

HPC in Biology

Wei Feinstein, Ph.D.

HPC User Services LSU HPC/LONI

Louisiana State University

Agenda

- High Performance Computing
- Bioinformatics/computational biology
- Bioinformatics' tools
 - Sequence assembly
 - Sequence alignment
- Simulation tools
 - Molecular Dynamics
 - Molecular docking

Few things they agreed on

President Bush 2004 President Obama 2010

Few things they agreed on

President Bush 2004 President Obama 2010

... Health Care can only improve with the innovative application of Information Technology.

Scope of Computational Biology

- Mathematical Biology
- Biostatistics
- Biomathematics
- Quantitative Biology
- Biophysics
- Systems biology

Computational Biology at LSU

Support core set of software tools

Provide training – in person and online

Collaborate to better leverage advanced computing for biology

Available LSU HPC resources

SuperMIC	
Hostname	smic.hpc.lsu.edu
Peak Performance/TFlops	1000
Compute nodes	360
Processor/node	2 Deca-core
Processor Speed	2.8GHz
Processor Type	Intel Xeon 64bit
Nodes with Accelerators	360
Accelerator Type	Xeon Phi 7120P
OS	RHEL v6
Vendor	
Memory per node	64 GB
Detailed Cluster Description	
<u>User Guide</u>	
Available Software	

SuperMike II	
Hostname	mike.hpc.lsu.edu
Peak Performance/TFlops	146
Compute nodes	440
Processor/node	2 Octa-core
Processor Speed	2.6GHz
Processor Type	Intel Xeon 64bit
Nodes with Accelerators	50
Accelerator Type	2 nVidia M2090
OS	RHEL v6
Vendor	Dell
Memory per node	32/64/256 GB
Detailed Cluster Description	
<u>User Guide</u>	
Available Software	

Philip	
Hostname	philip.hpc.lsu.edu
Peak Performance/TFlops	3.469
Compute nodes	37
Processor/node	2 Quad-Core
Processor Speed	2.93GHz
Processor Type	Intel Xeon 64bit
Nodes with Accelerators	2
Accelerator Type	3 nVidia M2070
OS	RHEL v5
Vendor	Dell
Memory per node	24/48/96 GB
Detailed Cluster Description	
<u>User Guide</u>	
<u>Available Software</u>	

Available LONI HPC resources

QB2	
Hostname	qb2.loni.org
Peak Performance/TFlops	1,500
Compute nodes	504
Processor/node	2 10-Core
Processor Speed	2.8GHz
Processor Type	Intel Ivy Bridge–EP Xeon 64bit
Nodes with Accelerators	480
AcceleratorType	NVIDIA Tesla K20x
OS	RHEL v6
Vendor	Dell
Memory per node	64 GB
Location	Information Systems Building, Baton Rouge
Detailed Cluster Description	
<u>User Guide</u>	
<u>Available Software</u>	

Eric		
Hostname	eric.loni.org	
Peak Performance/TFlops	9.544	
Compute nodes	128	
Processor/node	2 4–Core	
Processor Speed	2.33GHz	
Processor Type	Intel Xeon 64bit	
Nodes with Accelerators	0	
AcceleratorType		
OS	RHEL v4	
Vendor	Dell	
Memory per node	8 GB	
Location	Louisiana State University, Baton Rouge	
Detailed Cluster Description		
<u>User Guide</u>		
Available Software		

Installed Bio Software Stack

Genomics Bioinformatics

BLAST+	Velvet
mpiBLAST	Abyss
HMMER	Trinity
MAFFT	BWA
MUSCLE	Ssake
R	SOAP de novo
BioPerl	AMOS
FASTX-Toolkit	Maq
Picard	Bowtie
SAMtools	Cufflinks
SHRiMP	TopHat

Molecular Dynamics Structural Biology

NAMD Amber GROMACS Desmond VASP LAMMPS APBS NWChem

GAMESS

AutoDock_Vina

Where to Start

- Apply HPC/LONI account
- Apply/Join allocation(s)
- Training of HPC User Environment 1 & 2

http://www.hpc.lsu.edu/training/archive/tutorials.php

How to Login

- Unix and Mac
 - ssh on a terminal to connect
- Windows box (ssh client):
 - Putty

