
Introduction to R

Yuwu Chen
HPC @ LSU

10/4/2017 HPC training series Fall 2017

Some materials are borrowed from the EXST 7142/7152
data mining courses by Dr. Bin Li at Statistics Dept.

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 1

What is R
• R is an integrated suite of software facilities for

– importing, storing, exporting and manipulating data;
– scientific computation;
– conducting statistical analyses;
– displaying the results by tables, graphs, etc.

• Highly customizable via thousands of freely available
packages.

• R is also a platform for the development and
implementation of new algorithms.

• Many graphical user interface to R both free and
commercial
(e.g. Rstudio and Revolution R (now Microsoft R)).

10/4/2017 HPC training series Fall 2017 2

What is R
• R mailing lists: http://www.R-project.org/mail.html

– R-announce: announcements of major R developments.
– R-packages: announcements of new R packages.
– R-help: main discussion list.
– R-devel: discussion on code development in R.
– Special interest group (e.g. R-SIG-Finance).

10/4/2017 HPC training series Fall 2017 3

History of R
• R is a dialect of the S language

– S was created in 1976 at the Bell Labs as an internal statistical analysis
environment

– Goal of S was “to turn ideas into software, quickly and faithfully".
– Most well known implementation is S-plus (most recent stable release was in

2010). S-Plus integrates S with a nice GUI interface and full customer support.
– R was created by Ross Ihaka and Robert Gentleman at the University of

Auckland, New Zealand.

• The R core group was formed in 1997, who controls the source code of R
(written in C)

• The stable beta version R 1.0.0 was released in 2000
• Latest version is 3.4.2 released on September 28, 2017

10/4/2017 HPC training series Fall 2017 4

Features of R
• R is a language designed for statistical analysis
• Available on most platform/OS
• Rich data analysis functionalities and sophisticated

graphical capabilities
• Active development and very active community

– CRAN: The Comprehensive R Archive Network
• Source code and binaries, user contributed packages and

documentation
– More than 11,000 packages available on CRAN (as of September

2017)
• 6,000 two years ago

• Free to use!

10/4/2017 HPC training series Fall 2017 5

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 6

Installing and loading R
• On your PC

– R console can be downloaded from: http://cran.r-project.org/
– Rstudio is the de facto environment for R on a desktop system

• On a cluster
– R is installed on all LONI and LSU HPC clusters

• QB2: r/3.1.0/INTEL-14.0.2
• SuperMIC: r/3.1.0/INTEL-14.0.2
• Philip: r/3.1.3/INTEL-15.0.3
• SuperMike2: +R-3.3.3-gcc-4.7.2

10/4/2017 HPC training series Fall 2017 7

R console

• Linux/Mac/Windows version available
• Limited graphic user interface (GUI)
• Command line interface (CLI) is similar to HPC

environment

10/4/2017 HPC training series Fall 2017 8

R console

10/4/2017 HPC training series Fall 2017 9

RStudio

• Similar graphic user interface (GUI) to other Windows
software, dividing the screen into panes
– Source code
– Console
– Workspace
– Others (help message, plot etc.)

• Rstudio in a desktop environment is better suited for
development and/or a limited number of small jobs

10/4/2017 HPC training series Fall 2017 10

10/4/2017 HPC training series Fall 2017 11

On LONI and LSU HPC Clusters

• Two modes to run R on clusters
– Interactive mode

• Type R command to launch the console
• Run R commands in the console

– Batch mode
• Write the R script first, then submit a batch job to run it (use

the Rscript command)
• This mode is better for production runs

• Clusters are better for resource-demanding jobs

10/4/2017 HPC training series Fall 2017 12

10/4/2017 HPC training series Fall 2017 13

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 14

Basic syntax
• The default R prompt is the greater-than sign (>)
> 2*4
[1] 8
> options(prompt="R>")
R>

• If a line is not syntactically complete, a continuation prompt (+) appears.
> 2*
+ 4
[1] 8

• Assignment operators are the left arrow (<-) and =. They both assign the
value of the object on the right to the object on the left.

