
Information Technology Services
LSU HPC Training Series, Spring 2016 p. 1/44

Introduction to OpenMP

Xiaoxu Guan

High Performance Computing, LSU

April 6, 2016

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 2/44

Overview

• Overview of Parallel Computing

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 2/44

Overview

• Overview of Parallel Computing

• Parallel Programming on Shared-Memory and
Distributed-Memory Machines

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 2/44

Overview

• Overview of Parallel Computing

• Parallel Programming on Shared-Memory and
Distributed-Memory Machines

• Introduction to OpenMP
◦ Prerequisite for Parallel Computing;
◦ Constructs for Parallel Execution;
◦ Data Communications;
◦ Synchronization;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 2/44

Overview

• Overview of Parallel Computing

• Parallel Programming on Shared-Memory and
Distributed-Memory Machines

• Introduction to OpenMP
◦ Prerequisite for Parallel Computing;
◦ Constructs for Parallel Execution;
◦ Data Communications;
◦ Synchronization;

• OpenMP Programming: Directives/Pragams, Environment
Variables, and Run-time Libraries

◦ Variables Peculiar to OpenMP Programming;
◦ Loop Level Parallelism;
◦ Non-Loop Level Parallelism;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 2/44

Overview

• Overview of Parallel Computing

• Parallel Programming on Shared-Memory and
Distributed-Memory Machines

• Introduction to OpenMP
◦ Prerequisite for Parallel Computing;
◦ Constructs for Parallel Execution;
◦ Data Communications;
◦ Synchronization;

• OpenMP Programming: Directives/Pragams, Environment
Variables, and Run-time Libraries

◦ Variables Peculiar to OpenMP Programming;
◦ Loop Level Parallelism;
◦ Non-Loop Level Parallelism;

• Summary and Further Reading

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 3/44

Overview of parallel computing

• Why parallel or concurrency computing?

• Goes beyond the single-core capability (memory and flops

per unit time), and therefore increase performance;

• Reduces wall-clock time, and saves energy;

• Finish those impossible tasks in my lifetime;

• Handles larger and larger-scale problems;

• There is no free lunch, however!

• Different techniques other than serial coding are needed;

• Effective parallel algorithms in terms of performance;

• Increasing flops per unit time is one of our endless goals in

the HPC community;

• Think in parallel;

• Start parallel programming as soon as possible;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 4/44

Parallel programming

• Parallel programming environment;
◦ Essential language extensions to the existing

language (Fortran 95);

◦ New constructs for directives/pragmas to existing
serial programs (OpenMP and HPF);

◦ Run-time libraries that support data
communication and synchronization (MPI and
Pthreads);

• OpenMP stands for Open Multi-Processing (API);

• OpenMP is one of the directives/pragmas approaches that

support parallelism on shared memory systems;

• OpenMP is supported by Fortran, and C/C++;

• OpenMP allows us to start from a serial code and provides

an incremental approach to express parallelism;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 5/44

The “Three Knights” in OpenMP

(1) Directives/pragmas need to express parallelism;
(2) Run-time libraries can dynamically control or change code

execution at run-time;
(3) Environment variables specify the run-time options;

• How does OpenMP achieve parallel computing?

◦ Specify parallel execution – parallel constructs allowing
parallel execution;

◦ Data communication – data constructs for communication
among threads;

◦ Synchronization – synchronization constructs;

• OpenMP directives/pragmas:

Fortran: !omp, comp, or *$omp [clauses]

C/C++: #pragma [clauses]

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 6/44

Parallel execution

• Constructs for parallel execution: OpenMP starts with a

single thread, but it supports the directives/pragmas to spawn

multiple threads in a fork-join model;

forkjoinfork join

• OpenMP do and parallel directives;

• OpenMP also allows you to change the number of threads at

run-time;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 7/44

Data communication

• When multiple threads were spawned, each thread was

assigned to a unique thread ID from 0 to N − 1. Here N is the

total number of threads;

• The key point is that there are three types of variables:

private, shared, and reduction variables;

