256 Preemptable

single 7 days 1,2,4,8 1
Single node

jobs

Queue Characteristics – LSU Linux clusters

2/3/2016 HPC User Environment 2 Spring 2016 14

Machine Queue
Max

Runtime
ppn

Max

running

jobs

Max
nodes per

job
Use

SuperMike II

workq
3 days

16

34

128 Unpreemptable

checkpt 16 128 Preemptable

bigmem 2 days 16 1 Big memory

gpu 3 days 16 16 Job using GPU

single 3 days 1,2,4,8 1
Single node

jobs

Philip

workq

3 days

8

5

4 Unpreemptable

checkpt 8 4 Preemptable

bigmem 8 2 Big memory

single 14 days 4 50 1
Single

processor

SuperMIC
workq

3 days
20

34
128 Unpreemptable

checkpt 20 360 Preemptable

Queue Characteristics

 “qstat -q” will give you more info on the queues

[fchen14@mike2 ~]$ qstat -q

server: mike3

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- --- --- -- -----

workq -- -- 72:00:00 128 31 6 -- E R

mwfa -- -- 72:00:00 8 3 0 -- E R

bigmem -- -- 48:00:00 1 0 0 -- E R

lasigma -- -- 72:00:00 28 28 7 -- E R

bigmemtb -- -- 48:00:00 1 0 0 -- E R

priority -- -- 168:00:0 128 0 0 -- E R

single -- -- 72:00:00 1 62 0 -- E R

gpu -- -- 24:00:00 16 1 0 -- E R

preempt -- -- 72:00:00 -- 0 0 -- E R

checkpt -- -- 72:00:00 128 31 137 -- E R

admin -- -- 24:00:00 -- 0 0 -- E R

scalemp -- -- 24:00:00 1 0 0 -- E R

----- -----

156 150

 For a more detailed description use mdiag

2/3/2016 HPC User Environment 2 Spring 2016 15

Queue Querying – Linux Clusters
 Displays information about active, eligible, blocked, and/or recently

completed jobs: showq command
$ showq

active jobs------------------------

JOBID USERNAME STATE PROCS REMAINING STARTTIME

236875 ebeigi3 Running 16 1:44:29 Mon Sep 15 20:00:22

236934 mwu3 Running 16 00:03:27 Mon Sep 15 19:04:20

...

eligible jobs----------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

236795 dmarce1 Idle 1456 00:15:00 Mon Sep 15 16:38:45

236753 rsmith Idle 2000 4:00:00 Mon Sep 15 14:44:52

236862 dlamas1 Idle 576 2:00:00 Mon Sep 15 17:28:57

...

121 eligible jobs

blocked jobs-----------------------

JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME

232741 myagho1 Idle 2000 1:00:00:00 Mon Sep 8 07:22:12

235545 tanping Idle 1 2:21:10:00 Fri Sep 12 16:50:49

235546 tanping Idle 1 2:21:10:00 Fri Sep 12 16:50:50

...

2/3/2016 HPC User Environment 2 Spring 2016 16

Submit and Monitor Your Jobs

HPC User Environment 2

2/3/2016 17

Two Job Types

 Interactive job

– Set up an interactive environment on compute nodes for users

• Advantage: can run programs interactively

• Disadvantage: must be present when the job starts

– Purpose: testing and debugging, compiling

• Do not run on the head node!!!

• Try not to run interactive jobs with large core count, which is a waste of

resources)

 Batch job

– Executed without user intervention using a job script

• Advantage: the system takes care of everything

• Disadvantage: can only execute one sequence of commands which cannot

changed after submission

– Purpose: production run

2/3/2016 HPC User Environment 2 Spring 2016 18

Submitting Jobs on Linux Clusters

 Interactive job example:

qsub –I -X -V \

-l walltime=<hh:mm:ss>,nodes=<num_nodes>:ppn=<num_cores> \

-A <Allocation> \

-q <queue name>

DO NOT directly ssh to compute nodes,

unless the nodes assigned to you by the job scheduler.