> x <- 2*4

• The contents of the object x can be viewed by typing value at the R
prompt

> x
[1] 8

10/4/2017 HPC training series Fall 2017 15

Basic syntax
• Last expression can be retrieved through an internal object .Last.value
> 2*4
[1] 8
> x <- .Last.value
> x
[1] 8

• Removing objects with the function rm()
> rm(x)
> x
Error: object 'value' not found

• Legal R Names
– names for R objects can be any combination of letters, numbers and

periods (.) but must not start with a number nor period
• Note: R is case sensitive. X and x are different in R.
> X
Error: object 'X' not found

10/4/2017 HPC training series Fall 2017 16

Basic syntax
• Avoid assignment to built in functions

– R has a number of built in functions e.g. c, T, F, t
– An easy way to avoid this problem is to check the contents of the object

you wish to use, this also stops you from overwriting the contents of a
previously saved object

> X # object with no value assigned
Error: object 'value' not found
> x # object with a value assigned
[1] 8
> T # Built in R value
[1] TRUE
> t # Built in R function
function (x)
UseMethod("t")

• Spaces
– R will ignore extra spaces between object names and operators
> x <- 2 * 4
[1] 8

– Spaces cannot be placed between the < and - in the assignment operator
> x < - -2 * 4
[1] FALSE

10/4/2017 HPC training series Fall 2017 17

R as a calculator
• Arithmetic operators and parentheses
> (1+2)/(3*2)
> [1] 0.5

• Power operator
> 2^3
[1] 8
> 4^0.5
[1] 2
> sqrt(4)
[1] 2

• Scientific notation
> 2.1e2
[1] 210

10/4/2017 HPC training series Fall 2017 18

R as a calculator
• Exponential function
> exp(1); exp(0) # ; is the newline separate commands
[1] 2.718282
[1] 1

• Inf means "non-finite numeric value"
> x <- 1/0
> x
[1] Inf
> y <- -1/0
> y
[1] -Inf

• NaN means "not a number"
> x+y
[1] NaN

• pi
> pi
[1] 3.141593
> help(pi) # Get help from R. You can also use ?pi

10/4/2017 HPC training series Fall 2017 19

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 20

Data Classes
• R has five atomic classes

– Two numeric classes (integer or double)
• Numbers in R are treated as numeric unless specified otherwise.

> x <- 605
> x
[1] 605

– Complex
> cn <- 2 + 3i
> cn
[1] 2 + 3i

– Character
> string <- “Hello World”
> string
[1] “Hello World”

– Logical
• TRUE or FALSE

> 2 < 4
[1] TRUE

10/4/2017 HPC training series Fall 2017 21

Data Classes
• The function class() can be used to determine the class of each

object
> class(x)
[1] “numeric”
> class(string)
[1] “character”
> class(cn)
[1] “complex”

• The code missing values in R is NA. The is.<type>()functions
can be used to check for the data classes

> is.numeric(x)
[1] TURE
> is.character(string)
[1] TURE
> value <- NA
> is.na(value)
[1] TRUE

10/4/2017 HPC training series Fall 2017 22

Data Objects

• R Data objects
– Vector: elements of same class, one dimension
– Matrix: elements of same class, two dimensions
– Array: elements of same class, 2+ dimensions
– Lists: elements can be any objects
– Data frames: “datasets” where columns are

variables and rows are observations

10/4/2017 HPC training series Fall 2017 23

Data Objects - Vectors
• Vectors can only contain elements of the same data class
• Vectors can be constructed by

– Using the c()function (concatenate)
> d <- c(1,2,3) ##numeric
> d <- c("1","2","3") ##character
> value.logical <- c(F,F,T) ##logical

– you can convert an object with as.TYPE()functions
> as.numeric(d)

– Coercion will occur when mixed objects are passed to the c()
function, as if the as.<Type>()function is explicitly called

> y <- c(1.7, "a") ## character
> y <- c(TRUE, 2) ## numeric
> y <- c("a", TRUE) ## character

10/4/2017 HPC training series Fall 2017 24

Data Objects - Vectors
• Vectors can also be constructed by

– Using the vector() function
> x <- vector("numeric", length = 10)
> x
[1] 0 0 0 0 0 0 0 0 0 0

– Using seq()or rep() function
> x <- 0:6
> x <- seq(from=2,to=10,by=2)
> x <- seq(from=2,to=10,length=5)
> x <- rep(5,6)

• Vectors can be created using a combination of these functions.
> value1 <- c(1,3,4,rep(3,4),seq(from=1,to=6,by=2))
> value2 <- rep(c(1,2),3)
> value3 <- rep(c(1,2),each=3)

10/4/2017 HPC training series Fall 2017 25

Data Objects - Vectors
• NA in R means missing value
> weight <- c(60, 72, NA, 90, 95, 72)
> weight
[1] 60 72 NA 90 95 72
> height <- c(1.75,1.80,1.65,1.90,1.74,1.91)

