
WQ — A Task Distributor: The User Manual

Document SVN Version: 265
Document Date: 2016-01-25 16:23:56Z

Program SVN Version: 264

James A. Lupo
jalupo@cct.lsu.edu

Center for Computation & Technology
Louisiana State University

Baton Rouge, LA

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/.

Contents

1 Motivation 1

2 Some Definitions 1

3 Overview 2

4 Running wq.py 4
4.1 Runtime Considerations . 5
4.2 The PBS Script . 7

4.2.1 The Prologue . 8
4.2.2 The Epilogue . 10

5 Output 10
5.1 Non-Verbose . 10
5.2 Verbose . 11

5.2.1 WQ NUMACTL . 11
5.2.2 WQ CPT . 11

6 WQ Examples 12
6.1 Creating The Input File List . 12
6.2 Serial Processing - Simple Script . 12

6.2.1 The wq timing.sh Task Script . 12
6.2.2 The wq timing.pbs . 13
6.2.3 The Input File List . 14
6.2.4 Execution . 14

6.3 MPI Processing - MrBayes . 16
6.3.1 The wq mb.sh Task Script . 16
6.3.2 The wq mb.pbs PBS Script . 17
6.3.3 The yeasts.lst Input List . 18
6.3.4 Execute . 18

6.4 OpenMP Processing - BLASTN . 19
6.4.1 The wq blastn.sh Task Script . 19
6.4.2 The wq blastn.pbs PBS Script . 19
6.4.3 Contents of fna files . 20

6.5 Multiple Command Line Arguments . 21
6.6 Full Command Line . 23
6.7 Workstation Usage . 24

7 Installation 24
7.1 Single User . 24
7.2 System Wide . 24

ii

Acknowledgments

WQ was motivated by the needs of Jeremy Brown and Cameron Thrash, two professors in the LSU Biology
Dept. They had to process large numbers of input files through the same analysis tool and required a way to
easily distribute the work across multiple nodes with possibly varying core counts per task. Vinson Doyle,
a post-doc, helped considerably in refining the tool as his file counts per run began to exceed 25000 - most
effective for stress testing. Their willingness to act as friendly users (alpha/beta testers?) to shake out quirks and
motive refinements in the ease of use is greatly appreciated.

iii

WQ Introduction

1 Motivation

WQ (WorkQueuing) is a task distributor for HPC clusters, sort of a private task (work) queuing system under user
control. The types of task supported may be serial or parallel, with the restriction that parallel tasks are required
to use only the processing cores on one node. The motivation is due to recent trends in HPC cluster architectures
which have been towards ever higher core counts per node. At the same time, there is an increasing number
of non-traditional users who still rely on serial jobs, and in many cases a great number of them. Launching
many independent serial jobs under a batch submission system can be very monotonous, may require modestly
advanced skills at shell scripting, and can cause problems with the job scheduler itself. If you can imagine the
difference between setting up 1000 serial jobs with 1 task each versus 1 job working on 1000 tasks, you can
see the potential difficulties. WQ is designed to facilitate a common use case: run the same application with
many different input files, yet can be used in more complex situations. You might imagine how 1000 tasks could
make explicit scripting rather daunting from a repetition viewpoint, yet the effort is fundamentally too simple
to turn over to a heavy weight solution, such as SAGA[3] or ManyJobs[1]. From a scripting standpoint, GNU
Parallel[2] would be a close competitor.

The WQ tool set is designed for simplicity, but not at the expense of flexibility. There are 3 pieces to master,
only 2 of which require customization by the user to meet specific requirements. Most of the magic involved
in multi-tasking is hidden by the tools, but some understanding of the workings of job batch systems and basic
shell scripting is still required to make the pieces work. What follows describes the 3 files that make up the WQ
tool set, along with examples involving a simple serial task, a multi-threaded OpenMP task, a small MPI task,
and a couple of illustrative alternative handling of the input line provided to the tasks for those with more shell
scripting acumen.

2 Some Definitions

The WQ system uses a “dispatcher-worker” model of distributed computing (e.g. hence W(ork)Q(ueuing)).
The current implementation is targeted at systems running PBS (Portable Batch System) under Maui/Torque,
so much of the nomenclature and the script internals are slanted towards that environment. It’s important to
understand the definition of terms used to facilitate usage and support port the scripts to other job managers:

job All of the processing on computational resources assigned by the PBS scheduler under the control of a
master script. Normally one PBS script defines one job in the system. PBS assigns the job to a portion of
a machine exclusively to one user for a specified amount of time. The user may then have the nodes do
any (well, almost any) type of processing desired.

task A unit of work involving a single command or input file that is completely independent of any other
processing.

process Formally, the running instance of an application. This may be the application used by a single task.
The task may be a purely serial program running on 1 core, a multi-threaded program using several cores,
or a small MPI program, the latter two being restricted to using the cores of a single node.

walltime Time determined using a conventional time-of-day clock. It is used to track the job elapsed time
irrespective of any other system times, such as CPU, USER, or I/O time, that is recorded by the operating
system.

dispatcher The process which hands out one task at a time to a worker upon request. One important task is
tracking the time taken by the longest running task seen during a job. This allows it to manage a graceful

1

shutdown if there appears to be insufficient time to start and complete a task before the job’s walltime runs
out.

worker The process which controls the execution of a task. It requests a task from the dispatcher, executes it,
sends results back, and requests another task. This continues until all tasks are completed, or there appears
to be insufficient time to start and complete a task before the job walltime runs out.

head node The front end, management, or log-in node of a HPC cluster.

mother superior node The node, which is one of several assigned to a job, on which execution of the job script
begins. It is special in the sense that much of the job information is made available only to it, and the
information must be explicitly passed to the other nodes if they require it. The WQ PBS script takes pains
to make sure the dispatcher process is started on the mother superior.

compute node A node assigned by the scheduler to a user’s job. Technically, the mother superior is a special
compute node. WQ runs 1 or more workers on each of the compute nodes (including the mother superior),
depending on user requirements and task configuration.

While the discussion are focused on using WQ on clusters with job scheduling systems, it can still be used
manually to run multiple tasks on a local desktop or workstation.

3 Overview

When a job is started under PBS, the requested number of nodes are assigned to the user, and the PBS script
starts executing on the mother superior node. The mother superior is special among the compute nodes because
it has access to environment variables created for the job by the scheduler. In particular, all the assigned node
names are listed in a file pointed to by the shell variable PBS NODEFILE, a unique job identifier is provided in
PBS JOBID, and the amount of wall time requested is provided in PBS WALLTIME. Should the other compute
nodes need access to this information, it is up to the mother superior to provide it to them.

Because the mother superior is the only compute node aware of the job script, the WQ script actively detects if
it running on the mother superior and does some setup work. This setup includes making copies of the job script
and the host file so they are visible to all workers (nb. easy on a parallel file system). The next step involves
starting up the dispatcher so it is ready to respond to worker requests. Only then does it start up workers on all
compute nodes, including on the mother superior. When the WQ script executes on a worker node, it simply
gathers the information prepared by the mother superior and starts executing its workers. The workers request
and execute tasks until the tasks are exhausted, or they are told to stop by the dispatcher because time is running
out.

The information provided to the dispatcher at start-up includes two file names. The first is treated as the
command to be run by the worker. The command is nominally expected to process exactly 1 command line
argument. The command can be an application or script following the usual command line conventions. The
examples shown below all use shell scripts because of the pre- and post-processing capabilities and extra pro-
cessing control they enable over a single application command.

Each line of the second file is treated as an argument to be passed to the command. Basically each task involves
handing out 1 line to the command, and the command script can then do what it will with the information. In the
generic use case, the command is a shell script, and each line is a file name. The names could be absolute path
names to input data files, and the task executed by the worker would be a shell command line that looks like:
$ command filenm
In fact, this command line should work correctly if one types it manually and provides a proper file name.

Such testing is highly recommended before committing to a production job. Once the worker completes a task,
it sends a report containing the execution status code, all text written to standard output (stdout), and any text

2

written to standard error (stderr), back to the dispatcher. If the application produces a high volume (more than
10 lines??) of output on stdout, it would be best to have it written out to a separate output file rather than
return it through stdout or stderr. The information returned, along with diagnostics, is written to a file named
(wq.log.jobid).