– Add -X to enable X11 forwarding

 Batch Job example:

qsub job_script

2/3/2016 HPC User Environment 2 Spring 2016 19

PBS Job Script – Serial Job

#!/bin/bash

#PBS -l nodes=1:ppn=1 # Number of nodes and processor

#PBS -l walltime=24:00:00 # Maximum wall time

#PBS -N myjob # Job name

#PBS -o <file name> # File name for standard output

#PBS -e <file name> # File name for standard error

#PBS -q single # The queue for serial jobs

#PBS -A <loni_allocation> # Allocation name

#PBS -m e # Send mail when job ends

#PBS -M <email address> # Send mail to this address

<shell commands>

<path_to_executable> <options>

<shell commands>

2/3/2016 HPC User Environment 2 Spring 2016 20

Tells the job

scheduler

how much

resource you

need.

How will you

use the

resources?

PBS Job Script – Parallel Job

#!/bin/bash

#PBS -l nodes=2:ppn=16 #Number of nodes and processors per node

#PBS -l walltime=24:00:00 #Maximum wall time

#PBS -N myjob #Job name

#PBS -o <file name> #File name for standard output

#PBS -e <file name> #File name for standard error

#PBS -q checkpt #Queue name

#PBS -A <allocation_if_needed> #Allocation name

#PBS -m e #Send mail when job ends

#PBS -M <email address> #Send mail to this address

<shell commands>

mpirun -machinefile $PBS_NODEFILE -np 32 <path_to_executable> <options>

<shell commands>

2/3/2016 HPC User Environment 2 Spring 2016 21

Tells the

scheduler

how much

resource

you need.

How will

you use the

resources?

Job Monitoring - Linux Clusters

 Check details on your job using qstat

$ qstat -n -u $USER : For quick look at nodes assigned to you

$ qstat -f jobid : For details on your job

$ qdel jobid : To delete job

 Check approximate start time using showstart

$ showstart jobid

 Check details of your job using checkjob

$ checkjob jobid

 Check health of your job using qshow

$ qshow -j jobid

 Please pay close attention to the load and the memory consumed by

your job!

2/3/2016 HPC User Environment 2 Spring 2016 22

Using the “top” command

 The top program provides a dynamic real-time view of a running

system.

top - 19:39:56 up 89 days, 4:13, 1 user, load average: 0.63, 0.18, 0.06

Tasks: 489 total, 2 running, 487 sleeping, 0 stopped, 0 zombie

Cpu(s): 6.3%us, 0.0%sy, 0.0%ni, 93.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 65909356k total, 3389616k used, 62519740k free, 151460k buffers

Swap: 207618040k total, 5608k used, 207612432k free, 947716k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

39595 fchen14 20 0 266m 257m 592 R 99.9 0.4 0:06.94 a.out

39589 fchen14 20 0 17376 1612 980 R 0.3 0.0 0:00.05 top

38479 fchen14 20 0 108m 2156 1348 S 0.0 0.0 0:00.03 bash

39253 fchen14 20 0 103m 1340 1076 S 0.0 0.0 0:00.00 236297.mike3.SC

39254 fchen14 20 0 103m 1324 1060 S 0.0 0.0 0:00.00 bm_laplace.sh

39264 fchen14 20 0 99836 1908 992 S 0.0 0.0 0:00.00 sshd

39265 fchen14 20 0 108m 3056 1496 S 0.0 0.0 0:00.03 bash

2/3/2016 HPC User Environment 2 Spring 2016 23

PBS Environmental Variables

[fchen14@mike315 ~]$ echo $PBS_

$PBS_ENVIRONMENT $PBS_MOMPORT $PBS_NUM_PPN $PBS_O_MAIL

$PBS_QUEUE $PBS_WALLTIME $PBS_GPUFILE $PBS_NODEFILE

$PBS_O_HOME $PBS_O_PATH $PBS_SERVER $PBS_JOBCOOKIE

$PBS_NODENUM $PBS_O_HOST $PBS_O_QUEUE $PBS_TASKNUM

$PBS_JOBID $PBS_NP $PBS_O_LANG $PBS_O_SHELL

$PBS_VERSION $PBS_JOBNAME $PBS_NUM_NODES $PBS_O_LOGNAME

$PBS_O_WORKDIR $PBS_VNODENUM

2/3/2016 HPC User Environment 2 Spring 2016 24

Pay attention to single queue usage

 Single queue - Used for jobs that will only execute on a single node,

i.e. nodes=1:ppn=1/2/4/8.

 Jobs in the single queue should not use:

– More than 2GB memory per core for Eric, Philip and SuperMike2

(32G/16).