• At run-time, there is always a common region in global

memory that allows all threads to access, and this memory

region is used to store all shared variables;

• Each thread was also assigned a private memory region to

store all private variables; Thread a cannot access the

private variables stored in the private memory space for

thread b;

• Data Communications are achieved through read and write

operations among the threads;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 8/44

Synchronization

• In OpenMP, synchronization is used to (1) control the access

to shared variables and (2) coordinate the workflow;

• Event and mutual exclusion synchronization;

• Event synchronization includes barrier directives, which

are either explicit or implicit; a thread has to wait until all

threads reach the same point;

• Mutual exclusion is supported through critical, atomic,

single, and master directives. All these are used to control

how many threads, which thread, or when a thread can

execute a specified code block or modify shared variables;

• Be careful with synchronization!

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 9/44

Compile OpenMP code

• Compiler options that enable OpenMP directive/pragmas:

Compiler Fortran C C++

Intel ifort -openmp icc -openmp icpc -openmp

PGI pgf90 -mp pgcc -mp pgCC -mp

GCC gfortran -fopenmp gcc -fopenmp g++ -fopenmp

• If the above flags are left out, OpenMP code is compiled as

serial code (except Intel compilers but -openmp-stubs

needed);

• Load modules on the HPC or LONI machines:
$ module load [package name]

$ soft add [+package name] (resoft) # intel, pgi, or gcc.

• Set up an environment variable:
$ export OMP_NUM_THREADS=[number of threads]

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 10/44

Loop level parallelism

collin
Rectangle

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 11/44

First OpenMP “Hello World!” in Fortran and C

Fortran (hello.f90)1 program hello_world
2 implicit none
3
4 integer :: id, omp_get_thread_num
5
6 !$omp parallel
7 id = omp_get_thread_num()
8 write(*,’(1x,a,i3)’) "Hello World! from", id
9 !$omp end parallel

10
11 end program hello_world

$ export OMP_NUM_THREADS=20

for instance, on SuperMIC in bash shell
$ ifort -o hello hello.f90 -openmp

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 12/44

First OpenMP “Hello World!” in Fortran and C

C (hello.c)1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4
5 int main() {
6 int id;
7
8 #pragma omp parallel {
9 id = omp_get_thread_num();

10 printf("Hello World! from %3d\n", id);
11 }
12 }

$ export OMP_NUM_THREADS=20
for instance, on SuperMIC in bash shell

$ icc -o hello hello.c -openmp

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 13/44

Loop-level parallelism

• Loop-level parallelism is one of the fine-grained approaches

supported by OpenMP;

• parallel do directives in Fortran and parallel for pragmas

in C/C++;

Fortran1 !$omp parallel do [clauses]
2 do i = imin, imax, istep
3 loop body . . .

4 end do
5 [!$omp end parallel do]

C/C++1 #pragma omp parallel for [clauses]
2 for (i = imin; i < imax; increment_expr)
3 {
4 loop body . . .;
5 }

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 14/44

Loop-level parallelism

Fortran1 !$omp parallel [clauses]
2 !$omp do [clauses]
3 do i = imin, imax, istep
4 loop body . . .

5 end do
6 !$omp end do
7 !$omp end parallel

C/C++1 #pragma omp parallel [clauses]
2 {
3 #pragma omp for [clauses]
4 for (i = imin; i < imax; increment_expr)
5 {
6 loop body . . .;
7 }
8 }

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 15/44

Loop-level parallelism

• How about nested multiple loops? Where do we add

parallel for, right above outer loop or inner loop?

C/C++1 for (i = imin; i < imax; increment_i)
2 {
3 #pragma omp parallel for
4 for (j = jmin; j < jmax; increment_j)
5 { loop body . . .; }
6 }

(inner loop)

C/C++ (outer loop)1 #pragma omp parallel for
2 for (i = imin; i < imax; increment_i)
3 {
4 for (j = jmin; j < jmax; increment_j)
5 { loop body . . .; }
6 }

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 16/44

More words on parallel loops

• OpenMP only supports Fortran do loops and C/C++ for loops

that the number of loop iterations is known for at run-time;

• However, it doesn’t support other loops, including do-while

and repeat-until loops in Fortran and while loops and

do-while loops in C/C++. In these cases, the trip count of

loop is unknown before entering the loop;

• Loop body has to follow parallel do or parallel for

immediately, and nothing in between them!