There are 4 files important to the process of running a WQ job. The heavy lifting is done by wq-pbs.sh
and wq.py, which provide the PBS interface, and the dispatcher/worker services respectively. These should be
installed somewhere in your system PATH. The two other files are wq.pbs, which the user sets up for batch sub-
mission, and wq.sh, which is an example of a task command script. These are the files a user would customize
for a particular job.

wq.py The main python script which is used to create workers, or the dispatcher, depending on how it is exe-
cuted. As they say, there are no user serviceable parts in this file. Run as the dispatcher, it provides the
workers with a couple of special environment variables, and other information needed to run the task. It
tracks elapsed wall time, and will stop when it appears time is about to run out. By default, 1 day (86400)
seconds is used, or it receives the PBS walltime request from the PBS script. Run as a worker, it first opens
a communication channel to the dispatcher and starts cycling through the work request process until work
is done or it is told to stop. The file is executable, and should reside somewhere in PATH. It depends on
the zmq Python module which is not always included in Python distribution.

wq-pbs.sh This is a shell script that manages the job environment on all the nodes assigned to a job. It takes
care of starting the dispatcher and proper number of workers on all the nodes.

wq.pbs This is a typical PBS batch script. The name is not significant, and the contents could be revised to fit
a different mode of using WQ. It begins with a prologue section with the usual PBS options, such as user
and allocation information, desired job queue, and other typical settings. The user specifies the number
of workers to run per node, which is then used to compute the number of cores/threads each work can
use. Basically, the number of cores used by all the workers on a node should be less than or equal to the
number of cores available. The user is responsible for assuring consistency between user settings in this
script and the task execution script as far as core utilization is concerted. The dispatcher does provide
workers with two variables that can help. The epilogue section is the WQ specific portion. It consists of
one line which calls wq-pbs.sh and passes the settings. The workings of this script is tightly coupled to
the behavior of wq.py and so must be used as a pair.

wq.sh This is a shell script that the workers are told to run to actually accomplish a task. Again, the name is not
significant, but core usage should be consistent with whatever appears in the PBS batch script. The script
(or other specified program) should expect a single command line argument, and controls the processing
for a single task. A typical use case would treat the argument as an absolute path name to an input file.
The path could then be processed to find the working directory, create output names, or any other pre-
processing the user finds necessary. The number of threads or number of MPI processes started by this
script, times the number of workers per node, should equal the number of cores available on the node.

Since the contents of wq.pbs and wq.sh tend to vary with the application run, it is easiest to discuss them in
the form of examples. The two files that accomplish all the magic (wq.py and wq-pbs.sh, will be covered later
on. For now, we’ll simply assume they are in a directory somewhere in PATH and are executable. You could
check by typing:

$ which wq.py
$ which wq-pbs.sh

3

4 Running wq.py
Like most good user applications, the -h or --help command line options can be used to output a short help
message on how to use wq.py. There are 3 different modes to run the program in, and that is reflected below by
3 different usage lines. Note that all of the available options come in either a short, 1 letter form, or in longer
word form:

$ wq.py --help

Usage: wq.py opt1 [opts ...]

As Dispatcher:

wq.py -d[--dispatcher] cmd [-s[--start] task_num] \
[-t[--time] walltime] [-v[--verbose]] -a[--allworkers] n \
-i[--input] filenm -j[--jobid] jobid

As Worker:

wq.py -w[--workers] n -m[--mothersuperior] ms

Help:

wq.py wq.py -h[--help]

General:

-v,--verbose Increase STDERR output details.
-h,--help Display this help message.

Dispatcher Options:

-d,--dispatcher cmd .. (Required) Run as the dispatcher for the
command cmd, where cmd is the task
program or script. cmd will be called
with a single file name as its only
argument.

-a,--allworkers n (Required) Total workers (workers per
node * nodes).

-i,--inputs filenm ... (Required) Name of file containing input file
names to serve as inputs to cmd, one name
per line.

-j,--jobid (Option) PBS jobnumber. If provided, will
be added to the log file name: wq.log.jobid

-s,--start task_num .. (Optional) Task number to start
with. Represents the line number in the
input list file. Default is 1.

-t,--time walltime ... (Optional) Wallclock time to allow for
entire job. May be expressed as one
of the following:

4

ss, mm:ss, hh:mm:ss, or d:hh:mm:ss.

(note: Torque sets env variable PBS_WALLTIME)

Worker Options:

-w,--workers n (Required) Run n workers per node.

-m,--mothersuperior ms .. (Required) Host name of mother superior
node.

The dispatcher must be started before any of the workers.

The default worker jobtime is hardwired to 86400 secs - 1 day.

Revision: $Id: wq.tex 265 2016-01-25 16:23:56Z jalupo $

Note that the same Python script, wq.py, is used to start either the dispatcher (which should be done first) or
the workers. The wq.pbs script takes care of this by starting the job dispatcher on the mother superior first. It
then sees to starting workers on all the compute nodes, and finally starts a set of workers on the mother superior.
The name of the mother superior is passed to all the workers so they know which node to contact in order to talk
with the dispatcher. That’s pretty straight forward.

The requested job walltime is provided by an environment variable to the mother superior. The dispatcher
uses it, coupled with the longest task time it has seen, and estimates whether or not there is sufficient time to
complete another task. If there is, it hands out a task. If not, it begins telling the workers to shut down. This is
worth talking about in more detail in the next section.

This document, and WQ itself, is under active development and will continue to evolve. Thus you may have
noticed that the script reports its version number. This will make it easier to track what is being used if problems
are reported.

4.1 Runtime Considerations

The ability to stop processing before job time runs out is predicated on relatively uniform run time, and knowl-
edge of how long the tasks are taking. Each time a worker requests a task, it sends along the longest task time
it is aware of to the dispatcher. The dispatcher keeps track of the longest time it sees from the various workers.
Before it assigns a new task to a worker, it checks to see if there is sufficient time. It does this by taking the
longest task time, multiplying it by a safety factor (1.25) and comparing with the walltime remaining. If there
is sufficient time, it sends the worker a new task. If not, it sends the worker a command to terminate. This
isn’t perfect, as a worst case ordering of the tasks may place the longest running task at the very end of mostly
very short ones. One approach to avoid the problem is to make use of any run time estimates possible based on
the inputs and try to order the input to put longest running tasks first. The other is to make sure the walltime
requested is longer than the longest expected runtime by at least that amount.

To see what this all means, consider a simple case of running 4 tasks at a time. Assume there are 8 tasks
total, represented in Figure 1, where the length of each bar corresponds to how much walltime the task will take.
Further assume that the walltime needs aren’t known in advance.

The first execution scenario is one in which things work out as expected. Namely, the time calculations result
in stopping the processing before the job runs out of walltime. Figure 2 shows how this scenario plays out. Tasks
5–8 are the first to be assigned (this assumes their input files happened to be the first 4 in the input file list). Lets
assume Task 5 completes first. As far as the worker knows, the time it took is the maximum task time, so it
computes how much time to allow for the next task based on this info. The time it comes up with is shown as
the dotted bar. Since it fits within the remaining wallclock time, the worker requests another task, and so starts

5

3

4

1

2

8

6

7

5

Figure 1: A collection of 8 tasks. The required walltime for each is proportional to the length of
each task’s bar. The box numbers are meant for identification and not necessarily the order in which
the tasks will be assigned.

6

working on Task 1. Task 6 is the next to finish, since it took longer, its time becomes the maximum task time to
use to estimate remaining time. In fact, the dotted bar shows the estimated time exceeds available time, and the
worker stops processing. Things only get worse, as far as available time is concerned, so in fact, no other worker
starts any other tasks. The job finishes properly, with 5 tasks completed, and 3 left to process in a second run.
The lesson here is that longer running jobs should be among the first to execute, if that’s possible to determine.
In reality, a large enough set of tasks with reasonable spread in run times are likely to have the longest running
task complete so the timing checks work as planned.

Wallclock Time

Start End

5

7

8

5 1

6

7

8

6

Step 2

Step 1

Figure 2: A successful job scenario. Step 1 shows the first set of tasks to be executed. The green
boxes indicate the actual walltime remaining. The dashed lines indicates the maximum walltime to
allow for the next job, based on what has completed so far.

What might go wrong? Let’s look at the scenario shown in Figure 3. In this case, the 4 shortest running
tasks (1–4) are started first. By the time the worker completes Task 3, the only task left for it is Task 8, which
happens to be the longest running. However, it sees the time it took on Task 3 to be the longest task time, so
even with the safety margin built in, it estimates there will be time left so starts Task 8. Task 8 actually exceeds
the available walltime, and will be killed by the system job manager. More tasks are done, but the non-graceful
exit will result in incomplete output, and may require manual examination of the output files to determine what
really succeeded and what did not.

The best recommendation is to know how long the tasks will take based on values from the input file and
apply some judicious reordering. This depends on knowing how run times vary with input parameters, and such
information may not be readily available, or possible to determine. The next best thing is to allow more than 2
or 3 times the longest anticipated task time for the entire job. The job will only be charged for the time actually
used, so the only downside may be a possible delay in job start due to the length of time requested.

4.2 The PBS Script

The WQ PBS script, which we’ll name wq.pbs but could be any name, has two main parts. These will be
referred to as the prologue and epilogue sections. The prologue, or beginning, section contains things the user
should configure, such as job options and work directories. The epilogue, or remaining, section contains all
the scripting needed to setup and start the dispatcher and workers. Normally, the epilogue section requires no

7

Wallclock Time

Start End

1

2

3

4

1 6

2 7

3 8

4 5

Step 2

Step 1

Figure 3: A failed task/job scenario. Step 1 shows the first set of tasks to be executed. The green
boxes indicate the actual walltime remaining. The dashed lines indicates the maximum walltime to
allow for the next job, based on what has completed so far. The red box indicates a task that was
started based on a too-short estimate of remaining walltime.

changes. We’ll look at each before digging into some examples.