– More than 3.2GB memory per core for QB2 (64G/20).

 If applications require more memory, scale the number of cores (ppn)

to the amount of memory required: i.e. max memory available for jobs

in single queue is 8GB for ppn=4 on SuperMikeII.

 Typical type of warning:

– E124 - Exceeded memory allocation. This Job XXXX appears to be

using more memory (GB) than allocated (9 > 3).

– E123 - Exceeded ppn/core allocation. This Job XXXX appears to be

using more cores than allocated (6 > 1). Please allocate the number of

cores that the job will use, (ppn=6). This Job has 1 core(s) allocated

(ppn=1).

2/3/2016 HPC User Environment 2 Spring 2016 25

More things to be noticed

 Eric is old and will be retired in the near future LONI users are encouraged

to migrate their codes to QB-2 as soon as possible.

 The purpose of bigmem queue on QB-2 is for jobs costing big (larger than

64 GB) memory not for jobs using more number of cores.

 GPU is available to workq or checkpt queues on QB2.

 Xeon Phi is available to workq or checkpt queues on SuperMIC.

 There is no single queue on SuperMIC.

 Users are encouraged to use accelerators (GPU/Xeon Phi) whenever

possible. Application for allocation involving with usage of accelerators will

be easier to be approved.

2/3/2016 HPC User Environment 2 Spring 2016 26

Job Scheduling Basics

HPC User Environment 2

2/3/2016 27

Back to Cluster Architecture

 As a user, you interact with the scheduler and/or resource manager

whenever you submit a job, or query on the status of your jobs or the

whole cluster, or seek to manage your jobs.

 Resource managers give access to compute resource

– Takes in a resource request (job) on login node

– Finds appropriate resource and assigns you a priority number

– Positions your job in a queue based on the priority assigned.

– Starts running jobs until it cannot run more jobs with what is available.

2/3/2016 HPC User Environment 2 Spring 2016 28

 HPC & LONI Linux clusters use TORQUE, an open source version of

the Portable Batch System (PBS) together with the MOAB Scheduler,

to manage user jobs.

 Resource Manager - Torque

– Manages a queue of jobs for a cluster of resources

– Launches job to a simple FIFO job queue

 ƒWorkload Manager - Moab

– A scheduler that integrates with one or more Resource Managers to

schedule jobs across domains of resources (servers, storage,

applications)

– Prioritizes jobs

– Provides status of running and queued jobs, etc.

 The batch queuing system determines

– The order jobs are executed

– On which node(s) jobs are executed

Job Scheduler

2/3/2016 HPC User Environment 2 Spring 2016 29

Job management philosophy

 Working Philosophy

– Prioritize workload into a queue for jobs

– Backfill idle nodes to maximize utilization

• Will be detailed later...

2/3/2016 HPC User Environment 2 Spring 2016 30

Job Priorities

 Jobs with a higher job priority are scheduled ahead of jobs with a

lower priority.

 Job priorities have contributions from the following:

– credential priority

– fairshare priority

– resource priority

– service priority

 Priority determination for each queued job, use

• mdiag -p:
$ mdiag -p

diagnosing job priority information (partition: ALL)

Job PRIORITY* Cred(User:Class) FS(User: WCA) Serv(QTime:XFctr) Res(Proc)

Weights -------- 100(10: 10) 100(10: 50) 2(2: 20) 30(10)

236172 246376 40.6(100.0: 0.0) 8.6(19.6: 0.3) 4.0(1480.: 99.7) 46.8(2048.)

235440 242365 41.3(100.0: 0.0) 4.6(8.2: 0.6) 6.6(3959.: 6.5) 47.5(512.0)

235441 242365 41.3(100.0: 0.0) 4.6(8.2: 0.6) 6.6(3959.: 6.5) 47.5(512.0)

235442 242361 41.3(100.0: 0.0) 4.6(8.2: 0.6) 6.6(3958.: 6.5) 47.5(512.0)

236396 241821 41.4(100.0: 0.0) 8.8(19.6: 0.3) 2.2(664.0: 67.4) 47.6(1456.)

2/3/2016 HPC User Environment 2 Spring 2016 31

Priority components

 Credential priority = credweight * (userweight * job.user.priority)

= 100 * (10 * 100) = 100000

It is a constant for all users.