<u>http://www.chiark.greenend.org.uk/~sgtatham/putty/</u> <u>download.html</u>

• MobaXterm

http://mobaxterm.mobatek.net/

Accessing cluster on Windows - Putty

Real Putty Configuration	? ×
Category:	
Session	Basic options for your PuTTY session
Logging	Specify the destination you want to connect to
- Keyboard	Host <u>N</u> ame (or IP address) <u>P</u> ort
Bell	mike.hpc.lsu.edu 22
⊡-Window Appearance	Connection type:
Behaviour Translation Selection	Load, save or delete a stored session Sav <u>e</u> d Sessions
Colours	mike
Data	Eric Load
- Telnet	Newton Save
Rlogin	Oliver Painter
Serial	Poseidon
	Close window on e <u>x</u> it. Always Never Only on clean exit
About Help	<u>Open</u> <u>Cancel</u>

HPC in Biology

Enable X11 forwarding

- On Linux or Mac, simply pass the -X option to the ssh command line
 - ssh -X <u>username@mike.hpc.lsu.edu</u>
- On windows using putty
 - Connection->SSH->X11->Enable X11 forwarding
 - Install X server (e.g. Xming)

HPC in Biology

Accessing cluster on Windows - MobaXterm

MobaXterm supports

- command line scp and rsync
- sftp file transfer through GUI
- Built-in X11 forwarding

Software Stack Magement

- SoftEnv
 - A software used to manage software package
 - SuperMike2 and Eric
 - softenv
 list of software packages
 - soft add +xxx -- add to user working env
- Modules
 - Most supercomputing sites including XSEDE
 - SuperMIC, Philip and QB2
 - module av
 - module load xxx

How to Submit Jobs

- Interactive job
 - Set up an interactive environment on compute nodes
 - Purpose: testing and debugging
- Batch job
 - Executed without user intervention using a job script
 - Advantage: the system takes care of everything
 - Disadvantage: can only execute one sequence of commands which cannot changed after submission
 - Purpose: production run

Do not run on head nodes!!!

Submitting Jobs on Linux Clusters

• Interactive job example:

qsub -I -V -I -A <Allocation> -q <queue name> \
walltime=<hh:mm:ss>,nodes=<num_nodes>:ppn=<num_cores>

Add -X to enable X11 forwarding

 Batch Job example: qsub job_script

http://www.hpc.lsu.edu/docs/pbs.php

Example of pbs.script

#!/bin/bash

#PBS – A allocation

#PBS –q workq

#PBS -l nodes=1:ppn=16

#PBS –N jobName

#PBS -j oe

#PBS -M myEmail@lsu.edu

module load blast-xxx / soft add +xxxx cd \$PBS_O_WORKDIR

blastn -query seq100.ffn -db db/scaffold -out result/ \
result.100 -outfmt 7 -max_target_seqs 100 -num_threads 16

Monitor Your Jobs

- showq –q: list of available queues
- qstat [-u usrname -n]: info about active, eligible, blocked job on a cluster
- qdel #jobid: delete a job
- checkjob #jobid

Agenda

- High Performance Computing
- Bioinformatics/computational biology
- Bioinformatics' tools
 - Sequence assembly
 - Sequence alignment
- Simulation tools
 - Molecular Dynamics
 - Molecular docking

Definitions

- <u>What is Bioinformatics?</u> Interdisciplinary science of using computational approaches to analyze, classify, collect, represent and store biological data to better understand DNA, RNA and protein molecules.
- <u>What is Computational Biology?</u> Development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to study biological, behavioral, and social systems.

The DNA Sequencing Revolution Impact on nearly every field of biological research

Human Genetics & Genomics

Plants & Agriculture

Microbes, Viruses & Infectious Diseases

Environmental Genomics

www.roche-applied-science.com

Sequencing

- What is DNA/[RNA] sequencing?
 - Determine/decode the precise order of nucleotides in DNA /RNA molecules
 - DNA: adenine(A), guanine(G), thymine(T) and cytosine(C)
 - RNA: adenine(A), guanine(G), uracil(U) and cytosine(C)
- Why?
 - Initial step towards understanding the target molecule
 - Blue print for protein translation
- How?
 - Electrophoresis: to separate pieces of DNA differing in length by only one base

DNA Sequencing

- Short reads of DNA [20-30,000] base pairs
- Manual: slow, tedious, error prone and short length
- NGS: next generation sequencing
- Human genome: ~3,238,830 bps
 - An entire human genome can be sequenced within one single day using NGS
 - Sanger sequencing technology would need over a decade to complete