4.2.1 The Prologue

List 1 shows a WQ PBS script, with the prologue section marked by Begin/End comments. Anyone familiar
with PBS should recognized the first 12 lines as comments followed by 5 PBS options. In this case, they set an
allocation, or account, code; asks for 4 nodes with 16 cores per node (64 cores total); a wall time of 5 minutes;
the use of the workq queue; and assigns the job name of WQ Test. They should be treated as representative
as some are optional and some required - with dependence on local requirements. The setting of several shell
variables follow which define the task characteristics. A description of these variables follows the listing.

Listing 1: WQ PBS Script
1 # ! / b i n / bash
2 # ##
3 # Begin WQ p r o l o g u e s e c t i o n .
4 #
5 # T h i s s e c t i o n i s changed t o meet sys tem , u s e r and a p p l i c a t i o n s p e c i f i c
6 # r e q u i r e m e n t s , such as a l l o c a t i o n codes , PBS o p t i o n s , e t c .
7 # ##
8 #PBS −A h p c e n a b l e 0 4
9 #PBS − l nodes =4: ppn=16

10 #PBS − l w a l l t i m e =00:05:00
11 #PBS −q workq
12 #PBS −N JobName
13
14 # wq . py and wq−pbs . sh must e x e c u t a b l e and a c c e s s i b l e v i a PATH
15
16 # S e t up 4 worker s per node . T h i s w i l l s e t t h e v a r i a b l e WQ CPT=PPN /WPN
17 # (t h r e a d s or c o r e s per p r o c e s s) f o r t h e t a s k s c r i p t .
18
19 WPN=4
20
21 # S e t t h e work ing d i r e c t o r y . $PBS O WORKDIR s h o u l d NOT be used .

8

22
23 WORKDIR=/ work / j a l u p o / S c r a t c h
24
25 # Name o f t h e f i l e c o n t a i n i n g t h e l i s t o f i n p u t f i l e s :
26
27 FILES=${WORKDIR} / f n a f i l e s
28
29 # S t a r t w i t h t a s k 1 (f i r s t l i n e) :
30
31 START=1
32
33 # Name o f t h e t a s k s c r i p t :
34
35 TASK=${WORKDIR} / w q b l a s t n . sh
36
37 # Turn v e r b o s i t y o f f (0) / one (1) :
38
39 VERBOSE=1
40
41 # ###
42 # End WQ p r o l o g u e s e c t i o n .
43 # ###
44 # Begin WQ e p i l o g u e s e c t i o n .
45 # ###
46
47 wq−pbs . sh $0 $WPN $WORKDIR $FILES $START $TASK $VERBOSE $1

Note that the PBS options are followed by shell commands which set 6 environment variables used elsewhere
in the script. These are adjusted by the user depending on the task requirements.

WPN Defines how many workers to start per node. The number of workers per node times the number of cores
per task should equal the number of cores on the node (i.e. ppn= value). The number used here must be
consistent with the settings used in the task script file. To help, WQ provides the worker with the number
of cores it calculates by detecting the number of cores in the node and dividing it by WPN. This is done
by defining a shell variable WQ CPT. This can be used to guarantee only the proper number of cores will
be used.

WORKDIR The working directory to use while the job runs. Several files are created in the process of setting
up for the run, and all must be accessible to every node in this directory.

FILES A file containing the list of input data files to be processed. Each line should be treated as the path to
one file. But the line contents are passed intact to the task, so with proper handling, arbitrary data such as
whole command lines could be passed to the task.

START Indicates the starting line, or record, number in the input file. Since a job that stops because it ran out
of time may not complete all tasks, this allows one to quickly run a following up job to pick up were a
previous job left off and complete the rest of the file.

TASK Name of the script or program that will be run for each task. It will be called with a single argument, that
being the contents of an input line.

VERBOSE Can be used to increase the information output by the dispatcher to the log file. Use a value of 1 to
enable it. The default value is 0.

As a final note, given the way stderr and stdout are handled, it is best to allow them to appear in separate
files rather than use the PBS -j option to merge them. It is okay to assign names, if you wish, or just accept the
default names created using the job name assigned, and the job number.

9

4.2.2 The Epilogue

The epilogue section contains a comment and one line which executes wq-pbs.sh. wq-pbs.sh and wq.py are
designed to work as a pair, so any changes here might break something — handle with care!

5 Output

WQ sends error information to stderr and diagnostic information to a file named wq.log.jobid. This is
the reason why joining the outputs with the PBS -j option is not recommended, and sending output for each
task to a separate file is. The output takes the form of colon-delimited lines, each containing specific types of
information. A representative format for the lines is:

<src>:<tag>:<info1>:<info2:...

where

<src> will be Dispatcher or Worker.

<tag> is a data identification tag such as Task or Stderr.

<info> is a single piece of data dependent on the tag.

Two different sorts of time are reported, all in units of seconds. The first is elapsed time, such as how long a
task took to process. The other is wallclock time, which is the system time of day reported in seconds since 1
Jan 1970 (i.e. the UNIX epoch). Wallclock time is local to the node reporting it, so while the nodes synchronize
their clocks, it should be used as only an approximation when comparing when events occurred between nodes.

In many cases, the worker names are reported. These take the form:

hostnm n

where

hostnm – The host, or node, name.

n – The worker number on this host.

The amount of output can be controlled by the wq.py --verbose option, so we’ll describe the default output,
and then the added verbose output that can be expected.

5.1 Non-Verbose

There are 8 types of lines which are always generated.

Dispatcher:Start:N:W – Dispatcher starting with task N at time W.

Dispatcher:Maxtime:W:M:T – New maximum task time recorded from worker W of duration M at wall-
time T.

Dispatcher:Last:N — Reports the last task number processed N.

Dispatcher:Shutdown:N:A:Mn:Mx:Wa:Wm:Wx – Termination message report number of tasks N, av-
erage task time A, minimum task time Mn, maximum task time Mx, average worker runtime Wa, minimum
worker runtime Wm, max worker runtime (total job time) Wx].

Worker:Startup:W:T – Worker W started at time T.

10

Worker:Starting:W:E – Acknowledging worker W starting at job elapsed time E.

Worker:Stderr:N:W – Stderr output follows from task N run on worker W.

Worker:Stdout:N:W:S – Stdout output follows from task N run on worker W. Task success S is either True
or False.

5.2 Verbose

If the VERBOSE flag is set to 1 in the PBS file, then an additional 7 types of lines are generated.

Dispatcher:Task:N:W:L – Task number N was assigned to worker W with line contents L.

Dispatcher:WaitOn:N – Number of workers N still processing.

Dispatcher:WaitFor:W:W:... – list of workers (W) that haven’t stopped yet.

Worker:Affinity:W:S – Worker W environment variable WQ NUMACTL setting S. This is used to constrain the
cores the worker can use for it’s tasks. More on this below.

Worker:CPT:W:S – Worker W environment variable WQ CPT setting S. This provides the number of cores/threads
a worker can use as calculated by wq.py.

Worker:Task:N:W:C – For task number N, worker W tried to execute command C.

Worker:Timings:N:W:Ts:Te:E – Task number N on worker W started at time Ts and ended at time Te for E
elapsed seconds.

5.2.1 WQ NUMACTL

When the workers call the task script, they define the environment variable WQ NUMACTL. This is set to a
numactl command string that restricts whatever it runs to a specific set of cpu cores. It will look something like
this:

WQ NUMACTL="numactl --physcpubinding=m-n -- "

where m-n represents a range of zero-based core numbers (i.e. they may run from 0 to maxcores-1).
This is likely needed whenever several multi-threaded or multi-process MPI tasks are run at the same time on

a node. It makes sure that each thread or process is confined to a separate set of cpu cores. MPI, in particular,
has a tendency of starting every MPI process from core 0, and leaving others unused. The use is very straight
forward and suggested by the name. Just prefix the task command with the string defined by the variable, and
all should be taken care for.

For example, if the desired command is:

$ eval ‘‘myprog -nthreads=8 -is the best’’

then use of WQ NUMACTL would involve running the command as so:

$ eval ‘‘$WQ_NUMACTL myprog -nthreads=8 -is the best’’

The examples that will follow show deployment in more realistic situations.

5.2.2 WQ CPT

One other piece of information provided by the workers to the task scripts is the number of cores each task is
allowed to use. This is done by setting the environment variable WQ CPT with the number of cores per tasks.
This is computed from the number of cores detected on the compute node divided by the requested number of
workers per node.

11

6 WQ Examples

At this point it is useful to discuss several examples of using WQ. Three of the examples that follow illustrate
how purely serial jobs, multiple process MPI jobs, and multi-threaded OpenMP jobs are handled. Two example
of more advanced use will include passing multiple arguments to the task command line, and treating the entire
input line as a fully formed command. At the very end, the possibility of using WQ without PBS is shown.