 Fairshare priority = fsweight * min (fscap,(fsuserweight*DeltaUserFSUsage))

= 100 * (10 * DeltaUserFSUsage)

If you have not submitted jobs in the past 7 days, DeltaUserFSUsage = 20000

 Service priority = serviceweight * (queuetimeweight * QUEUETIME +

xfactorweight * XFACTOR)

= 2 * (2 * QUEUETIME + 20 * XFACTOR),

where XFACTOR = 1 + QUEUETIME / WALLTIMELIMIT.

 Resource priority = resweight * min (rescap, (procweight *

TotalProcessorsRequested)

= 30 * min (3840, (10 * TotalProcessorsRequested)

 See http://www.hpc.lsu.edu/docs/pbs.php , click “Job priority”.

2/3/2016 HPC User Environment 2 Spring 2016 32

http://www.hpc.lsu.edu/docs/pbs.php

How to get higher priority?

 Do not submit too many jobs within one week.

 Submit your job early to accumulate the queue time.

 More on resource priority,

– Request more compute nodes.

– Request a smaller walltime limit.

– see next few slides...

2/3/2016 HPC User Environment 2 Spring 2016 33

How to maximize the usage of a cluster?

 Fill in high-priority (large) jobs

 Backfill low-priority (small) jobs

2/3/2016 HPC User Environment 2 Spring 2016 34

1

2

An Overview of Backfilling (1)

 Backfill is a scheduling optimization

that allows a scheduler to make better

use of available resources by running

jobs out of order.

 Enabling backfill allows the scheduler

to start other, lower-priority jobs so

long as they do not delay the highest

priority job.

 If the FIRSTFIT algorithm is applied,

the following steps are taken:

– The list of feasible backfill jobs is

filtered, selecting only those that will

actually fit in the current backfill

window.

– The first job is started.

– While backfill jobs and idle resources

remain, repeat step 1.

2/3/2016 HPC User Environment 2 Spring 2016 35

An Overview of Backfilling (2)

 Although by default the start time of the highest priority job is

protected by a reservation, there is nothing to prevent the third priority

job from starting early and possibly delaying the start of the second

priority job.

 Command to show current backfill windows:

– showbf

• Shows what resources are available for immediate use.

• This command can be used by any user to find out how many processors

are available for immediate use on the system. It is anticipated that users

will use this information to submit jobs that meet these criteria and thus

obtain quick job turnaround times.

– Example:

[fchen14@eric2 ~]$ showbf -c workq

Partition Tasks Nodes Duration StartOffset StartDate

--------- ----- ----- ------------ ------------ --------------

ALL 40 5 18:50:35 00:00:00 11:16:49_09/04

ALL 8 1 INFINITY 00:00:00 11:16:49_09/04

2/3/2016 HPC User Environment 2 Spring 2016 36

How Much Time Should I Ask for?

2/3/2016 HPC User Environment 2 Spring 2016 37

 It should be

– Long enough for your job to complete

– As short as possible to increase the chance of backfilling

Frequently Asked Questions

 I submitted job A before job B. Why job B started earlier than job A?

 There are free nodes available, why my job is still waiting and not

running?

 Why my job is not get accelerated when running on cluster?

– Is your job utilizing the parallel resource on the cluster?

– Does you job have lots of I/O tasks?

– See next section...

2/3/2016 HPC User Environment 2 Spring 2016 38

Compile and Analyze Codes on

Cluster

HPC User Environment 2

2/3/2016 39

Compilers

 Serial compilers

 Parallel compilers

2/3/2016 HPC User Environment 2 Spring 2016 40

Language
Linux cluster AIX clusters

Intel PGI GNU XL

Fortran ifort pgf77, pgf90 gfortran xlf, xlf90

C icc pgcc gcc xlc

C++ icpc pgCC g++ xlC

Language Linux clusters AIX clusters

Fortran mpif77, mpif90 mpxlf, mpxlf90

C mpicc mpcc

C++ mpiCC mpCC

Example compiling serial code

 icc hello_cpu_elapsed.c

 gfortran test_hello2.f90

 List symbols for executables:

nm - list symbols from object files

 Example:

[fchen14@mike2 hello]$ nm ./a.out | grep intel

000000000060eb60 B __intel_cpu_indicator

[fchen14@mike2 hello]$ nm ./a.out | grep gfortran

U _gfortran_set_args@@GFORTRAN_1.0

2/3/2016 HPC User Environment 2 Spring 2016 41

CPU time vs Elapsed time

 CPU time (or process time):

– The amount of time for which a central processing unit (CPU) was used

for processing instructions of a computer program or operating system,

as opposed to, for example, waiting for input/output (I/O) operations or

entering low-power (idle) mode.