Sequencers

Sanger

<u>1998</u> ABI 3700 6 MB/Day \$500/MB

Next Generation Sequencers

2005 Roche 454 750 MB/Day \$ 20/MB 2007 Illumina GAII 5000 Mb/Day \$0.50/MB

2010 Illumina Hiseq 75000 Mb/Day \$0.02/MB

Public domain images from NIH/NHGRI Digital Media Database (www.genome.gov)

Sequence Assembly

- Fragments of DNA sequenced from sequencers
- Construct the original sequence by aligning/merging NDA fragments in the proper order
- Error checking and close gaps

Terms:

- Sequence: genetic order in biological letters (DNA/ RNA, amino acids)
- Reads: short pieces of a sequence
- Contigs: assembled reads

Sequence Assembly

How assemblers work?

finding and analyzing overlaps, which are identical DNA sequences at either end of two different reads

Assembling Methods

- De Novo Assembly
 - Piecing together reads into a larger sequence without relying on an already-assembled sequence of a related organism.
 Nucleotid Reads

Assembled Segments

Assembling Methods

- Reference Assembly/Mapping
 - Using an already-assembled sequence as a guide to match target reads.

Reference Sequence

Reads Mapped to Reference Sequence

Agenda

- High Performance Computing
- Bioinformatics/computational biology
- Bioinformatics' tools
 - Sequence assembly
 - Sequence alignment
- Simulation tools
 - Molecular Dynamics
 - Molecular docking

HPC Applications

- Sequence assemblers
 - Abyss/A5/mothur
- Sequence alignment
 - Blast/bowtie
- Molecular Dynamics (MD)
 - NAMD (VMD)
 - Gromacs
- Molecular docking
 - Autodock Vina

How does ABySS work?

- Assemble read sequences without paired-end information for an initial assembly
- Map the reads back to the initial assembly
- Use the paired-end information to merge contigs from the first stage into larger sequences
- Output the final assembly

What are included in ABySS

- abyss-pe is a driver script
- ABYSS the single-end assembler
- AdjList finds overlaps of length k-1 between contigs
- KAligner** aligns reads to contigs
- ParseAligns** finds pairs of reads in alignments
- DistanceEst** estimates distances between contigs
- Overlap find overlaps between blunt contigs
- SimpleGraph finds paths between pairs of contigs
- MergePaths merges consistent paths
- Consensus for a colour-space assembly, convert the colour-space contigs to nucleotide contigs
- abyss-fac: calculate assembly contiguity statistics
- abyss-filtergraph: remove shim contigs from the overlap graph
- abyss-fixmate: fill the paired-end fields of SAM alignments
- abyss-map: map reads to a reference sequence
- abyss-scaffold: scaffold contigs using distance estimates
- abyss-todot: convert graph formats and merge graphs

abyss-pe Parameters

- a: maximum number of branches of a bubble [2]
- b: maximum length of a bubble (bp) [10000]
- c: minimum mean k-mer coverage of a unitig [sqrt(median)]
- d: allowable error of a distance estimate (bp) [6]
- e: minimum erosion k-mer coverage [sqrt(median)]
- E: minimum erosion k-mer coverage per strand [1]
- j: number of threads [2]
- k: size of k-mer (bp)
- I: minimum alignment length of a read (bp) [k]
- m: minimum overlap of two unitigs (bp) [30]
- n: minimum number of pairs required for building contigs [10]
- N: minimum number of pairs required for building scaffolds [n]
- p: minimum sequence identity of a bubble [0.9]
- q: minimum base quality [3]
- s: minimum unitig size required for building contigs (bp) [200]
- S: minimum contig size required for building scaffolds (bp) [s]
- t: minimum tip size (bp) [2k]
- v: use v=-v for verbose logging, v=-vv for extra verbose [disabled]

- Assemble single-end reads ABYSS -k20 read.fa -o contigs.fa
- Assemble paired-end reads
 abyss-pe name=abyss -C result k=32 n=10\
 in='../reads_1.fa ../reads_2.fa'
 K: size of k-mer (bp)
 n: minimum # pairs required to build contigs [10]
- Parallel abyss (MPI)
 abyss-pe np=8 name=test k=32 n=10 \
 in='reads_1.fa reads_2.fa'