• Vector based operations are very fast!
> bmi <- weight/height^2
> bmi
[1] 19.59184 22.22222 NA 24.93075 31.37799 19.73630
> mean(weight)
[1] NA
> mean(weight, na.rm=TRUE)
[1] 77.8
> sd(weight, na.rm=T)
[1] 14.39444
> median(weight, na.rm=T)
[1] 72
> round(height, d=1)
[1] 1.8 1.8 1.6 1.9 1.7 1.9

10/4/2017 HPC training series Fall 2017 26

Vectors Indexing
• One can use [<index>] to access individual element of interest

– Indices start from 1
> x <- 1:10
> x[4] ## individual element of a vector
> x[1,4] ## how about multiple elements?
Error in x[1,4] : incorrect number of dimensions
> x[c(1,4)] ## this is the correct way
[1] 1 4
> x[c(1,8:9,3)] ## not necessarily in order
[1] 1 8 9 3
> x[-1] ## negative indices drop elements
[1] 2 3 4 5 6 7 8 9 10
> x[-1:-5]
[1] 6 7 8 9 10
> x[c(T,T,T,T,T,F,F,F,F,F)] ## Can use logical values as indices
[1] 1 2 3 4 5
> x[c(T,F)] ## Use a pattern
[1] 1 3 5 7 9

10/4/2017 HPC training series Fall 2017 27

Data Objects - Matrices
• Matrices are vectors with a dimension attribute
• R matrices can be constructed by

– Using the matrix() function
> m <- matrix(1:12,nrow=3,ncol=4)
> m

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

• R matrices are constructed column-wise by default
> m <- matrix(1:12,nrow=3,ncol=4,byrow=F) ## is the same as x <- matrix(1:12,nrow=3,ncol=4)
> m <- matrix(1:12,nrow=3,ncol=4,byrow=T) ## try this one

10/4/2017 HPC training series Fall 2017 28

Data Objects - Matrices
• R matrices can also be constructed by

– Passing an dim attribute to a vector
> m <- 1:10
> m
[1] 1 2 3 4 5 6 7 8 9 10
> dim(m) <- c(2, 5)
> m

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

– Using cbind() or rbind() functions
> x <- 1:3
> y <- 10:12
> cbind(x, y)
x y
[1,] 1 10
[2,] 2 11
[3,] 3 12
> rbind(x, y)
[,1] [,2] [,3]
x 1 2 3
y 10 11 12

10/4/2017 HPC training series Fall 2017 29

Data Objects – Arrays
• Elements of same class with a number of dimensions

– Vectors and matrices are arrays of 1 and 2 dimensions
– Function array() creates an array with given dimensions
> # An array with 8 elements and 3 dimensions
> m <- array(data = 1:8,dim = c(2,2,2))

10/4/2017 HPC training series Fall 2017 30

Data Objects - Lists
• Lists are an ordered collection of objects (which can be of different types

or classes and different lengths)
• Lists can be constructed by using the list() function
> x <- c(31, 32, 40)
> y <- factor(c("F", "M", "M", "F"))
> z <- c("London", "New York")
> my_list <- list(x,y,z)
> my_list
[[1]]
[1] 31 32 40

[[2]]
[1] F M M F
Levels: F M

[[3]]
[1] "London" "New York"

10/4/2017 HPC training series Fall 2017 31

Data Objects - Lists
• Elements of R objects can have names, names() function can display:
> names(my_list)
NULL

• Names can be assigned
> names(my_list) <- c("age","sex","city")
> names(my_list)
[1] "age" "sex" "city“

• Or can be assigned when creating a list.
> my_list2 <- list(age=x,sex=y,city=z)
> names(my_list2)
[1] "age" "sex" "city“

10/4/2017 HPC training series Fall 2017 32

Lists Indexing
• Using two equivalent ways to access the first component (e.g. age in my_list):

– the [[]] operator
> my_list[[1]]
[1] 31 32 40

– the “$” sign if the elements of list have names
> my_list$age
[1] 31 32 40

• Referring individual element
> my_list$age[1]
[1] 31

10/4/2017 HPC training series Fall 2017 33

Data Objects - Data Frames

• Data frames are used to store tabular data
– They are a special type of lists where every element

(i.e. column) has to be of the same length, but can be
of different class

– Data frames can have special attributes such as
row.names

– Data frames can be created by reading data files, using
functions such as read.table() or
read.csv()

• More on this later

10/4/2017 HPC training series Fall 2017 34

Data Objects - Data Frames
• Data frames can be created directly by calling data.frame()
> my_df <- data.frame(age=c(31,40,50), sex=c("M","F","M"))
> my_df

age sex
1 31 M
2 40 F
3 50 M

• Why do we need data frames if it is simply a list? - More efficient storage,
and indexing!