6.1 Creating The Input File List

Many applications, such as two of those we are about to discuss, require their input files to be of a particular
type identified through the use of file extensions. That is, they append a period and a set of characters to the end
of the file name (e.g. .txt, .fna, .ini, and so on). This makes it very easy to create a file holding a list of input file
names. A simple shell command can create the list. The absolute path to the files can be included if desired by
using the pwd command with find, like so:

$ find ‘pwd‘/*.fna > input_files

After input files is created, it can be edited as needed.
It is not absolutely necessary to use absolute path names. Pathnames relative to the task script working

directory can work equally well, and produce smaller files. Chalk this approach up to a certain amount of
paranoia from a control freak (one never knows when having the absolute path will come in handy for something
unexpected). It really has been tested both with absolute and relative path names. As always, try a manual test
before launching a full production effort.

6.2 Serial Processing - Simple Script

A very simple example of a serial task would be a script that does nothing but echo back the values of some
environment variables and then sleeps a short time to provide some simulated processing time. It is takes no real
actions so is safe to run interactively without any preparations. Let’s examine the task script first, then set up the
PBS file, create the input file list, and finally execute.

6.2.1 The wq timing.sh Task Script

The serial example is pretty simply as all it does is a little shell processing magic and echos a few environment
variable values (Listing 2). This script hints at some of what can be done with the absolute path of the input file
name, and very little else. A shell script can do any sort of processing desired through normal shell programming
methods, which is one reason it’s used here. The example is based on the bash shell, but any script or command
could be used. The only critical part of the process is the fact there is one command line argument to process.

Listing 2: Serial Task Script
1 # ! / b i n / bash
2 #
3 # T h i s s c r i p t i l l u s t r a t e s a b a s i c WQ t a s k s c r i p t .
4
5 # T r e a t t h e f i r s t command l i n e argument as a f u l l pathname :
6
7 FILE=$1
8 DIR= ‘ d i rname ${FILE} ‘
9 BASE= ‘ basename ${FILE} ‘

10
11 # J u s t echo o u t t h e r e s u l t s and WQ v a r i a b l e v a l u e s .
12
13 echo ”DIR=${DIR } ; BASE=${BASE}”
14 echo ”WQ NUMACTL=${WQ NUMACTL} ; WQ CPT=${WQ CPT}”
15 echo ” That ’ s a l l , f o l k s ! ”
16

12

17 # S i m u l a t e a spr ea d i n t a s k t i m e s :
18
19 T= ‘ expr 1 + $RANDOM % 10 ‘
20 echo ” S l e e p i n g f o r $T s e c o n d s . ”
21 s l e e p $T

If you’re wondering about the RANDOM variable, it contains a random integer value provided by BASH and
used here to cause some fluctuations in sleep time to simulate different processing times of real tasks. The values
of WQ CPT and WQ NUMACTL are empty, since they are created at run time by the workers when they call
the script. Note that no attempt is made to actually do anything with the file named in argument 1. It simply
shows how the directory and base name parts can be extracted. The file itself doesn’t even have to exist for the
script to work correctly. In fact, it can be tested manually with any made-up file name, like this:

$./wq_timing.sh /test/file/path/foobar.txt
DIR=/test/file/path; BASE=foobar.txt
WQ_CPT=; WQ_NUMACTL=
That’s all, folks!
Sleeping for 5 seconds.
$

6.2.2 The wq timing.pbs

The PBS script used for the serial example is displayed in Listing 3. The machine it is destined to run on has
nodes equipped with two 10-core processors, thus 20 cores total. The example is requesting 1 node, so 20 cores
in all. The walltime is set to a very short 2 minute 30 seconds - it really doesn’t do much! WPN is set to the
number of cores on a node, and a work directory name is specified. The file 82 file lst just happens to have
82 file names swiped from another job. The serial task itself is defined in the file with the incredibly original
name of wq serial.sh. While not absolutely necessary, it also sets START to 1, and VERBOSE to 0, which are the
default values but as used as reminders of what is possible. This is all that must be changed in the PBS script.
The PBS epilogue section should stay unmodified unless you really, really, really want to mess with it.

Listing 3: Serial Job Prologue Section
1 # ! / b i n / bash
2 # ##
3 # Begin WQ p r o l o g u e s e c t i o n .
4 #
5 # T h i s s e c t i o n i s changed t o meet sys tem , u s e r and a p p l i c a t i o n s p e c i f i c
6 # r e q u i r e m e n t s , such as a l l o c a t i o n codes , PBS o p t i o n s , e t c .
7 # ##
8 #PBS −A h p c e n a b l e 0 5
9 #PBS − l nodes =2: ppn=20

10 #PBS − l w a l l t i m e =00:05:00
11 #PBS −q workq
12 #PBS −N Timing V1
13
14 # Make s u r e wq . py and wq−pbs . sh appear e x e c u t a b l e i n PATH .
15
16 # Running 4 worker s per node . T h i s w i l l s e t t h e v a r i a b l e WQ CPT=ppn /WPN
17 # (t h r e a d s or c o r e s per p r o c e s s)
18
19 WPN=4
20
21 # S e t t h e work ing d i r e c t o r y .
22
23 WORKDIR=/ work / j a l u p o /WQ/ Examples / Timing
24
25 # Name o f t h e f i l e c o n t a i n i n g t h e l i s t o f i n p u t f i l e s :
26
27 FILES=${WORKDIR} / 82 f i l e l i s t

13

28
29 # S t a r t w i t h t a s k 1 (f i r s t l i n e) :
30
31 START=1
32
33 # Name o f t h e t a s k s c r i p t :
34
35 TASK=${WORKDIR} / wq t iming . sh
36
37 # Turn v e r b o s i t y o f f (0) / one (1) :
38
39 VERBOSE=1
40
41 # ###
42 # End WQ p r o l o g u e s e c t i o n .
43 # ###
44 # Begin WQ e p i l o g u e s e c t i o n .
45 # ###
46
47 wq−pbs . sh $0 $WPN $WORKDIR $FILES $START $TASK $VERBOSE $1

6.2.3 The Input File List

To run a proper demonstration, a file containing pathnames is needed. Let’s use a list of 82 file names, which
according to the prologue settings, should be found in a file named 82 file list (e.g. contains 82 file names).
The first few entries are shown in Listing 4.

Listing 4: Serial Job File List
1 / work / j a l u p o /WQ/ Examples / Timing / ch r13 / c h r 1 3 7 1 0 . b f
2 / work / j a l u p o /WQ/ Examples / Timing / ch r13 / c h r 1 3 7 2 7 . b f
3 / work / j a l u p o /WQ/ Examples / Timing / ch r13 / ch r13 2847 . b f
4 / work / j a l u p o /WQ/ Examples / Timing / ch r13 / c h r 1 3 7 1 1 . b f
5 / work / j a l u p o /WQ/ Examples / Timing / ch r13 / c h r 1 3 6 9 6 . b f

The file was created from an actual input file that was very much longer. Note that there really isn’t any
whitespace at the beginning or end of each line. Let’s assume we have a copy of wq.py in our current directory.
The directory contents should then look something like that seen in Listing 5.

Listing 5: Timing Example Directory Before Run
1 82 f i l e l i s t b e f o r e wq t iming . pbs wq t iming . sh

6.2.4 Execution

Everything should be good to go, so the job can be submitted with the usual qsub command line:

$ qsub wq_timing.pbs > jid

The file jid will capture the job identifier. When this example was run, job identifier became 426092.mike3.
The job number is 426092 and it is used to create several other job unique files. This is a pretty short example
and will likely execute in under 120 seconds, but you may have to wait a bit before it actually starts if the system
is busy. When it completes, you should see a few more files in the directory (Listing 6.

Listing 6: Timing Example Directory After Run
1 5 f i l e l i s t j i d Timing V1 . o426092 wq t iming . pbs
2 82 f i l e l i s t pbs .426092 wq . l o g .426092 wq t iming . sh
3 h o s t l i s t . 426092 Timing V1 . e426092 wq . py

14

Notice that the job ID number is used as a file name extension to mark files produced by the job. This is the
default naming convention used by PBS for the stdout and stderr streams so is used to create names for the
three WQ auxiliary files with base names of hostlist, pbs, and wq.log.

hostlist This is a lists of the nodes assigned to the job. Since it is basically a serial job, each host name is
listed just once.

pbs This is a copy of the PBS script as processed by qsub. All blank lines were removed by qsub during
processing, but nothing else changed. It is created so the workers have access to the script which otherwise
is seen only by the mother superior.

wq timing.o This is the standard output from the run. It used the job name set in the PBS script and appended
.o and the job number.

wq timing.e This is the standard error from the run. It used the job name set in the PBS script and appended
.e and the job number.

wq.log This is the diagnostic output produced by wq.py.