• There is an implicit barrier at the end of parallel do or for

loops;

• All loops must have a single entry point and single exit point.

We are not allowed to jump into a loop or branch out of a

loop;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 17/44

How to control loops?

• Once we entered the parallel region, for some variables

multiple threads need to use the same named variables, but

they store different values at different memory locations;

these variables are called private variables;

• This leads to the fact that all private variables are undefined

or uninitialized before entry and after exit from parallel

regions;

• The shared variables are also necessary to allow data

communication between threads;

• Default scopes for variables: By default all the variables are

considered to be shared in parallel regions, unless they are

explicitly declared as private, reduction, or other types;

• Remember Fortran and C/C++ may have different settings

regarding default rules;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 18/44

How to control loops?

• Let’s see how we can do it, for instance, in parallel loops;

• OpenMP provides a means to change the default rules;

• Clauses default(none), default(private), and

default(shared) in Fortran;

• But only default(none) and default(shared) in C/C++;

Fortran1 ALLOCATE(da(1:nsize), db(1:nsize))
2 !$omp parallel do default(none), &
3 !$omp private(i,temp), &
4 !$omp shared(imin,imax,istep,scale,da,db)
5 do i = imin, imax, istep
6 temp = scale * da(i)
7 da(i) = temp + db(i)
8 end do
9 !$omp end parallel do

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 19/44

How to control loops?

• OpenMP reduction operations;

• The reduction variable is very special that it has both

characters of private and shared variables;

• Compiler needs to know what type of operation is associated

with the reduction variable; operation = +, *, max, min, etc;

• reduction(operation : variables_list)

Fortran1 ALLOCATE(da(1:nsize))
2 prod = 1.0d0
3 !$omp parallel do default(none), private(i), &
4 !$omp reduction(* : prod)
5 do i = imin, imax, istep
6 prod = prod * da(i)
7 end do What happens if we compile it?
8 !$omp end parallel do

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 20/44

How to control loops?

• Two special “private” variables: firstprivate and

lastprivate; they are used to initialize and finalize some

private variables;

• firstprivate: upon entering a parallel do/for, the private

variable for each slave thread has a copy of the master

thread’s value;

• lastprivate: upon exiting a parallel do/for, no matter

which thread executed the last iteration (sequential), the

private variable was copied back to the master thread;

• Why do we need them? (1) all private variables are

undefined outside of a parallel region, (2) they provide a

simply way to exchange data to some extent through these

special private variables;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 21/44

How to control loops?

• In a parallel region, a given variable can only be one of

private, shared, or reduction, but it can be both of

firstprivate and lastprivate;

C/C++1 double ashift = shift ;
2 #pragma omp parallel for default(none), \
3 firstprivate(ashift), shared(a), \
4 private(i)
5 {
6 for (i = imin; i <= imax; ++i)
7 {
8 ashift = ashift + (double) i ;
9 a[i] = a[i] + ashift ;

10 }
11 }

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 22/44

How to control loops?

• Exception of the default rules: Fortran and C/C++ behave

differently;

• The index in a parallel loop is always private. The index in a

sequential loop is also private in Fortran, but is shared in C

by default!

• Is the following code correct?

• Has the loop j been parallelized?

C/C++1 #pragma omp parallel for
2 for (i = imin; i <= imax; ++i)
3 {
4 for (j = jmin; j <= jmax; ++j)
5 a[i][j] = (double) (i + j) ;
6 }

• Do we have the same issues in the Fortran version?

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 23/44

How to control loops?