10/4/2017 HPC training series Fall 2017 35

Matrices and Dataframes Indexing
• One can use [<index>,<index>] to access individual element
> my_df[1,2]
[1] M

• Indexing by columns
> my_df[,1]
[1] 31 40 50
> my_df[,1:2]

age sex
1 31 M
2 40 F
3 50 M

• Indexing by rows
> my_df[1,]

age sex
1 31 M
> my_df[2:3,]

age sex
2 40 F
3 50 M

10/4/2017 HPC training series Fall 2017 36

Matrices and Dataframes Indexing
• the “$” sign if the elements of matrix/dataframe have names
> my_df$sex
[1] M F M
Levels: F M
> my_df$sex[2] ## Referring individual element

[1] F
Levels: F M

• the [[]] operator
> my_df[[1]]
[1] 31 40 50
> my_df[[1]][1]
[1] 31
> my_df[[3]][1]
Error in .subset2(x, i, exact = exact) : subscript out of bounds

10/4/2017 HPC training series Fall 2017 37

Matrices and Dataframes Indexing
• Indexing can be conditional on another variable!
> pain <- c(0, 3, 2, 2, 1)
> sex <- factor(c("M", "M", "F", "F", "M"))
> age <- c(45, 51, 45, 32, 90)
> which(sex=="M")
[1] 1 2 5
> pain[sex=="M"]
[1] 0 3 1
> pain[age>32]
[1] 0 3 2 1
> pain[(age>32)&(sex=="M")]
[1] 0 3 1
> pain[(age>=49)|(age<41)]
[1] 3 2 1
> my_df

age sex
1 31 M
2 40 F
3 50 M
> my_df$age[my_df$sex=="M"]
[1] 31 50

10/4/2017 HPC training series Fall 2017 38

Querying Object Attributes
• The length() function
• The class() function
• The dim() function
• The str() function
• The attributes() function reveals attributes of an object

– Class
– Names
– Dimensions
– Length
– User defined attributes

• They work on all objects (including functions)

10/4/2017 HPC training series Fall 2017 39

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 40

Flow Control Structures
• Control structures allow one to control the flow of

execution.
– Similar to other script languages

10/4/2017 HPC training series Fall 2017 41

if …
else

testing a condition

for executing a loop (with fixed number of iterations)

while executing a loop when a condition is true

repeat executing an infinite loop

break breaking the execution of a loop

next skipping to next iteration

return exit a function

Testing conditions

10/4/2017 HPC training series Fall 2017 42

Comparisons: <, <=, >, >=, ==, !=
Logical operations:
!: NOT
&: AND (elementwise)
&&: AND (only leftmost element)
|: OR (element wise)
||: OR (only leftmost element)

> x <- 10
> if(x > 3 && x < 5) {
+ print ("x is between 3 and 5")
+ } else if(x <= 3) {
+ print ("x is less or equal to 3")
+ } else {
+ print ("x is greater or equal to 5")
+ }
[1] "x is greater or equal to 5"

For Loops

10/4/2017 HPC training series Fall 2017 43

Syntax
for (value in sequence) {
statements
}

Example
> x <- c(2,5,3,9,8,11,6)
> count <- 0
> for (i in x) {
+ if (i %% 2 == 0) count <- count+1
+ }
> count
[1] 3

Loops are not very frequent used because of many inherently
vectorized operations and the family of apply()functions (more
on this later)

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 44

Simple Statistic Functions
min() Minimum value

max() Maximum value

which.min() Location of minimum value

which.max() Location of maximum value

sum() Sum of the elements of a vector

mean() Mean of the elements of a vector

sd() Standard deviation of the elements of a vector

quantile() Show quantiles of a vector

summary() Display descriptive statistics

10/4/2017 HPC training series Fall 2017 45

> mean(weight,na.rm=T)
[1] 77.8
> which.min(weight)
[1] 1
> min(weight,na.rm=T)
[1] 60
>

Distributions and Random Variables
• For each distribution R provides four functions: density (d),

cumulative density (p), quantile (q), and random generation (r)
– The function name is of the form [d|p|q|r]<name of
distribution>

– e.g. qbinom() gives the quantile of a binomial distribution

10/4/2017 HPC training series Fall 2017 46

Distribution Distribution name in R

Uniform unif

Binomial binom

Poisson pois

Geometric geom

Gamma gamma

Normal norm

Log Normal lnorm

Exponential exp

Student’s t t

Distributions and Random Variables
• Generating random number from normal distribution
> set.seed(1)
> rnorm(2,mean=0,sd=1)
[1] -0.6264538 0.1836433