Output files of ABySS

- \${name}-contigs.fa
 The final contigs in FASTA format
- \${name}-bubbles.fa
 The equal-length variant sequences (FASTA)
- \${name}-indel.fa
 The different-length variant sequences (FASTA)
- \${name}-contigs.dot
 The contig overlap graph in Graphviz format

Optimize k-mer

• Run multiple assemblies using k [20-40]

```
export k
for k in {20..40}; do
mkdir k$k
abyss-pe -C k$k name=ecoli in=../reads.fa
done
```

Inspect the assembly contiguity statistics
 abyss-fac —t length k*/contigs.fa

k = 64 as default

Memory usage of ABySS

Genome size	RAM
200 kbp	1⁄4 GB
5 Mbp	1 GB
200 Mbp	32 GB
3 Gbp	128 GB

A5-pipeline

- Andrew And Aaron's Awesome Assembly pipeline
- Assembling DNA sequence data generated on Illumina sequencing platform
- Can't do:
 - Illumina reads shorter than 80nt
 - Base quality is low in all/most reads before 60nt
 - For homozygous haploid genomes.

A5-pipeline Assembly Stages

- 1: Remove ambiguous and low quality portions of reads
- 2: Using assembler IDBA, a de Bruijn graph-based algorithm, to assemble contigs
- 3: Contigs are scaffolded and extended using the software SSPACE, a stand-alone program for scaffolding pre-assembled contigs
- 4: Crude scaffolds are subjected to quality control check for misassemblies, also use BWA (Burrows-Wheeler Aligner) to map low-divergent sequences against a large reference genome
- 5: Broken-up scaffolds are rescaffolded using SSPACE.

How to Run A5-pipeline

[@mike021 ~]\$ soft add +bio-pipeline

[@mike021 ~]\$ a5_pipeline.pl phiX_p1.fastq phiX_p2.fastq a5

[samopen] SAM header is present: 1 sequences. [a5] java -Xmx42490m -jar A5qc.jar a5.s4/a5.qc.libraw1.sam a5.crude.scaffolds.fasta a5.s4/a5.qc.libraw1.broken.fasta 1 > a5.s4/ a5.qc.libraw1.qc.out [a5_s5] No misassemblies found. [a5] Final assembly in a5.final.scaffolds.fasta

Output: a5.final.scaffolds.fasta

Mothur

- A comprehensive software package that allows users to use a single piece of software to analyze microbial ecology community sequence data
- Initiated by Dr. Patrick Schloss and his software development team in the dept. of Microbiology & Immunology at the University of Michigan
- Offers the ability to go from raw sequences to the generation of visualization tools to describe α and β diversity.

How to Run Mothur


```
[@mike021 ~]$ soft add +bio-pipeline
```

```
[@mike021 ~]$ cd biology/mothur/MiSeq_SOP
```

```
[@mike021 ~]$ mothur
mothur v.1.33.3
Last updated: 4/4/2014
```

```
...
Distributed under the GNU General Public License
Type 'help()' for information on the commands that are
available
```

```
Type 'quit()' to exit program
```

```
mothur > ...
```

http://www.mothur.org/wiki/MiSeq_SOP

RAST

Submit assembly to RAST (Rapid Annotation using Subsystem Technology) to be annotated at: http://rast.nmpdr.org

Agenda

- High Performance Computing
- Bioinformatics/computational biology
- Bioinformatics' tools
 - Sequence assembly
 - Sequence alignment
- Simulation tools
 - Molecular Dynamics
 - Molecular docking

What is Sequence Alignment?

Align the sequences of DNA, RNA or protein to identify regions of similarity that may be a consequence of functional, structural or evolutionary relationships between the sequences

Sequence Alignment

- Global sequence alignment Needleman–Wunsch
- Local sequence alignment Smith–Waterman
- Glocal sequence alignment
- Short sequence aligners e.g., bowtie
- Long sequence aligners e.g., Blast

BLAST (Basic Local Alignment Search Tool)

- What is BLAST?
- Basic Local Alignment Search Tool
- Algorithm for comparing biological sequence information with a database of known sequences
- http://blast.ncbi.nlm.nih.gov/
- Basic BLAST terminology:
- <u>Query</u>: sequence to be compared to database
- <u>Sequence database</u>: a collection of known sequences (nucleotides or amino acids)
- <u>Alignment (hit)</u>: when the query matches a database sequence at an acceptable similarity threshold
- <u>E-value</u>: score of an alignment, the lower the better