 Elapsed real time (or simply real time, or wall clock time)

– The time taken from the start of a computer program until the end as

measured by an ordinary clock. Elapsed real time includes I/O time and

all other types of waits incurred by the program.

 If a program uses parallel processing, total CPU time for that program

would be more than its elapsed real time.

– (Total CPU time)/(Number of CPUs) would be same as elapsed real

time if work load is evenly distributed on each CPU and no wait is

involved for I/O or other resources.

2/3/2016 HPC User Environment 2 Spring 2016 42

Compiling and Analyzing C serial program

#include <stdio.h>

#include <time.h>

int main(char *argc, char **argv) {

double s=0.0;

// fundamental arithmetic type representing clock tick counts.

clock_t start, end;

int i;

start = clock();

for (i=0;i<1000000000;i++)

s+=i*2.0; // doing some floating point operations

end = clock();

double time_elapsed_in_seconds = (end - start)/(double)CLOCKS_PER_SEC;

printf("cputime_in_sec: %e\n", time_elapsed_in_seconds);

start = clock();

system ("sleep 5"); // just sleep, does this accumulate CPU time?

end = clock();

time_elapsed_in_seconds = (end - start)/(double)CLOCKS_PER_SEC;

printf(“cputime_in_sec: %e\n", time_elapsed_in_seconds);

return 0;

}

2/3/2016 HPC User Environment 2 Spring 2016 43

Watch the actual cpu time using “time”

[fchen14@mike429 serial]$ gcc hello_cpu_elapsed.c

[fchen14@mike429 serial]$ time ./a.out

cputime_in_sec: 2.740000e+00

cputime_in_sec: 0.000000e+00

real 0m7.782s

user 0m2.750s

sys 0m0.005s

2/3/2016 HPC User Environment 2 Spring 2016 44

Some additional info about “time”

 Use the Linux command time to evaluate the actual time usage

– time a simple command or give resource usage

 Real refers to actual elapsed time (wall clock time)

– Time from start to finish of the call. This is all elapsed time including

time used by other processes and time the process spends blocked (for

example if it is waiting for I/O to complete).

 User and Sys refer to CPU time used only by the process.

– User is the amount of CPU time spent in user-mode code (outside the

kernel) within the process.

– Sys is the amount of CPU time spent in the kernel within the process.

 Purpose of this example:

– real < user: The process is CPU bound and takes advantage of parallel

execution on multiple cores/CPUs.

– real ≈ user: The process is CPU bound and takes no advantage of

parallel execution.

– real > user: The process is I/O bound. Execution on multiple cores

would be of little to no advantage.

2/3/2016 HPC User Environment 2 Spring 2016 45

Two parallel schemes
 Shared Memory system

– A single multicore compute node

– Open Multi-processing (OpenMP)

 Distributed Memory system

– Mutliple compute nodes

– Message Passing Interface (MPI)

2/3/2016 HPC User Environment 2 Spring 2016 46

CPU

Core

Memory

CPU

Core

Memory

CPU

Core

Memory

CPU

Core

Memory

Private

Arrays

MPI: Distributed Memory System

CPU

Core

CPU

Core

CPU

Core

CPU

Core

Memory, Shared Array, etc.

Typically less memory overhead/duplication.

Communication often implicit, through cache

coherency and runtime.