> pnorm(1.96)
[1] 0.9750021

• The inverse of the above function call
> qnorm(0.975)
[1] 1.959964

10/4/2017 HPC training series Fall 2017 47

Sorting and random samples
• Sort and order elements: sort(), rank() and order().
> x <- c(1.2,0.4,2.3,0.9)
> sort(x) ## sort x in ascending order
> sort(x,decreasing=T) ## sort x in descending order
> rank(x)
[1] 3 1 4 2
> order(x)
[1] 2 4 1 3

• Random sampling function sample().
> sample(1:4,4,replace=F)
> sample(1:10,10,replace=F)
> sample(1:10,10,replace=T) ## will be different from the last run
> sample(1:4,10,replace=T,prob=c(.2,.5,.2,.1))

• Using the same seed value through set.seed() can reproduce the same
outcome.

> set.seed(1)
> sample(1:4,10,replace=T)
[1] 2 2 3 4 1 4 4 3 3 1

> set.seed(1)
> sample(1:4,10,replace=T)
[1] 2 2 3 4 1 4 4 3 3 1

10/4/2017 HPC training series Fall 2017 48

The table Function
• The table() function is useful to tabulate factors or find the frequency of

an object
• Example: The quine dataset consists of 146 rows describing children's

ethnicity (Eth), age (Age), sex (Sex), days absent from school (Days) and their
learning ability (Lrn).
– If we want to find out the frequency of the age classes in quine dataset
> library(MASS)
> table(quine$Age)
F0 F1 F2 F3
27 46 40 33

– If we need to know the breakdown of ages according to sex
> table(quine$Sex,quine$Age)

F0 F1 F2 F3
F 10 32 19 19
M 17 14 21 14

10/4/2017 HPC training series Fall 2017 49

The apply Function

• The apply() function evaluate a function over
the margins of an array
– More concise than the for loops (not necessarily

faster)

10/4/2017 HPC training series Fall 2017 50

X: array objects
MARGIN: a vector giving the subscripts which the function will be applied over
FUN: a function to be applied

> str(apply)
function (X, 2, FUN, ...)

10/4/2017 HPC training series Fall 2017 51

> x <- matrix(rnorm(200), 20, 10)
Row means
> apply(x, 1, mean)
[1] -0.23457304 0.36702942 -0.29057632 -0.24516988 -0.02845449 0.38583231
[7] 0.16124103 -0.10164565 0.02261840 -0.52110832 -0.10415452 0.40272211

[13] 0.14556279 -0.58283197 -0.16267073 0.16245682 -0.28675615 -0.21147184
[19] 0.30415344 0.35131224

Column sums
> apply(x, 2, sum)
[1] 2.866834 2.110785 -2.123740 -1.222108 -5.461704 -5.447811 -4.299182
[8] -7.696728 7.370928 9.237883

25th and 75th Quantiles for rows
> apply(x, 1, quantile, probs = c(0.25, 0.75))

[,1] [,2] [,3] [,4] [,5] [,6]
25% -0.52753974 -0.1084101 -1.1327258 -0.9473914 -1.176299 -0.4790660
75% 0.05962769 0.6818734 0.7354684 0.5547772 1.066931 0.6359116

[,7] [,8] [,9] [,10] [,11] [,12]
25% -0.1968380 -0.5063218 -0.8846155 -1.54558614 -0.8847892 -0.2001400
75% 0.7910642 0.3893138 0.8881821 -0.06074355 0.5042554 0.9384258

[,13] [,14] [,15] [,16] [,17] [,18]
25% -0.5378145 -1.08873676 -0.5566373 -0.3189407 -0.6280269 -0.6979439
75% 0.6438305 -0.02031298 0.3495564 0.3391990 -0.1151416 0.2936645

[,19] [,20]
25% -0.259203 -0.1798460
75% 1.081322 0.8306676

Other Apply Functions

• lapply - Loop over a list and evaluate a
function on each element

• sapply - Same as lapply but try to simplify
the result

• tapply - Apply a function over subsets of a
vector

• mapply - Multivariate version of lapply

10/4/2017 HPC training series Fall 2017 52

User Defined Functions

• Similar to other languages, functions in rare
defined by using the function()directives

• The return value is the last expression in the
function body to be evaluated

• Functions can be nested
• Functions are R objects

– For example, they can be passed as an argument to
other functions

10/4/2017 HPC training series Fall 2017 53

Example of User Defined Function
Syntax
function_name <- function (arguments) {
statement
}
#
Define the function for the power calculation
> pow <- function(x, y) {
+ result <- x^y
+}