BLAST

Basic BLAST

Choose a BLAST program to run.

nucleotide blast	Search a nucleotide database using a nucleotide query Algorithms: blastn, megablast, discontiguous megablast
protein blast	Search protein database using a protein query Algorithms: blastp, psi-blast, phi-blast, delta-blast
blastx	Search protein database using a translated nucleotide query
tblastn	Search translated nucleotide database using a protein query
tblastx	Search translated nucleotide database using a translated nucleotide query

http://blast.ncbi.nlm.nih.gov/Blast.cgi

How to Run BLAST

- Reference blast DB
 - Downlaod: http://ftp.ncbi.nlm.nih.gov/blast/db/
 - Self create db:

makeblastdb -in scaffold.fna –dbtype nucl/proc –parse_seqids \ -out db/scaffold

Run blast

blastn -query seq100.ffn -db db/scaffold -out result/result.100 \
-outfmt 7 -max_target_seqs 100 -num_threads 16

• File formats:

.faa: protein sequence in fasta format

.ffn: protein coding portion of a genome segment

.fna: genome fasta sequence

Submit a BLAST job

pbs.script

#!/bin/bash

#PBS – A allocation

#PBS –q workq

```
#PBS -l nodes=1:ppn=16
```

#PBS -N jobName

#PBS -j oe

```
#PBS -M myEmail@lsu.edu
```

```
module load blast-xxx / soft add +xxxx
cd $PBS_O_WORKDIR
blastn -query seq100.ffn -db db/scaffold -out result/
result.100 -outfmt 7 -max_target_seqs 100 -num_threads 16
```


Bowtie / Bowtie2

- Bowtie: an ultrafast memory-efficient short read aligner.
 Use BWT burrows-Wheeler Transform index to keep its memory footprint small
- Bowtie2: alignment seq longer than 50-1000bps. Use
 FM index(based on BWT) to keep memory small

How to run Bowtie

- Using pre-built *E. coli* index, which sit in indexes/ folder bowtie –t indexes/e_coli reads/e_coli_1000.fq e_coli_1000.map
- Build new index bowtie-build genomes/NC_008253.fna e_coli_new
- Convert xxx.fastq format to SAM format bowtie -S e_coli reads/e_coli_10000snp.fq ec_snp.sam

samtools

A suite of tools for sorting, manipulating, and analyzing alignments, such as output by bowtie

- SAM format: human-readable sequence format
- Binary BAM format

samtools

Usage: samtools <command> [options] Command: view SAM<->BAM conversion sort alignment file sort pileup generate pileup output mpileup multi-way pileup faidx index/extract FASTA text alignment viewer tview index alignment index BAM index stats (r595 or later) idxstats fixmate fix mate information glfview print GLFv3 file flagstat simple stats recalculate MD/NM tags and '=' bases calmd merge sorted alignments merge remove PCR duplicates rmdup reheader replace BAM header

How to Use samtools

```
bowtie -S e_coli reads/e_coli_10000snp.fq ec_snp.sam
```

- samtools view -bS -o ec_snp.bam ec_snp.sam
- samtools sort ec_snp.bam ec_snp.sorted

```
samtools pileup -cv -f genomes/NC_008253.fna\
ec_snp.sorted.bam
```

where pileup command prints records for 10 distinct SNPs, 1st at position 541 in the reference

Agenda

- High Performance Computing
- Bioinformatics/computational biology
- Bioinformatics' tools
 - Sequence assembly
 - Sequence alignment
- Simulation tools
 - Molecular Dynamics
 - Molecular docking

MD Applications

NAMD GROMACS

Molecular Dynamics (MD)

- One of the principal tools in the theoretical study of biological molecules
- Calculates time dependent behavior of a molecular system
- Provide detailed information on conformational changes of proteins and nucleic acids
- Routinely used to investigate the structure, dynamics and thermodynamics of biological molecules and their complexes.
- Force fields are approximate and pair-additive
- Long range interactions are cut off
- Boundary conditions are unnatural