OpenMP: Shared Memory System

Network

Interconnect

Example compiling threaded OpenMP code

 Compiling OpenMP code often requires the openmp compiler flags, it

varies with different compiler

 Environment Variable OMP_NUM_THREADS sets the number of threads

 Examples:

[fchen14@mike2 src]$ gcc -fopenmp hello_openmp.c

[fchen14@mike2 src]$ ifort -openmp hello_openmp.f90

2/3/2016 HPC User Environment 2 Spring 2016 47

Compiler
Compiler

Options

Default behavior for # of threads

(OMP_NUM_THREADS not set)

GNU

(gcc, g++, gfortran)
-fopenmp as many threads as available cores

Intel

(icc ifort)
-openmp as many threads as available cores

Portland Group

(pgcc,pgCC,pgf77,pgf90)
-mp one thread

Sample OpenMP C code

#include <omp.h>

#include <stdio.h>

#include <stdlib.h>

int main (int argc, char *argv[]) {

int nthreads, tid;

/* Fork a team of threads with their own copies of variables */

#pragma omp parallel private(nthreads, tid)

{

/* Obtain thread number */

tid = omp_get_thread_num();

printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */

if (tid == 0) {

nthreads = omp_get_num_threads();

printf("Number of threads = %d\n", nthreads);

}

} /* All threads join master thread and disband */

}

2/3/2016 HPC User Environment 2 Spring 2016 48

Sample OpenMP Fortran code

program hello

integer nthreads,tid,omp_get_num_threads,omp_get_thread_num

! fork a team of threads giving them their own copies of variables

!$omp parallel private(nthreads, tid)

! obtain thread number

tid = omp_get_thread_num()

print *, 'hello world from thread = ', tid

! only master thread does this

if (tid .eq. 0) then

nthreads = omp_get_num_threads()

print *, 'number of threads = ', nthreads

end if

! all threads join master thread and disband

!$omp end parallel

end

2/3/2016 HPC User Environment 2 Spring 2016 49

Analyzing a parallel (OpenMP) program

 What will be the CPU time and elapsed time for the following code

segment:

See (on SuperMike II):
/home/fchen14/userenv/src/openmp/hello_openmp_cpu_elapse.c

// fundamental arithmetic type representing clock tick counts.

clock_t start, end;

struct timeval r_start, r_end;

int i;

gettimeofday(&r_start, NULL);

start = clock();

#pragma omp parallel for // spawn the openmp threads

for (i=0;i<N;i++) a = i*2.0; // doing some floating point operations

end = clock();

gettimeofday(&r_end, NULL);

double cputime_elapsed_in_seconds = (end -
start)/(double)CLOCKS_PER_SEC;

double realtime_elapsed_in_seconds = ((r_end.tv_sec * 1000000 +
r_end.tv_usec) - (r_start.tv_sec * 1000000 +
r_start.tv_usec))/1000000.0;

2/3/2016 HPC User Environment 2 Spring 2016 50

Available MPI libraries on LONI & HPC

Name MPI Library

Default

serial

compiler

Cluster Resource Mvapich Mvapich2 OpenMPI MPICH

LONI
Eric 0.98, 1.1 1.4, 1.6, 1.8.1 1.3.4 X Intel 11.1

QB2 X 2.0 1.8.1 3.0.3 Intel 14.0.2

LSU

SuperMikeII X 1.9, 2.0.1

1.6.2

1.6.3

1.6.5

3.0.2 Intel 13.0.0

Philip X X 1.4.3, 1.6.1

1.2.7,

1.3.2,

1.4.1

Intel 11.1

SuperMIC X 2.0 1.8.1
3.0.3

3.1.1
Intel 14.0.2

2/3/2016 HPC User Environment 2 Spring 2016 51

MPI Compilers (1)

mpif90 hello.f90

mpicc hello.c

mpicxx hello.cpp

2/3/2016 HPC User Environment 2 Spring 2016 52

Language Linux clusters AIX clusters

Fortran mpif77, mpif90 mpxlf, mpxlf90

C mpicc mpcc

C++ mpiCC mpCC

MPI Compilers (2)

 These MPI compilers are actually wrappers

– They still use the compilers we've seen on the previous slide

• Intel, PGI or GNU

– They take care of everything we need to build MPI codes

• Head files, libraries etc.

– What they actually do can be reveal by the -show option

 It’s extremely important that you compile and run your code with the

same version of MPI!

– Use the default version if possible

2/3/2016 HPC User Environment 2 Spring 2016 53

Compiling a MPI C program

 Compiling Hello world in C version:

– mpicc hello_mpi.c
#include <mpi.h>

#include <stdio.h>

int main(int argc, char** argv) {

int name_len, world_size, world_rank;

char processor_name[MPI_MAX_PROCESSOR_NAME];

//Initialize the MPI environment

MPI_Init(NULL, NULL);

// Get the number and rank of processes

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Get the name of the processor

MPI_Get_processor_name(processor_name, &name_len);

// Print off a hello world message

printf("Iam from processor %s, rank %d out of %d processors\n",

processor_name, world_rank, world_size);

// Finalize the MPI environment.