Let’s take a look at the first few lines of the log output file (Listing 8). Refer to the line content descriptions
above if you need to:

Listing 7: Serial Example Execution
1 D i s p a t c h e r : S t a r t : 1 : 1 4 4 9 7 7 7 9 8 3 . 9 5
2 Worker : S t a r t u p : mike150 0 :1449777988 .91
3 Worker : A f f i n i t y : mike150 0 :WQ NUMACTL=” numac t l −−physcpub ind =0−3 −− ”
4 Worker : CPT : mike150 0 :WQ CPT=4
5 Worker : S t a r t i n g : mike150 0 : 4 . 9 7
6 D i s p a t c h e r : Task : 1 : mike150 0 : / work / j a l u p o /WQ/ Examples / Timing / ch r13 / c h r 1 3 7 1 0 . b f
7 Worker : S t a r t u p : mike150 3 :1449777988 .92
8 Worker : A f f i n i t y : mike150 3 :WQ NUMACTL=” numac t l −−physcpub ind =12−15 −− ”
9 Worker : CPT : mike150 3 :WQ CPT=4

10 Worker : S t a r t i n g : mike150 3 : 4 . 9 7
11 D i s p a t c h e r : Task : 2 : mike150 3 : / work / j a l u p o /WQ/ Examples / Timing / ch r13 / c h r 1 3 7 2 7 . b f
12 Worker : S t a r t u p : mike150 1 :1449777988 .91
13 Worker : A f f i n i t y : mike150 1 :WQ NUMACTL=” numac t l −−physcpub ind =4−7 −− ”
14 Worker : CPT : mike150 1 :WQ CPT=4
15 Worker : S t a r t i n g : mike150 1 : 4 . 9 7
16 D i s p a t c h e r : Task : 3 : mike150 1 : / work / j a l u p o /WQ/ Examples / Timing / ch r13 / ch r13 2847 . b f
17 Worker : S t a r t u p : mike150 2 :1449777988 .92
18 Worker : A f f i n i t y : mike150 2 :WQ NUMACTL=” numac t l −−physcpub ind =8−11 −− ”
19 Worker : CPT : mike150 2 :WQ CPT=4
20 Worker : S t a r t i n g : mike150 2 : 4 . 9 7
21 D i s p a t c h e r : Task : 4 : mike150 2 : / work / j a l u p o /WQ/ Examples / Timing / ch r13 / c h r 1 3 7 1 1 . b f
22 Worker : S t a r t u p : mike172 0 :1449777989 .76
23 Worker : A f f i n i t y : mike172 0 :WQ NUMACTL=” numac t l −−physcpub ind =0−3 −− ”
24 Worker : CPT : mike172 0 :WQ CPT=4
25 Worker : S t a r t i n g : mike172 0 : 5 . 8 1
26 D i s p a t c h e r : Task : 5 : mike172 0 : / work / j a l u p o /WQ/ Examples / Timing / ch r13 / c h r 1 3 6 9 6 . b f
27 Worker : S t a r t u p : mike172 1 :1449777989 .76
28 Worker : A f f i n i t y : mike172 1 :WQ NUMACTL=” numac t l −−physcpub ind =4−7 −− ”

Lets run this again, only this time with VERBOSE=1. What is most interesting is the last few lines of wq.log
which contain the task timing information.

Listing 8: Serial Example wq.log Lines
1 Worker : S t d e r r : 8 1 : mike172 3
2 Worker : Task : 8 0 : mike150 3 :WQ CPT=4 WQ NUMACTL=” numac t l −−physcpub ind =12−15 −− ” / work /

j a l u p o /WQ/ Examples / Timing / wq t iming . sh / work / j a l u p o /WQ/ Examples / Timing / ch r23 /
c h r 2 3 7 0 7 . b f

3 Worker : Timings : 8 0 : mike150 3 : 1 4 4 9 7 7 8 0 3 4 . 0 3 : 1 4 4 9 7 7 8 0 4 2 . 0 4 : 8 . 0 1
4 Worker : S t d o u t : 8 0 : mike150 3 : True

15

5 DIR =/ work / j a l u p o /WQ/ Examples / Timing / ch r23 ; BASE= c h r 2 3 7 0 7 . b f
6 WQ NUMACTL= numac t l −−physcpub ind =12−15 −− ; WQ CPT=4
7 That ’ s a l l , f o l k s !
8 S l e e p i n g f o r 8 s e c o n d s .
9 Worker : S t d e r r : 8 0 : mike150 3

10 D i s p a t c h e r : L a s t : 8 2
11 D i s p a t c h e r : Shutdown : 8 2 : 4 . 8 1 : 1 . 0 1 : 1 0 . 0 1 : 5 4 . 7 4 : 5 2 . 0 6 : 5 8 . 0 9

6.3 MPI Processing - MrBayes

MrBayes is an application that can make use of MPI to speed up processing. Settings in the input files control
have an impact on how many MPI processes can be used. In this example, the input files used were determined
to work well on 16 processes. That means the task could be set up to run with 16 MPI processes. Given that the
machine used for testing had 16 cores per node, it meant 1 worker could run per node. For the curious, the input
files selected to build the input file list all end with .bf.

6.3.1 The wq mb.sh Task Script

The task script requires setting up the environment appropriately for MrBayes (Listing 9). It needs some envi-
ronment variables to contain paths to directories it relies on for data and library files. Note that towards the end
it has an if block which can be used to either execute the real command by using if true, or just echo the
command line if false. This provides one approach for testing the script to verify the proper command line
is generated before turning it loose for real.

Listing 9: MrBayes Task Script
1 # ! / b i n / bash
2
3 # Ex pe c t a pathname as t h e f i r s t argument .
4
5 FILE=$1
6 DIR= ‘ d i rname ${FILE} ‘
7 BASE= ‘ basename ${FILE} ‘
8
9 # S e t up t o run as many MPI p r o c e s s e s per t a s k s as number o f c o r e s

10 # per worker p r o v i d e d by WQ CPT . Method here i s r e l a t i v e l y i n s e n s i t i v e
11 # t o t h e v e r s i o n o f MPI b e i n g used .
12
13 PROCS=${WQ CPT}
14 HOSTNAME= ‘ uname −n ‘
15 HOSTLIST=” ”
16 f o r i in ‘ seq 1 ${PROCS} ‘ ; do
17 HOSTLIST=” ${HOSTNAME} , ${HOSTLIST}”
18 done
19 HOSTLIST=${HOSTLIST%,∗}
20
21 # Here we s e t t h e command l i n e t o use . I t assumes t h a t t h e e x e c u t a b l e ,
22 # ’mb ’ , i s i n t h e s h e l l ’ s PATH . We a l s o use t h e numac t l command
23 # p r o v i d e d i n t h e WQ NUMACTL v a r i a b l e .
24
25 CMD=” ${WQ NUMACTL}”
26 CMD=” ${CMD} mpirun −h o s t ${HOSTLIST} −np ${PROCS} mb”
27 CMD=” ${CMD} ${FILE} < / dev / n u l l > ${BASE} .mb . l o g ”
28
29 cd $DIR
30
31 # Clean o u t any c r u f t from p o s s i b l e p r e v i o u s run .
32
33 rm −f ${BASE} . [p t] ${BASE} . l o g ${BASE} . ckp ${BASE} . ckp ˜ ${BASE} . mcmc
34
35 # For t e s t i n g purposes , use ” i f f a l s e ” . For p r o d u c t i o n , use ” i f t r u e ”
36
37

16

38 i f f a l s e ; then
39 e v a l ” ${CMD}”
40 e l s e
41 echo ”Would have e x e c u t e d t h e f o l l o w i n g command : ”
42 echo ” ${CMD}”
43 T= ‘ expr 2 + $RANDOM % 10 ‘
44 echo ” S l e e p i n g f o r $T s e c o n d s . ”
45 s l e e p $T
46 f i

The MPI used in this example was OpenMPI. A different version of MPI may require the use of a launcher
other than mpirun, and/or a different set of command line options. Since the MPI processes for a task are
restricted to run on a common node by WQ, it is relatively easy to build the host list (lines 15–19).

The variable WQ NUMACTL contains the numactl command which assures that the processes will run on
unique cores. It is used here to make sure the MPI processes of multiple workers on the same nodes use unique
cores.

6.3.2 The wq mb.pbs PBS Script

The important thing for this example is that we are using 16 MPI processes per task, which means the job should
run only 1 worker per node given 16 cores per node. We’ll assume the PBS file name is wq mb.pbs, and the
prologue portion is displayed in Listing 10. This is going to be a heftier example and use 16 nodes total. It will
be allowed to run for 5 hours to illustrate what happens when time runs out before all tasks are completed.