• Exception of the default rules. Fortran and C/C++ behave

differently;

• The index in a parallel loop is always private. The index in a

sequential loop is also private in Fortran, but is shared in C

by default!

• Is the following code correct?

• Has the loop j been parallelized?

C/C++1 #pragma omp parallel for private(i,j)
2 for (i = imin; i <= imax; ++i)
3 {
4 for (j = jmin; j <= jmax; ++j)
5 a[i][j] = (double) (i + j) ;
6 }

• Do we have the same issues in the Fortran version?

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 24/44

How to control loops?

• Parallelize multiple nested loops;

• The collapse(n) (n > 1) for nested parallel loops;

• Each thread takes a chunk of the i loop and a chunk of the j

loop at the same time;

• No statements in between;

C/C++1 #pragma omp parallel for private(i,j), \
2 collapse(2)
3 for (i = imin; i <= imax; ++i)
4 {
5 for (j = jmin; j <= jmax; ++j)
6 a[i][j] = (double) (i + j) ;
7 }

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 25/44

Restrictions on parallel loops

• Not all loops are parallelizable. What can we do?

• Think parallely and change your algorithms;

• We have to maintain the correctness of the results;

• One of the common mistakes is data race;

C/C++1 #pragma omp parallel for
2 {
3 for (i = imin; i <= imax; ++i)
4 r[i] = r[i] + r[i-1] ;
5 }

• Data race means that in a parallel region, the same memory

location is referred by two or more statements, and at least

one of them is a write operation;

• Data race requires more attention and might lead to incorrect

results!

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 26/44

Restrictions on parallel loops

• A closer look at at the data race: let’s run it on 2 threads and

assume that r[0]=a; r[1]=b; r[2]=c; and imin=1; imax=2;

• Note r[1] is referred twice, and thus we have two scenarios:

if thread 0 finished first if thread 1 finished first

thread 0 thread 1 thread 1 thread 0

i = 1 i = 2 i = 2 i = 1

r[0]=a r[1]=b r[0]=a

r[1]=a+b r[2]=a+b+c r[2]=b+c r[1]=b+a

time time

• OpenMP standard does not guarantee which thread finishes

first or later;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 27/44

How to control loops again?

• OpenMP supports three loop schedulings as clauses:

static, dynamic, and guided in the code, plus run-time

scheduling;

• schedule(type[, chunk_size])

For static, if chunk_size is given, loop iterations are divided
into multiple blocks and each block contains chun_size
iterations. The iterations will be assigned to threads in a
round-robin fashion. If chunk_size is not present, the loop
iterations will be (nearly) evenly divided and assigned to each
thread.

thread 0 thread 1 thread 2 thread 3

1

5

9

13

2

6

10

14

3

7

11

4

8

12

14 iterations
on 4 threads
in round-robin fashion

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 28/44

How to control loops again?

• For dynamic, if chunk_size is given, the partition is almost the

same as those of static. The difference is that with static,

the mapping between loop iterations and threads are done

during compilation, while for dynamic, it will be done at

run-time (therefore, more potentially overhead); if

chunk_size is not present, then it was set to 1.

• The guided scheduling means the chunk_size assigned to

threads decreases exponentially;

• Run-time scheduling: set the environment variable

OMP_SCHEDULE;

• $ export OMP_SCHEDULE=10, for instance;

• Each scheduling has its own pros and cons, so be careful

with chunk_size and potential overhead;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 29/44

Non-loop-level parallelism

collin
Rectangle

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 30/44

Parallel regions

• In addition to parallel do or for, most importantly OpenMP

supports the parallelism beyond loop levels;

Fortran1 !$omp parallel [clauses]
2 code block
3 !$omp end parallel

C/C++1 #pragma omp parallel [clauses]
2 { code block ; }

• Each thread in the parallel team executes the same block of

code, but with different data;

• In parallel directives, clauses include:
private(list), shared(list), reduction(operation :
list), default(none | private | shared), if(logical
operation), copyin(list);

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 31/44

Any differences?