MPI_Finalize();

}

2/3/2016 HPC User Environment 2 Spring 2016 54

Compiling a MPI Fortran program

 Compiling Hello world in Fortran:

– mpif90 hellp_mpi.f90
program hello_mpi

include 'mpif.h'

!use mpi

character 10 name

! Initialize the MPI library:

call MPI_Init(ierr)

! Get size and rank

call MPI_Comm_Size(MPI_COMM_WORLD, numtasks, ierr)

call MPI_Comm_Rank(MPI_COMM_WORLD, rank, ierr)

! print date

if (nrank == 0) then

write(,)'System date'

call system('date')

endif

call MPI_Barrier(MPI_COMM_WORLD, ierr)

! print rank

call MPI_Get_Processor_Name(name, len, ierr)

write(,)"I am ", nrank, "of", numtasks, "on ", name

! Tell the MPI library to release all resources it is using:

call MPI_Finalize(ierr)

end program hello_mpi

2/3/2016 HPC User Environment 2 Spring 2016 55

Notes for compiling a MPI program (1)

 Always verify what compiler/library is being used:

$ mpicc -show

icc -I/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/include -
L/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/lib -lmpi -ldl -lm -
Wl,--export-dynamic -lrt -lnsl -libverbs -libumad -lpthread -lutil

$ mpif90 -show

ifort -I/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/include -
I/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/lib -
L/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/lib -lmpi_f90 -
lmpi_f77 -lmpi -ldl -lm -Wl,--export-dynamic -lrt -lnsl -libverbs -
libumad -lpthread -lutil

2/3/2016 HPC User Environment 2 Spring 2016 56

Notes for compiling a MPI program (2)

 Always verify what library is being used: Before and after:

$ ldd a.out #ldd - print shared library dependencies

linux-vdso.so.1 => (0x00007fff907ff000)

libmpi_f90.so.1 => /usr/local/packages/openmpi/1.6.2/Intel-
13.0.0/lib/libmpi_f90.so.1 (0x00002b9ae577e000)

libmpi_f77.so.1 => /usr/local/packages/openmpi/1.6.2/Intel-
13.0.0/lib/libmpi_f77.so.1 (0x00002b9ae5982000)

libmpi.so.1 => /usr/local/packages/openmpi/1.6.2/Intel-
13.0.0/lib/libmpi.so.1 (0x00002b9ae5bb9000)

...

libpthread.so.0 => /lib64/libpthread.so.0 (0x0000003b21800000)

...

libifport.so.5 =>
/usr/local/compilers/Intel/composer_xe_2013.0.079/compiler/lib/intel64/l
ibifport.so.5 (0x00002b9ae61ee000)

libifcore.so.5 =>
/usr/local/compilers/Intel/composer_xe_2013.0.079/compiler/lib/intel64/l
ibifcore.so.5 (0x00002b9ae641d000)

2/3/2016 HPC User Environment 2 Spring 2016 57

Running and Analyzing MPI program

 Make sure you are running your jobs on the correct nodes

 Important if you want to run less processes than ppn

 Understand the usage of $PBS_NODEFILE
[fchen14@mike2 ~]$ qsub -I -X -l nodes=2:ppn=16 -l walltime=01:00:00 -q gpu

...