NAMD

- Nanoscale Molecular Dynamics (NAMD)
 - Not (just) Another Molecular Dynamics Program
- A open source parallel molecular dynamics code designed for high-performance simulation of large bimolecular systems.
- Joint collaboration of the Theoretical and Computational Biophysics Group (Klaus Schulten) and the Parallel Programming Laboratory (PPL) at the University of Illinois at Urbana-Champaign, 1999
- Charm++ parallel objects, a machine independent parallel programming system, scales to hundred of thousand cores
- Force fields compatible with AMBER, CHARMM and X-PLOR
- Provide limited interface to Tcl (tool command language)

How does it work

- Protein: a chain of amino acids connected by chemical bonds
- Atomic connectivity (topology)
 - bonds, angles, dihedrals among atoms
- Force field parameter file: equations of force field potential energy among atoms
 - e.g. spring stiffness and equilibrium bond length

NAMD Input

- Config file: simulation parameters including:
 - Protein data bank file (.pdb): atomic coordinates
 - Protein structure file (.psf), which is created from
 - .pdb
 - Known topology file (atom types/charges/ bonds..)
 - Force field parameter file: atomic potential equations to evaluate forces and energies
 - CHARMM, X-PLOR, AMBER, and GROMACS
 - Downloadable: <u>http://mackerell.umaryland.edu/charmm_ff.shtml</u>

VMD (Visual Molecular Dynamics)

- Assist NAMD simulation setup
- Display MD results and analyze MD trajectory
- Installed on qb/eric

Prepare files for simulations

- Solvate protein –cellular environment
- Generate structure (.psf) file from .pdb and topology file
- Modify config file (.conf/.namd) to run NAMD
- Example in folder

biology/namd

• More tutorial

http://www.ks.uiuc.edu/Training/Tutorials/

Available NAMD Installations

Machine	Version	Softenv Key					
eric	2.6	+NAMD-2.6-intel-11.1-mvapich-1.1					
eric	2.7b2	+NAMD-2.7b2-intel-11.1-mvapich-1.1					
eric	2.7b4	+NAMD-2.7b4-intel-11.1-mvapich-1.1					
eric	2.9	+NAMD-2.9-intel-11.1-openmpi-1.3.4					
pandora	2.7	+namd-2.7					
pandora	2.8	+namd-2.8					
supermike2	2.9	+NAMD-2.9-Intel-13.0.0-openmpi-1.6.2					
supermike2	2.9	+NAMD-2.9-Intel-13.0.0-openmpi-1.6.2-CUDA-4.2.9					

Available NAMD Installations

Machine	Version	Module
qb2	2.10b1	namd/2.10b1/CUDA-65-INTEL-140-MVAPICH2-
qb2	2.9	namd/2.9/INTEL-14.0.2-ibverbs
smic	2.10	namd/2.10/INTEL-14.0.2-ibverbs
smic	2.10	namd/2.10/INTEL-14.0.2-ibverbs-mic

How to run NAMD (qb)

- Serial version
 - namd2 <config-file>
- Ibverbs parallel version
 - namd2 +p <procs> <config-file>
 - charmrun ++local ++p <procs> `which namd2` <config-file>
 - charmrun ++nodelist <nodefile> ++p<procs> \
 ++remote-shell ssh `which namd2` <config-file>
 Note: nodefile: host qb122

host qb123

- MPI parallel version
 - mpirun –np/-ppn <procs> -hostfile \$PBS_NODEFILE \ `which namd2` <config-file>

NAMD Output

- COOR: final coordinate file
- VEL: final velocity file
- DCD: trajectory file
- DAT: run information (energies...)
- XSC: sytem configuration output

Simulation Time

- Serial version
 - 1m34s
- Ibverbs parallel version
 - 2 procs: 51s
 - 20 procs: 9.8s
- MPI parallel version (GPU)
 - 10 procs: 3m32s
 - 20 procs: 21s

• MPI parallel version (GPU) (10 processes)