Call the function
> c <- pow(4,2)
> c
[1] 16

10/4/2017 HPC training series Fall 2017 54

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 55

Installing and Loading R Packages - PC

• Installation:
– Option 1: menu item
– Option 2: run install.packages(“<package
name>”) function in the console

• Loading: the library(<package name>)
function load previously installed packages

10/4/2017 HPC training series Fall 2017 56

Installing R and R Packages - Clusters
• Installation

– You most likely do NOT have root privilege, so you need to
– Point the environment variable R_LIBS_USER to desired

location, then
– Use the install.packages(“<package name>”)

function
• Loading: the library(<package name>)

function load previously installed packages
• Documentation page:

http://www.hpc.lsu.edu/docs/faq/installation-
details.php

10/4/2017 HPC training series Fall 2017 57

10/4/2017 HPC training series Fall 2017 58

[ychen64@mike2 ~]$ export R_LIBS_USER=/home/ychen64/packages/R/libraries
[ychen64@mike2 ~]$ echo $R_LIBS_USER
/home/ychen64/packages/R/libraries
[ychen64@mike2 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> install.packages("swirl")

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 59

Steps for Data Analysis

• Get the data
• Read and inspect the data
• Preprocess the data (remove missing and dubious

values, discard columns not needed etc.)
• Analyze the data
• Generate the report

10/4/2017 HPC training series Fall 2017 60

How does R work
• R works best if you have a dedicated folder for each separate project - the

working folder. Put all data files in the working folder (or in subfolders).
> getwd() #Show current directory
[1] "/home/ychen64"
> dir.create("data") #Create a new directory
> getwd()
[1] "/home/ychen64"
> setwd("data")
> getwd()
[1] "/home/ychen64/data"

• Work on the project - your objects can be automatically saved in the
.RData file

• To quit use q()or just kill the window. R will automatically ask you “Save
workspace image?”. You can choose:
– No: leave R without saving your results in R;
– Yes: save your results in .RData in your working directory;
– Cancel: not quitting R.

10/4/2017 HPC training series Fall 2017 61

Case Study: Forbes Fortune List

• The forbes dataset consists of 2000 rows
(observations) describing companies’ rank,
name, country, category, sales, profits, assets
and market value.

10/4/2017 HPC training series Fall 2017 62

Getting Data

• Downloading files from internet
– Manually download the file to the working

directory
– or with R function download.file()

> download.file("http://www.hpc.lsu.edu/training/weekly-
materials/Downloads/Forbes2000.csv.zip", "Forbes2000.csv.zip")
> unzip("Forbes2000.csv.zip","Forbes2000.csv")

10/4/2017 HPC training series Fall 2017 63

Reading and Writing Data
• R understands many different data formats and has

lots of ways of reading/writing them (csv, xml, excel,
sql, json etc.)

10/4/2017 HPC training series Fall 2017 64

read.table
read.csv

write.table
write.csv

for reading/writing tabular data

readLines writeLines for reading/writing lines of a text file

source dump for reading/writing in R code files

dget dput for reading/writing in R code files

load save for reading in/saving workspaces

Reading Data with read.table (1)

10/4/2017 HPC training series Fall 2017 65

List of arguments of the read.table() function
> str(read.table)
function (file, header = FALSE, sep = "", quote = "\"'", dec = ".", row.names,
col.names, as.is = !stringsAsFactors, na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip, strip.white = FALSE,
blank.lines.skip = TRUE, comment.char = "#", allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(), fileEncoding = "", encoding = "unknown",
text, skipNul = FALSE)

Reading Data with read.table (2)

• file - the name of a file, or a connection
• header - logical indicating if the file has a header line
• sep - a string indicating how the columns are separated
• na.strings - a character vector of strings which are to be

interpreted as NA values
• nrows - the number of rows in the dataset
• comment.char - a character string indicating the comment

character
• skip - the number of lines to skip from the beginning
• stringsAsFactors - should character variables be coded as

factors?

10/4/2017 HPC training series Fall 2017 66

Reading Data with read.table (3)

• The function will
– Skip lines that begin with #
– Figure out how many rows there are (and how much memory

needs to be allocated)
– Figure out what type of variable is in each column of the table

• Telling R all these things directly makes R run faster and
more efficiently.

• read.csv() is identical to read.table() except
that the default separator is a comma.