[fchen14@mike429 ~]$ echo $PBS_NODEFILE

/var/spool/torque/aux//236660.mike3

[fchen14@mike429 ~]$ cat $PBS_NODEFILE

mike429

... # 16 repeats of mike429

mike429

mike430

... # 16 repeats of mike430

mike430

[fchen14@mike429 hybrid]$ cat $PBS_NODEFILE| uniq > hosts

[fchen14@mike429 hybrid]$ cat hosts

mike429

mike430

2/3/2016 HPC User Environment 2 Spring 2016 58

Running and Analyzing MPI program

[fchen14@mike315 mpi]$ mpicc hello_mpi.c

[fchen14@mike315 mpi]$ mpirun -np 32 -hostfile $PBSNODEFILE ./a.out

Iam from processor mike315, rank 1 out of 32 processors

Iam from processor mike315, rank 6 out of 32 processors

Iam from processor mike315, rank 9 out of 32 processors

Iam from processor mike315, rank 12 out of 32 processors

Iam from processor mike315, rank 0 out of 32 processors

Iam from processor mike315, rank 2 out of 32 processors

Iam from processor mike315, rank 3 out of 32 processors

Iam from processor mike315, rank 7 out of 32 processors

Iam from processor mike315, rank 10 out of 32 processors

Iam from processor mike315, rank 5 out of 32 processors

Iam from processor mike315, rank 13 out of 32 processors

Iam from processor mike315, rank 4 out of 32 processors

Iam from processor mike315, rank 8 out of 32 processors

Iam from processor mike334, rank 17 out of 32 processors

Iam from processor mike315, rank 11 out of 32 processors

Iam from processor mike315, rank 14 out of 32 processors

Iam from processor mike315, rank 15 out of 32 processors

Iam from processor mike334, rank 18 out of 32 processors

2/3/2016 HPC User Environment 2 Spring 2016 59

Compiling hybrid (MPI+OpenMP) program

 See /home/fchen14/userenv/src/hybrid/hello_hybrid.c for complete source

 Use command:

– $ mpicc -openmp hello_hybrid.c

#pragma omp parallel default(shared) private(itd, np)

{

gtd = omp_get_num_threads(); //get total num of threads in a process

itd = omp_get_thread_num(); // get thread id

gid = nrank*gtd + itd; // global id

printf("Gid %d from thd %d out of %d from process %d out of %d on %s\n",

gid, itd, gtd, nrank, numprocs, processor_name);

if (nrank==0 && itd==0)

{

// system("pstree -ap -u $USER");

system("for f in `cat $PBS_NODEFILE|uniq`; do ssh $f pstree -ap -u
$USER; done;");

system("sleep 10");

}

}

2/3/2016 HPC User Environment 2 Spring 2016 60

Analyzing a hybrid program

[fchen14@mike315 hybrid]$ export OMP_NUM_THREADS=4

[fchen14@mike315 hybrid]$ mpirun -np 2 -x OMP_NUM_THREADS ./a.out

Gid 0 from thread 0 out of 4 from process 0 out of 2 on mike315

Gid 2 from thread 2 out of 4 from process 0 out of 2 on mike315

Gid 1 from thread 1 out of 4 from process 0 out of 2 on mike315

Gid 3 from thread 3 out of 4 from process 0 out of 2 on mike315

Gid 4 from thread 0 out of 4 from process 1 out of 2 on mike315

Gid 6 from thread 2 out of 4 from process 1 out of 2 on mike315

Gid 7 from thread 3 out of 4 from process 1 out of 2 on mike315

Gid 5 from thread 1 out of 4 from process 1 out of 2 on mike315

bash,108067

|-mpirun,110651 -np 2 -x OMP_NUM_THREADS ./a.out

| |-a.out,110652

| | |-sh,110666 -c ...

| | | `-ssh,110670 mike315 pstree -ap -u fchen14

| | |-{a.out},110654

| | |-{a.out},110656

| | |-{a.out},110662

| | |-{a.out},110663

| | |-{a.out},110664

| | `-{a.out},110665

|

2/3/2016 HPC User Environment 2 Spring 2016 61

Exercise

 Submit a small job to run “sleep 180”and “print PBS variables”

– Create a script to submit a 5 min job and print from within the job script

PBS variables $PBS_NODEFILE, $PBS_WORKDIR. Also run “sleep

180” to give you a few minutes to verify status.

– Once the job is running, find out the Mother Superior node and other

slave nodes assigned to your job using qstat.

– Log into MS node and verify that your job is running and find your

temporary output file

– Modify your script to print hello from each of your assigned nodes

 Run a shell script using mpirun to print process id of shell

2/3/2016 HPC User Environment 2 Spring 2016 62

Future Trainings

 Next week training: Basic Shell Scripting

– Wednesdays 9:00am, Feb 10, Frey Computing Service Center 307

 Programming/Parallel Programming workshops

– Usually in summer

 Keep an eye on our webpage: www.hpc.lsu.edu

2/3/2016 HPC User Environment 2 Spring 2016 63