Listing 10: MrBayes PBS Script Prologue
1 # ! / b i n / bash
2 # ##
3 # Begin WQ p r o l o g u e s e c t i o n .
4 # ##
5 #PBS −A h p c e n a b l e 0 5
6 #PBS − l nodes =4: ppn=20
7 #PBS − l w a l l t i m e =0:10:00
8 #PBS −q workq
9 #PBS −N MrBayes V0

10
11 # Make s u r e wq . py and wq−pbs . sh are e x e c u t a b l e and i n PATH .
12
13 # We want 2 worker s per node . T h i s would y i e l d 10−core MPI p r o c e s s e s
14 # on a 20−core node (ppn /WPN) .
15
16 WPN=2
17
18 # S e t t h e work ing d i r e c t o r y :
19
20 WORKDIR=/ work / j a l u p o /WQ/ Examples / MrBayes
21
22 # Name o f t h e f i l e c o n t a i n i n g t h e l i s t o f i n p u t f i l e s :
23
24 FILES=${WORKDIR} / y e a s t s . l s t
25
26 # S t a r t w i t h t a s k 1 (1 s t l i n e) :
27
28 START=1
29
30 # Name o f t h e worker t a s k s c r i p t :
31
32 TASK=${WORKDIR} / wq mb . sh
33
34 # Turn o f f (0) / on (1) v e r b o s e o u t p u t :
35
36 VERBOSE=0
37
38 # ###
39 # End WQ p r o l o g u e s e c t i o n .

17

40 # ###
41 # Begin WQ e p i l o g u e s e c t i o n .
42 # ###
43
44 wq−pbs . sh $0 $WPN $WORKDIR $FILES $START $TASK $VERBOSE $1

As before, we leave the PBS epilogue section well enough alone. Before we can execute, we’ll need to create
a list of input files, this time full of real, live file names.

6.3.3 The yeasts.lst Input List

The sub-directory PostPredYeast is assumed to contain all the data files, and will hold the task output files
as well. The file yeasts.lst, whose name corresponds to the FILES setting, contains a list of 1,414 input file
names. The the first few lines are shown in Listing 11.

Listing 11: Sample MrBayes Files Entries
1 / work / j a l u p o /WQ/ Examples / MrBayes / P o s t P r e d Y e a s t / YDR449C DNA / S e q O u t f i l e s / YDR449C DNA . nex .

run3 1360000 / GTRIG . b a y e s b l o c k
2 / work / j a l u p o /WQ/ Examples / MrBayes / P o s t P r e d Y e a s t / YDR449C DNA / S e q O u t f i l e s / YDR449C DNA . nex .

run1 1960000 / GTRIG . b a y e s b l o c k
3 / work / j a l u p o /WQ/ Examples / MrBayes / P o s t P r e d Y e a s t / YDR449C DNA / S e q O u t f i l e s / YDR449C DNA . nex .

run2 3960000 / GTRIG . b a y e s b l o c k
4 / work / j a l u p o /WQ/ Examples / MrBayes / P o s t P r e d Y e a s t / YDR449C DNA / S e q O u t f i l e s / YDR449C DNA . nex .

run2 2360000 / GTRIG . b a y e s b l o c k
5 / work / j a l u p o /WQ/ Examples / MrBayes / P o s t P r e d Y e a s t / YDR449C DNA / S e q O u t f i l e s / YDR449C DNA . nex .

run3 2960000 / GTRIG . b a y e s b l o c k

We now have the task script (check), the input file list (check), and the PBS script (check). Guess we’re
good to go!

6.3.4 Execute

Once again qsub is used to submit the job.

$ qsub wq_mb.pbs > jid
$

This example received a job number of 426093, so the after execution, the contents appear as in Listing 13.

Listing 12: MrBayes Directory After Execution
1 f ind cmd MrBayes V0 . e426093 P o s t P r e d Y e a s t wq mb . sh
2 h o s t l i s t . 426093 MrBayes V0 . o426093 wq . l o g .426093 wq . py
3 j i d pbs .426093 wq mb . pbs y e a s t s . l s t

The contents of wq.log are similar to the serial example, and the last few lines are shown in Listing ??.

Listing 13: MrBayes WQ Execution Log
1 f ind cmd MrBayes V0 . e426093 P o s t P r e d Y e a s t wq mb . sh
2 h o s t l i s t . 426093 MrBayes V0 . o426093 wq . l o g .426093 wq . py
3 j i d pbs .426093 wq mb . pbs y e a s t s . l s t

Looking at the Dispatcher:Shutdown line, we see 128 tasks were completed (faked in this case), the average
task time was 6.42 seconds, with the shortest and longest being 2.01 and 11.02 seconds, respectively. The
workers averaged run times of 108.28 seconds during the job, with the shortest and longest being 105.01 and
114.90 seconds respectively. Since the average is closer to minimum than the maximum run time, it suggests
that a particularly long task occurred near the end of the job. In general, if the average appears closer to the
maximum time, one can assume the CPU efficiency is better. That is, more cores say in use longer.

18

6.4 OpenMP Processing - BLASTN

BLASTN is an application that runs multi-threaded with OpenMP. What we’ll do here is show how to run 4
workers per node, with each task using 4 threads (4 cores). The OpenMP thread count is specified by setting an
appropriate environment variable, and the value will be that given by WQ CPT.

6.4.1 The wq blastn.sh Task Script

What is different in the task script from the MPI example is the use of the variable OMP NUM THREADS to set the
number of threads a process can use (Listing 14). Notice that the BLASTN command line is the most complex
of all the examples, and is built up step-wise to keep things readable. The decision to use 4 threads per task is
based on the characteristics of the input files. Just be aware that other BLASTN input files may require using
only 2 or even just 1 thread per task.

Listing 14: BLASTN Task Script
1 # ! / b i n / bash
2
3 # S e t a v a r i a b l e as t h e a b s o l u t e pa th t o an e x e c u t a b l e . The a l t e r n a t i v e
4 # would be t o make s u r e ’ b l a s t n ’ i s i n t h e s h e l l ’ s PATH .
5
6 BLASTN=/ u s r / l o c a l / p a c k a g e s / b i o i n f o r m a t i c s / n c b i b l a s t / 2 . 2 . 2 8 / gcc −4 . 4 . 6 / b i n / b l a s t n
7
8 # BLASTN u s e s OpenMP , so we ’ l l s e t up 1 t h r e a d per core a l l o w e d f o r worker s .
9

10 export OMP NUM THREADS=${WQ CPT}
11
12 # T r e a t t h e f i r s t command l i n e argument as t h e i n p u t f i l e pathname .
13
14 FILE=$1
15 DIR= ‘ d i rname ${FILE} ‘
16 BASE= ‘ basename ${FILE} ‘
17
18 # B u i l d t h e r a t h e r complex command l i n e , i n c l u d i n g numac t l s t r i n g .
19
20 CMD=” ${WQ NUMACTL} ${BLASTN} − t a s k b l a s t n −o u t f m t 7 −m a x t a r g e t s e q s 1 ”
21 CMD=” ${CMD} −n u m t h r e a d s ${OMP NUM THREADS}”
22 CMD=” ${CMD} −db / p r o j e c t / db / img v400 cus tom / img v400 custom GENOME ”
23 CMD=” ${CMD} −que ry ${FILE}”
24 CMD=” ${CMD} −o u t ${DIR } / IMG genome blas t . ${BASE}”
25
26 # For t e s t i n g purposes , use ” i f f a l s e ” . For r e a l runs , use ” i f t r u e ”:
27 # The random t i m e s s i m u l a t e a spr ea d i n t a s k t i m e s .
28
29 i f f a l s e ; then
30 e v a l ” ${CMD}”
31 e l s e
32 echo ”Would have e x e c u t e d t h e f o l l o w i n g command : ”
33 echo ” ${CMD}”
34 T= ‘ expr 2 + $RANDOM % 10 ‘
35 echo ” S l e e p i n g f o r $T s e c o n d s . ”
36 s l e e p $T
37 f i

6.4.2 The wq blastn.pbs PBS Script

The processing of a single data set takes much longer than our earlier examples, so a real world run would take
on the order of 70 hours. There is no reason one couldn’t change the nodes=2 PBS option to use more nodes.
On a busy cluster, the tradeoff might be a longer wait to get the job started (i.e. a throughput tradeoff). The WQ
prologue is shown in Listing 15, and the epilogue section remains unchanged.

19

Listing 15: BLASTN PBS Prologue
1 # ! / b i n / bash
2 # ##
3 # Begin WQ p r o l o g u e s e c t i o n .
4 #
5 # T h i s s e c t i o n i s changed t o meet sys tem , u s e r and a p p l i c a t i o n s p e c i f i c
6 # r e q u i r e m e n t s , such as a l l o c a t i o n codes , PBS o p t i o n s , e t c .
7 #
8 # P l e a s e n o t e t h e w a l l t i m e here does n o t i n any way r e p r e s e n t a t i v e
9 # o f a BLASTN j o b .