10/4/2017 HPC training series Fall 2017 67

> forbes <- read.csv(“Forbes2000.csv“,header=T,stringsAsFactors =
FALSE,na.strings ="NA",sep=",")

Reading EXCEL spreadsheets
• The XLConnect library can open both .xls and .xlsx files. It is Java-based, so

it is cross platform. But it may be very slow for loading large datasets.
>library(XLConnect)
wb <- loadWorkbook("Forbes2000.xls")
setMissingValue(wb, value = c("NA"))
forbes <- readWorksheet(wb, sheet=1, header=TRUE)>dim(forbes)
[1] 2000 8

• There are at least two other ways: read.xlsx from library(xlsx) (slow for
large datasets) and read.xls from library(gdata) (require PERL installed).

>library(xlsx)
>forbes <- read.xlsx("Forbes2000.xls", 1)

• Note: the libraries above requires both Java Dev Kit and rJava library. The
former is not available on SuperMike2, while the later is not available for R
version on QB2 and SuperMic.

10/4/2017 HPC training series Fall 2017 68

Inspecting Data (1)
• head(): print the first part of an object
• tail(): print the last part of an object
> head(forbes)

rank name country category sales profits
1 1 Citigroup United States Banking 94.71 17.85
2 2 General Electric United States Conglomerates 134.19 15.59
3 3 American Intl Group United States Insurance 76.66 6.46
4 4 ExxonMobil United States Oil & gas operations 222.88 20.96
5 5 BP United Kingdom Oil & gas operations 232.57 10.27
6 6 Bank of America United States Banking 49.01 10.81

assets marketvalue
1 1264.03 255.30
2 626.93 328.54
3 647.66 194.87
4 166.99 277.02
5 177.57 173.54
6 736.45 117.55

10/4/2017 HPC training series Fall 2017 69

Inspecting Data (2)

10/4/2017 HPC training series Fall 2017 70

• Summary of the “forbes” dataframe.
> str(forbes)
'data.frame': 2000 obs. of 8 variables:
$ rank : num 1 2 3 4 5 6 7 8 9 10 ...
$ name : chr "Citigroup" "General Electric" "American Intl Group" "ExxonMobil" ...
$ country : chr "United States" "United States" "United States" "United States" ...
$ category : chr "Banking" "Conglomerates" "Insurance" "Oil & gas operations" ...
$ sales : num 94.7 134.2 76.7 222.9 232.6 ...
$ profits : num 17.85 15.59 6.46 20.96 10.27 ...
$ assets : num 1264 627 648 167 178 ...
$ marketvalue: num 255 329 195 277 174 ...

Inspecting Data (3)

10/4/2017 HPC training series Fall 2017 71

• Statistical summary of the “Forbes” dataframe.
> summary(forbes)

rank name country category
Min. : 1.0 Length:2000 Length:2000 Length:2000
1st Qu.: 500.8 Class :character Class :character Class :character
Median :1000.5 Mode :character Mode :character Mode :character
Mean :1000.5
3rd Qu.:1500.2
Max. :2000.0

sales profits assets marketvalue
Min. : 0.010 Min. :-25.8300 Min. : 0.270 Min. : 0.02
1st Qu.: 2.018 1st Qu.: 0.0800 1st Qu.: 4.025 1st Qu.: 2.72
Median : 4.365 Median : 0.2000 Median : 9.345 Median : 5.15
Mean : 9.697 Mean : 0.3811 Mean : 34.042 Mean : 11.88
3rd Qu.: 9.547 3rd Qu.: 0.4400 3rd Qu.: 22.793 3rd Qu.: 10.60
Max. :256.330 Max. : 20.9600 Max. :1264.030 Max. :328.54

NA's :5

• There are missing values in the profits category.

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 72

Preprocessing - Missing Values
• Missing values are denoted in R by NA or NaN for undefined

mathematical operations.
– is.na() is used to test objects if they are NA

• Make sure when reading data R can recognize the missing values. E.g.
setMissingValue(wb, value = c("NA")) when using
XLConnect

• Many R functions also have a logical “na.rm” option
– na.rm=TRUE means the NA values should be discarded
mean(weight,na.rm=T)

• Note: Not all missing values are marked with “NA” in
raw data!

10/4/2017 HPC training series Fall 2017 73

Preprocessing - Missing Values
• There are many statistical techniques that can deal with the missing

values, but the simplest way is removing them.
– If a row (observation) has a missing value, remove the row with
na.omit(). e.g.