[wfein Mon Ap	[wfeinste@qb497 1-2-sphere]\$ nvidia-smi Mon Apr 18 11:54:34 2016											
NVIDIA-SMI 352.55 Driver Version: 352.55							ļ					
GPU Fan	Name Temp	Perf	Persi Pwr:U	ste sao	ence-M ge/Cap	II Bu	s-Id M	emor	Disp ry-Usa	•.A ige	Volatile GPU-Util	Uncorr. ECC Compute M.
0 N/A	Tesla 27C	K20Xm P0	56W	/	0n 235W	00	00:03:0 382MiB	0.0	0 5759M)ff iB	2%	0 Default
1 N/A	Tesla 30C	K20Xm P0	57W	/	0n 235W	00	00:83:0 381MiB	0.0	0 5759M)ff liB	3%	0 Default
+										·		
Proc GPU	esses:	PID	Туре	Pro	ocess	name						GPU Memory Usage
0	16	151	С		.10b1/	CUDA	-65-INT	EL-1	L40-MV	APIC	H2-2.0/nam	nd2 70MiB
j 0	16	152	С		10b1/	CUDA	-65-INT	EL-1	L40-MV	APIC/	H2-2.0/nam	nd2 70MiB
0	16	153	C	• • •	10b1/	CUDA	-65-INT	EL-1	L40–MV	APIC	H2-2.0/nam	nd2 70MiB
0	16	154	C	•••	10b1/	CUDA	-65-INT	EL-1	L40-MV	APIC	H2-2.0/nam	nd2 70MiB
0	16	155	C	•••	1061/		-65-INT	EL-1	L40-MV		H2-2.0/nam	nd 2 80MiB
	16			•••	1001/		-65-TNT	EL-J El _1	L40-MV		nz-2.0/nam	
	16	158	C	•••	1001/	CUDA	-65-INT	EL-1	140-PIV		H2-2.0/Hdll H2-2.0/par	nd2 70MiB
	16	159	C		.10b1/	CUDA	-65-TNT	FI —1	40-MV	APTC	$H_2 - 2.0/ham$	nd2 79MiB
1	16	160	C		10b1/	CUDA	-65-INT	EL-1	L40–MV	APIC	H2-2.0/nam	nd2 70MiB

GROMACS

- Groningen Machine for Chemical Simulations
- Developed by the Berendsen Group, Department of Biophysical Chemistry, University of Groningen, Netherlands, 2001

Gromacs

Input:

- .gro: coordinate, velocity of the system
- .top: topology, i.e. bonds/pairs/angles of atoms
- .mdp: simulation parameters

Preprocessed:

• .tpr: simulation input file generated by grompp

Output:

- .gro: final configuration and velocities
- .trr/.xtc: trajectory
- .edr: energies
- .log: run information

How to Use Gromacs

• Solvate the molecule

gmx solvate -cp protein_box.gro -cs spc216.gro \

- -o protein_sol.gro -p topol.top
- Generate the topology and index files

pdb2gmx -v -f protein_sol.gro -o \
protein_sol_final.gro -p topol_final.top -n \
protein_sol.ndx

- Generate MD run input file (.tpr) grompp -v -f 1UBQ.mdp -c protein_sol_final.gro \ -p topol_final.top -o 1UBQ_run
- Run MD simulations
 mdrun -v -s 1UBQ_run.tpr -x -deffnm 1UBQ_output
- Post-simulation analysis

Gromacs result (VMD)

Agenda

- High Performance Computing
- Bioinformatics/computational biology
- Bioinformatics' tools
 - Sequence assembly
 - Sequence alignment
- Simulation tools
 - Molecular Dynamics
 - Molecular docking

Autodock Vina

- Open-source program for molecular docking
- Significant improve the average accuracy of binding mode prediction than AudoDock4
- Easy to use
- Multiple CPU/cores (OpenMP)

What is molecular docking?

- Docked molecules bind to receptor (protein) in a specific confirmation
- Identify the confirmation with which a ligand binds target protein with lowest energy at binding site
- Virtual screening in drug discovery

Prepare Files

- Protein (receptor) structure (.pdb/.pdbqt)
- Known molecule/ligand/drug that bind to the target protein (.sdf/.pdbqt)
- Identify docking center
- Define docking box size

Feinstein WP, Brylinski M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. Journal of Cheminformatics. 2015;7:18. doi: 10.1186/s13321-015-0067-5

• Set up config file (config.txt)

How to Run Vina

- Installed on SuperMike
- cd biology/vina
- soft add +autodock_vina-1.1.2
- Autodock vina usage:

vina --config config.txt

Autodock Vina Output

- Vina gives binding affinity estimates
- Result >10: binding is very tight
- Result [6-7]: random binding

More Information

• Software stack

http://www.hpc.lsu.edu/docs/guides/index.php

• HPC training materials

http://www.hpc.lsu.edu/training/archive/ tutorials.php

• Computational biology user guide

http://www.hpc.lsu.edu/docs/compbio/index.php

• User guide

http://www.hpc.lsu.edu/docs/guides.php