Fortran1 !$omp parallel
2 id = omp_get_thread_num()
3 write(*,*) "Hello World! from ", id
4 !$omp end parallel

Fortran1 !$omp parallel
2 do k = 1, 5
3 id = omp_get_thread_num()
4 write(*,*) "Hello World! from ", id, k
5 end do
6 !$omp end parallel

Fortran1 !$omp parallel do
2 do k = 1, 5
3 id = omp_get_thread_num()
4 write(*,*) "Hello World! from ", id, k
5 end do
6 !$omp end parallel do

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 32/44

Global variables in OpenMP

• In addition to automatic or static variables in Fortran and

C/C++, we also need global variables;

• Command blocks or modules in Fortran, while globals in

C/C++, and we might have issues with private variables;

• Global/local variables between different code units for a

given thread;

• Private/shared variables between multiple threads in a given

code unit;

• The default data scoping rule is only apply to its lexical

region, and all rest are shared; How can we make private

variables “propagate” to other code units?

• OpenMP introduced the threadprivate directive to solve

data scoping issues;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 33/44

Global variables in OpenMP

• !$omp threadprivate (list_common_variables) in Fortran;

• #pragma omp threadprivate (list_variables) in C/C++;

• We have global but private variables;

• The threadprivate variables are special private variables;

thus thread a cannot access the threaprivate variables

stored on thread b;

• The threadprivate variables persist from one parallel region

to another, because they are globals;

• Furthermore, OpenMP supports the copyin (list) clause to

initialize global variables on slave threads to be the values on

the master thread;

• #pragma omp parallel copyin (a,b,c) { code block; }

• Sounds familiar with the Intel Xeon Phi programming?

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 34/44

Work-sharing directives

Fortran1 program mapping
2 implicit none
3 integer :: i,id,nothread, &
4 omp_get_thread_num, omp_get_num_threads
5
6 !$omp parallel private (k,id), shared(nothread)
7 id = omp_get_thread_num()
8 nothread = omp_get_num_threads()
9 !$omp do

10 do k = 1, 40
11 write(*,’(1x,2(a,i4))’) "id = ",id, " k = ",k
12 end do
13 !$omp end do [nowait]
14 !$omp end parallel
15 end program mapping

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 35/44

Work-sharing directives

join !$omp end parallel

fork !$omp parallel

1

2
3

4

7

8

!$omp do

!$omp end do

5

6

id = omp get thread num()

The point is that !$omp
do directive does not
spawn threads. In-
stead, only !$omp
parallel spawns mul-
tiple threads!

!$omp do needs to
be embedded in an
existing parallel region.

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 36/44

Work-sharing directives

• Work-sharing constructs do not spawn multiple threads; they

need to be embedded in a parallel region; if not, only one

thread will run work-sharing constructs;

• There is an implicit barrier at the end of a work-sharing

construct, but no implicit barrier upon the entry to it;

• Three work-sharing constructs:
!$omp do #pragma for

!$omp section #pragma section

!$omp single #pragma single

• A given thread may work on zero, one or more omp sections;

but only one thread runs omp single at a given time;

• Be sure there are no data dependencies between sections;

• All threads must encounter the same workflow (though it may

or may not execute the same code block at run-time);

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 37/44

Work-sharing directives

!$omp do !$omp section !$omp single
#pragma for #pragma section #pragma single

1

2

do /
for

3

4

7

8

5

6
S1 S3 S2

S
in
g
le

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 38/44

Work-sharing directives

C1 #include <omp.h>
2 #define nsize 500
3 main() { int i, j, k ;
4 double a[nsize], b[nsize], c[nsize] ;
5 for (k = 0; k <= nsize, ++k) {
6 a[k] = (double) k; b[k] = a[k]; c[k] = 0.5*a[k];}
7
8 #pragma omp parallel {

9 #pragma omp sections {
10 #pragma omp section { code block_1; }
11 #pragma omp section { code block_2; }
12 #pragma omp section { code block_3; }
13 }
14 }