10 # ##
11 #PBS −A h p c e n a b l e 0 5
12 #PBS − l nodes =4: ppn=20
13 #PBS − l w a l l t i m e =00:05:00
14 #PBS −q workq
15 #PBS −N BLASTN V1
16
17 # S e t up f o r 5 worker s per node . T h i s would y i e l d 4 c o r e s per worker
18 # on a 20−core node (ppn /WPN)
19
20 WPN=5
21
22 # S e t t h e work ing d i r e c t o r y . Could use $PBS O WORKDIR
23
24 WORKDIR=/ work / j a l u p o /WQ/ Examples /BLASTN
25
26 # Name o f t h e f i l e c o n t a i n i n g t h e l i s t o f i n p u t f i l e s :
27
28 FILES=${WORKDIR} / f n a f i l e s
29
30 # S t a r t w i t h t a s k 1 (f i r s t l i n e) :
31
32 START=1
33
34 # Name o f t h e t a s k s c r i p t :
35
36 TASK=${WORKDIR} / w q b l a s t n . sh
37
38 # Turn v e r b o s i t y o f f (0) / one (1) :
39
40 VERBOSE=1
41
42 # ###
43 # End WQ p r o l o g u e s e c t i o n .
44 # ###
45 # Begin WQ e p i l o g u e s e c t i o n .
46 # ###
47
48 wq−pbs . sh $0 $WPN $WORKDIR $FILES $START $TASK $VERBOSE $1

6.4.3 Contents of fna files

The input files selected are those that end in .fna. The first few lines are shown in Listing 17

Listing 16: BLASTN Input Files
1 / work / j a l u p o /WQ/BLASTN/ Data / GS049 . b l a s t / xab . f n a
2 / work / j a l u p o /WQ/BLASTN/ Data / GS049 . b l a s t / xak . f n a
3 / work / j a l u p o /WQ/BLASTN/ Data / GS049 . b l a s t / x a i . f n a
4 / work / j a l u p o /WQ/BLASTN/ Data / GS049 . b l a s t / xag . f n a
5 / work / j a l u p o /WQ/BLASTN/ Data / GS049 . b l a s t / x a j . f n a

The file names are a bit shorter than the MrBayes example because the directory tree isn’t near as deep.
Instead of one data directory, there are multiple directories in the WORKDIR (Listing ??).

Listing 17: BLASTN Input Files
1 Data f ind cmd f n a f i l e s w q b l a s t n . pbs w q b l a s t n . sh wq . py

20

From this point, submit the job with qsub and revel in the copious output.

6.5 Multiple Command Line Arguments

It’s now time to come clean and admit that requiring a single command line argument was a little white lie to
simplify the early goings. The use of an input file with a list of file names is not the only way to use WQ,
assuming you’re willing to use a little more shell scripting magic. In fact, the line can be treated as containing
multiple argumentss. It all depends on how the task script is set up to handle what is handed out by the dispatcher.

As an example, consider how you might approach a parameter sweep task, where each run of an analysis
program processes a different set of parameters. If the main configuration is done with an input file, and the
control parameters are specified on the command line for the program, you’d have trouble using WQ as described
above. A few straight-forward changes can fix that. This is because WQ is really treating the line it reads from
the input file as a string of characters and sends the entire line to the worker, which in turn passes the entire
string on the command line when it calls the task. It is up to the task script to interpret what it receives.

By way of example, consider a hypothetical program that takes the muzzle elevation, pounds of black power,
and cannon specifications data and returns the estimated range for a standard (?) cannon ball. It might be
executed as so:

./range.sh -e 45.9 -p 1.5 cannon.dat

A parameter sweep would look at a range of angles and powder loads. For a particular set of cannon specifi-
cations defined in a file named cannon.dat, a list of commands covering 5 to 85 degrees of elevation in steps
of 5 degrees, and 1.5 to 5.0 pounds of power in steps of 0.1 pounds could be generated by a small script shown
in Listing 18:

Listing 18: Command Line Argument Generator
1 #! / b i n / bash
2 echo ”” > cmds2 . l s t
3 f o r e l e v a t i o n i n ‘ seq 5 . 0 5 8 5 . 0 ‘ ; do
4 f o r pounds i n ‘ seq 1 . 5 0 . 1 5 . 0 ‘ ; do
5 echo ” $ e l e v a t i o n $pounds ” >> a r g s . l s t
6 done
7 done

A total of 612 command lines are generated, with the first shown in Listing 19.

Listing 19: Multiple Argument Input Lines
1 5 . 0 1 . 5
2 5 . 0 1 . 6
3 5 . 0 1 . 7
4 5 . 0 1 . 8
5 5 . 0 1 . 9

It is worth pointing out that the script and input file locations use relative paths. That means it is important
to start the job in the proper work directory as there is no information provided to compute the work directory
name as was done before.

The other important change is in the task script. Instead of using just 1 command line argument, it now
expects any number of arguments. This is handled with the shell special variable $* which expands into all of
the arguments (e.g. words) on the command line. (See Listing ??)

Listing 20: Multiple Argument Task Script
1 #! / b i n / bash
2 #
3 # Th i s s c r i p t e x p e c t s two a rgumen t s on command l i n e .
4

21

5 CANNON= d a l h g r e n
6
7 # The d i r e c t o r y must e x i s t . We can ’ t c r e a t e i t h e r e b e c a u s e o f a
8 # r a c e c o n d i t i o n wi th a l l t h e o t h e r worke r s .
9

10 i f [! −d ${CANNON}] ; t h e n
11 echo ” Th i s d i r e c t o r y must e x i s t b e f o r e r u n n i n g j o b : ${CANNON}”
12 e x i t 1
13 f i
14
15 CMD= ” . / r a n g e . sh −e $1 −p $2 ${CANNON} . d a t > ${CANNON} / ${1} $ {2} . d a t ”
16
17 # ’ i f t r u e ’ e x e c u t e t h e command . ’ i f f a l s e ’ j u s t echo i t back .
18
19 i f t r u e ; t h e n
20 e v a l ” ${CMD}”
21 e l s e
22 echo ”CMD=${CMD}”
23 T= ‘ exp r 2 + $RANDOM % 10 ‘
24 echo ” S l e e p i n g f o r $T s e c o n d s . ”
25 s l e e p $T
26 f i

The PBS script looks very similar to the serial case, with file names adjusted as needed. (See Listing 21)

Listing 21: Full Command Line Task Script
1 #! / b i n / bash
2 ###
3 # Begin WQ p r o l o g u e s e c t i o n .
4 ###
5 #PBS −A h p c e n a b l e 0 5
6 #PBS − l nodes =1: ppn =20
7 #PBS − l w a l l t i m e = 0 0 : 0 2 : 3 0
8 #PBS −q workq
9 #PBS −N Mult iArg V0

10
11 # Make s u r e wq . py and wq−pbs . sh a r e e x e c u t a b l e and i n PATH .
12
13 # S e t up f o r 20 worke r s p e r node
14
15 WPN=20
16
17 # S e t t h e working d i r e c t o r y :
18
19 WORKDIR=/ work / j a l u p o /WQ/ Examples / Mul t iArg
20
21 # Name of t h e f i l e c o n t a i n i n g t h e command l i n e s .
22
23 FILES=${WORKDIR} / a r g s . l s t
24
25 START=1
26
27 # Name of t h e t a s k s c r i p t .
28
29 TASK=${WORKDIR} / w q m u l t i a r g . sh
30
31 # I f s e t t o 1 , i t t u r n s on a d d i t i o n a l a c t i v i t y messages t o h e l p
32 # t r a c k t h e t a s k a s s i g n m e n t p r o c e s s .
33
34 VERBOSE=0

To make this even more realistic, let’s specify a new script that does the range calculations, say range.sh
(Listing 22).

Listing 22: Range Calculation Script
1 #! / b i n / bash
2 #

22

3 # Th i s does n o t h i n g b u t r e f l e c t t h e command l i n e a rgumen t s .
4
5 echo ” r a n g e . sh c a l l e d . The a rgumen t s p r o v i d e d were : ”
6 echo ” a r g s : $∗”

Note that the script will write it’s output to seperate files in the Output subdirectory. Since 612 files are
created, it’s best to put them someplace special so as not to clutter the working directory.

6.6 Full Command Line

One final example would be to pass a complete command line to the task script. This would allow almost any
type of independent processing to be done. Using the cannon range parameter sweep idea, the relevent files
show only small changes.

Listing 23: Full Command Line Prologue
1 #! / b i n / bash
2 ###
3 # Begin WQ p r o l o g u e s e c t i o n .
4 ###
5 #PBS −A h p c e n a b l e 0 5
6 #PBS − l nodes =1: ppn =20
7 #PBS − l w a l l t i m e = 0 0 : 0 2 : 3 0
8 #PBS −q workq
9 #PBS −N CmdLine V1

10
11 # Make s u r e wq . py and wq−pbs . sh a r e e x e c u t a b l e and i n PATH .
12
13 # S e t up f o r 20 works (1 node ∗ 20 c o r e s) :
14
15 WPN=20
16
17 # S e t t h e working d i r e c t o r y :
18
19 WORKDIR=/ work / j a l u p o /WQ/ Examples / CmdLine
20
21 # Name of t h e f i l e c o n t a i n i n g t h e command l i n e s .
22
23 FILES=${WORKDIR} / c m d l i n e s . l s t
24
25 START=1
26
27 # Name of t h e t a s k s c r i p t .
28
29 TASK=${WORKDIR} / wq cmdl ine . sh
30
31 # I f s e t t o 1 , i t t u r n s on a d d i t i o n a l a c t i v i t y messages t o h e l p
32 # t r a c k t h e t a s k a s s i g n m e n t p r o c e s s .