15 }

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 39/44

Synchronization

collin
Rectangle

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 40/44

Synchronization

• OpenMP provides the constructs for mutual exclusion:

critical, atomic, master, barrier, and run-time routines;
!$omp critical [name] code block
!$omp end critical [name] in Fortran;
#pragma omp critical [name] {code block;} in C/C++;

• [name] is an optional; But in Fortran, name here should be

unique (cannot be the same as those of do loops or if/endif

blocks, etc);

• At a given time, critical only allows one thread to run it,

and all other threads also need to go through critical

section, but have to wait to enter critical section;

• Don’t jump into or branch out of a critical section;

• It is useful in a parallel region;

• It might have a tremendous impact on code performance;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 41/44

Synchronization

• The other way to think of reduction variable (say addition):

Fortran1 tsum = 0.0d0 ; nsize = 10000
2 !$omp parallel private(temp), shared(tsum,nsize)
3 temp = 0.0d0
4 !$omp do
5 do i = 1, nsize
6 temp = temp + array(i)
7 end do
8 !$omp end do
9

10 !$omp critical
11 tsum = tsum + temp
12 !$omp end critical
13
14 !$omp end parallel

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 42/44

Synchronization

• Using atomic to protect a shared variable:

C1 #include <omp.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #define nsize 1000
5 int main () {
6 int i; double x = 0.0, answer;
7 #pragma omp parallel for private(i) shared(x) {
8 for (i = 0; i < nsize; ++i) {
9 #pragma omp atomic

10 x += (double) i; } }
11 answer = (double) 0.5*(nsize-1)*nsize;
12 printf("%f\n", x);
13 printf("correct answer is %f\n", answer);
14 }

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 43/44

OpenMP run-time libraries

• integer omp_get_num_threads()

int omp_get_num_threads(void)

No. of threads in the current collaborating parallel region;

• integer omp_get_thread_num()

int omp_get_thread_num(void)

Return the thread IDs in a parallel team;

• integer omp_get_num_procs()

int omp_get_num_procs(void)

Get the number of “processors” available to the code;

• call omp_set_num_threads(num_threads)

omp_set_num_threads(num_threads)

Set number of threads to be num_threads for the following
parallel regions;

• omp_get_wtime() # Measure elapsed wall-clock time (in

seconds) relative to an arbitrary reference time;

Information Technology Services
LSU HPC Training Series, Spring 2016 p. 44/44

Summary and Further Reading

• OpenMP loop-level, non-loop level parallelism,

synchronization, and run-time libraries;

• How to protect shared variables; pay attention to them and

synchronization; data races;

• Global and local variables in OpenMP programming (global

private variables);

• Develop a defensive programming style;

Parallel Programming in OpenMP, R. Chandra

et al. (Morgan Kaufmann Publishers, 2001).

Questions?
sys-help@loni.org

	Overview
	Overview
	Overview
	Overview
	Overview
	Overview

	Overview
	Overview of parallel computing
	 Parallel programming
	 The ``blueThree Knights'' in OpenMP
	 Parallel execution
	 *-1.5mm Data communication
	 Synchronization
	 Compile OpenMP code
	
	 First OpenMP ``Hello World!'' in Fortran and C
	 First OpenMP ``Hello World!'' in Fortran and C
	 Loop-level parallelism
	 Loop-level parallelism
	 Loop-level parallelism
	 More words on parallel loops
	 How to control loops?
	 How to control loops?
	 How to control loops?
	 How to control loops?
	 How to control loops?
	 How to control loops?
	 How to control loops?
	 How to control loops?
	 Restrictions on parallel loops
	 Restrictions on parallel loops
	 How to control loops again?
	 How to control loops again?
	
	 Parallel regions
	 *-2mm Any differences?
	 Global variables in OpenMP
	 Global variables in OpenMP
	 Work-sharing directives
	 Work-sharing directives
	 Work-sharing directives
	 Work-sharing directives
	 Work-sharing directives
	
	 Synchronization
	 Synchronization
	 Synchronization
	 OpenMP run-time libraries
	 Summary and Further Reading