Listing 24: Generating Full Command Lines
1 #! / b i n / bash
2 echo ”” > c m d l i n e s . l s t
3 f o r e l e v a t i o n i n ‘ seq 5 . 0 5 8 5 . 0 ‘ ; do
4 f o r pounds i n ‘ seq 1 . 5 0 . 1 5 . 0 ‘ ; do
5 echo ” . / r a n g e . sh −e $ e l e v a t i o n −p $pounds cannon . d a t ” >> c m d l i n e s . l s t
6 done
7 done

Listing 25: First 5 Full Command Lines
1 . / r a n g e . sh −e 5 . 0 −p 1 . 5 cannon . d a t
2 . / r a n g e . sh −e 5 . 0 −p 1 . 6 cannon . d a t
3 . / r a n g e . sh −e 5 . 0 −p 1 . 7 cannon . d a t
4 . / r a n g e . sh −e 5 . 0 −p 1 . 8 cannon . d a t
5 . / r a n g e . sh −e 5 . 0 −p 1 . 9 cannon . d a t

23

Listing 26: Full Command Line Task Script
1 #! / b i n / bash
2 #
3 # Th i s s c r i p t t r e a t s a l l a r g s as a c o m p l e t e command l i n e .
4
5 CMD=”$∗”
6
7 # ’ i f t r u e ’ e x e c u t e t h e command . ’ i f f a l s e ’ j u s t echo i t back .
8
9 i f f a l s e ; t h e n

10 e v a l ” ${CMD}”
11 e l s e
12 echo ”CMD=${CMD}”
13 T= ‘ exp r 2 + $RANDOM % 10 ‘
14 echo ” S l e e p i n g f o r $T s e c o n d s . ”
15 s l e e p $T
16 f i

Other approaches are possible, at the expense of more advanced shell scripting.

6.7 Workstation Usage

As alluded to at the very beginning, one can use WQ on a workstation or desktop. All of the PBS discussion can
be ignored, and the effort to start processing boils down to 2 steps: starting the dispatcher and starting workers.
For instance, the following two lines start a test of the wq timing scripts on 2 workers running in a Debian
Linux virtual machine:

python wq.py -d ./wq_timing.sh -a 2 -i 82_file_list -j noverbose &
python wq.py -w 2 -m Debian-VM

Since there are no PBS variables to play with, and the shell treats the job identifier as a character string, the -j
option can be any word.

7 Installation

7.1 Single User

For use by a single individual, simply place wq.py and wq-pbs.sh somewhere in PATH, and make sure they are
set executable. The one other requirement is having a Python that supports the zmq module also be in PATH. Try
executing wq.py to check, as it will fail if zmq is not present. To run jobs, make copies of wq.pbs and wq.sh,
and modify them as needed.

7.2 System Wide

For a system wide installation, the same general rules apply. If module is used, then a module file might look
something like this:

Listing 27: Module App File
1 #%Module
2
3 p roc ModulesHelp { } {
4 p u t s s t d e r r {
5 WQ (WorkQueuing) i s a t a s k d i s t r i b u t i o n sys tem d e s i g n e d t o work wi th
6 PBS (o r SLURM) . I t a l l o w s m u l t i p l e s e r i a l , m u l t i−t h r e a d e d , and / o r
7 m u l t i−p r o c e s s MPI apps t o run s i m u l t a n e o u s l y on a v a i l a b l e compute nodes .
8 An i n p u t f i l e d e f i n e s t h e d a t a f i l e s , o r command l i n e arguments , t h a t a
9 a p r o c e s s i n g a p p l i c a t i o n r e q u i r e s . The u s e r s p e c i f i e s t h i s f i l e name ,

10 t h e name of t h e command t o e x e c u t e , and 4 o t h e r o p t i o n s . When s u b m i t t e d

24

11 t o PBS , a d i s p a t c h e r s t a r t s worke r s on t h e nodes a s s i g n e d t o t h e job , t h e n
12 hands o u t one t a s k a t a t ime as t h e y a r e r e q u e s t e d by t h e worke r s . I t t r a c k s
13 j o b w a l l c l o c k t ime , and s t o p s hand ing o u t work i f i t e s t i m a t e s t h e r e i s
14 i n s u f f i c i e n t t ime f o r a t a s k t o c o m p l e t e . The on ly c o n s t r a i n t i s t h a t a
15 t a s k may on ly use t h e c o r e s on one node .
16
17 To use , you ’ l l need t h e PBS t e m p l a t e ($WQ PBS TEMPLATE) . Make a copy and
18 e d i t t o f i t your a p p l i c a t i o n needs . A sample t a s k s c r i p t ($WQ EXAMPLE TASK)
19 and u s e r d o c u m e n t a t i o n ($WQ DOC) a r e a l s o a v a i l a b l e .
20 }
21 }
22
23 module−w h a t i s {
24 D e s c r i p t i o n : WQ i s a s u p p o r t t o o l t h a t c r e a t e s s u p p o r t s a d i s p a t c h e r / worker
25 model o f d i s t r i b u t e d comput ing . S e r i a l , m u l t i−t h r e a d OpenMP , and s m a l l
26 m u l t i−p r o c e s s MPI a r e s u p p o r t e d . Tasks a r e d e f i n e d by i n p u t f i l e names ,
27 o r o t h e r command l i n e s t r i n g s , c o n t a i n e d i n an i n p u t f i l e − one l i n e p e r
28 t a s k .
29
30 To use , you ’ l l need t h e PBS t e m p l a t e ($WQ PBS TEMPLATE) . Make a copy and
31 e d i t t o f i t your a p p l i c a t i o n needs . A sample t a s k s c r i p t ($WQ EXAMPLE TASK)
32 and u s e r document ion ($WQ DOC) a r e a l s o a v a i l a b l e .
33 }
34
35 s e t r o o t / u s r / l o c a l / p a c k a g e s / wq/257
36
37 c o n f l i c t wq
38
39 i f { [module−i n f o mode l o a d] && ! [i s−l o a d e d py thon] } {
40 module l o a d py thon
41 }
42
43 prepend−p a t h PATH $ r o o t
44
45 s e t e n v WQ HOME $ r o o t
46 s e t e n v WQ PBS TEMPLATE $ r o o t / wq . pbs
47 s e t e n v WQ EXAMPLE TASK $ r o o t / wq . sh
48 s e t e n v WQ DOC $ r o o t / wq . pdf

This example defines a WQ root directory, and makes the PBS template, an example task script, and the user
documentation available to copy. It also holds whatis and help text strings. Finally, it loads Python, which is
assumed to have the zmq module installed.

The same sort of thing can be done with softenv, although it has less room for documentation:

Listing 28: Softenv Key File
1 (+wq−264) {
2 { desc :
3 @types : A p p l i c a t i o n / Too l s
4 @name : WQ
5 @vers ion : 264
6 @ i n t e r n a l :
7 @build :
8 @ ex t e r na l :
9 @about : WQ (WorkQueuing) p r o v i d e s a t a s k d i s p a t c h e r−worker s e r v i c e . To use , you ’ l l

need t h e PBS t e m p l a t e ($WQ PBS TEMPLATE) . J u s t make a copy and e d i t t o f i t your
a p p l i c a t i o n needs . A sample t a s k s c r i p t ($WQ EXAMPLE TASK) and u s e r d o c u m e n t a t i o n

($WQ DOC) a r e a l s o a v a i l a b l e .
10 }
11 [Linux] {
12 PATH / u s r / l o c a l / p a c k a g e s /WQ/264
13 WQ HOME / u s r / l o c a l / p a c k a g e s /WQ/264
14 WQ PBS TEMPLATE / u s r / l o c a l / p a c k a g e s /WQ/ 2 6 4 / wq . pbs
15 WQ EXAMPLE TASK / u s r / l o c a l / p a c k a g e s /WQ/ 2 6 4 / wq . sh
16 WQ DOC / u s r / l o c a l / p a c k a g e s /WQ/ 2 6 4 / wq . pdf
17 }
18 }

The WQ distribution contains these files to use as starting points.

25

References

References

[1] Tom Bishop, Shantenu Jha, and Hideki Fujioka. ManyJobs. http://dna.engr.latech.edu/ManyJobs/, Nov
2013.

[2] GNU Parallel. http://www.gnu.org/software/parallel/.

[3] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal Kleijer, Andre Merzky, John Shalf,
and Christopher Smith. A Simple API for Grid Applications (SAGA). Technical Report GFD-R-P.90, Open
Grid Forum, 15 Jan 2008.

26