> forbes <- na.omit(forbes)
> dim(forbes)

– If a column (variable) has a high percentage of the missing value,
remove the whole column or just don’t use it for the analysis

10/4/2017 HPC training series Fall 2017 74

Preprocessing - Subsetting Data (1)

• At most occasions we do not need all of the raw data
• There are a number of methods of extracting a subset

of R objects
• Subsetting data can be done either by row or by

column

10/4/2017 HPC training series Fall 2017 75

Preprocessing - Subsetting Data (2)

• Subsetting by row: use conditions

10/4/2017 HPC training series Fall 2017 76

Find all companies with negative profit
>forbes[forbes$profits < 0,c("name","sales","profits","assets")]

name sales profits assets
350 Allianz Worldwide 96.88 -1.23 851.24
354 Vodafone 47.99 -15.51 256.28
364 Deutsche Telekom 56.40 -25.83 132.01

Preprocessing - Subsetting Data (3)

• Subsetting by row: use the subset()function

10/4/2017 HPC training series Fall 2017 77

Find the business category to which most of the
Bermuda island companies belong.

>Bermudacomp <- subset(forbes, country == "Bermuda")
>table(Bermudacomp[,"category"]) #frequency table of categories

Banking Capital goods Conglomerates
1 1 2

Food drink & tobacco Food markets Insurance
1 1 10

Media Oil & gas operations Software & services
1 2 1

Preprocessing - Subsetting Data (4)

• Subsetting by column

10/4/2017 HPC training series Fall 2017 78

Create another data frame with only numeric
variables

forbes2 <- data.frame(sales=forbes$sale,profits=forbes$profits,
assets=forbes$assets, mvalue=forbes$marketvalue)

str(forbes2)

Or simply use indexing
forbes3 <- forbes[,c(5:8)]
str(forbes3)

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 79

Roadmap of generalizations of linear
models

10/4/2017 HPC training series Fall 2017 80

Explanation of Acronyms
Models Acronym R function

Linear Models LM lm, aov

MultivariateLMs MLM manova

Generalized LMs GLM glm

Linear Mixed Models LMM lme, aov

Non-linear Models NLM nls

Non-linear Mixed Models NLMM nlme

Generalized LMMs GLMM glmmPQL

Generalized Additive Models GAM gam

10/4/2017 HPC training series Fall 2017 81

Symbol Meanings in Model Formulae
Symbol Example Meaning

+ +X Include this variable in the model

- -X Exclude this variable in the model

: X:Z Include the interaction between X
and Z

* X*Z Include X and Z and the interactions

| X|Z Conditioning: include X given Z

^ (A+B+C)^3 Include A, B and C and all the
interactions up to three way

/ /(X*Z) As is: include a new variable
consisting of these variables

multiplied

10/4/2017 HPC training series Fall 2017 82

Model Formulae

Example Meaning

y ~ x Simple regression

y ~ -1 + x LM through the origin

y ~ x + x^2 Quadratic regression

y ~ x1 + x2 + x3 Multiple regression

y ~ . All variables included

y ~ . - x1 All variables except X1

y ~ A + B + A : B Add interaction

y ~ A * B Same above

y ~ (A+B)^2 Same above

10/4/2017 HPC training series Fall 2017 83

General form: response ~ term1 + term2

A Linear Regression Example

10/4/2017 HPC training series Fall 2017 84

market value ~ profits + sales + assets
> fit1 <- lm(mvalue ~ ., data=forbes2[1:1500,])
> summary(fit1)
Call:
lm(formula = mvalue ~ ., data = forbes2[1:1500,])

Residuals:
Min 1Q Median 3Q Max

-119.475 -5.186 -2.514 0.826 224.474

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.878870 0.576865 6.724 2.51e-11 ***
sales 0.560050 0.028367 19.743 < 2e-16 ***
profits 4.606250 0.265004 17.382 < 2e-16 ***
assets 0.047932 0.004734 10.125 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.98 on 1496 degrees of freedom
Multiple R-squared: 0.5251, Adjusted R-squared: 0.5242
F-statistic: 551.4 on 3 and 1496 DF, p-value: < 2.2e-16

Put Everything Together
• Run R commands in batch mode with Rscript

10/4/2017 HPC training series Fall 2017 85

[ychen64@mike001 R]$ cat forbes.R
Check if the data directory exists; if not, create it.
if (!file.exists("data")) {

dir.create("data")
}

Check if the data file has been downloaded; if not, download it.
if (!file.exists(“Forbes2000.csv")) {

download.file("http://www.hpc.lsu.edu/training/weekly-
materials/Downloads/Forbes2000.csv.zip", "Forbes2000.csv.zip")
}
…

[ychen64@make001 R]$ Rscript forbes.R

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition and inspection
– Data preprocessing
– Statistical analysis
– Report generation

10/4/2017 HPC training series Fall 2017 86

Report Generation with R Markdown

• R markdown
– Allows one to generate dynamic report by

weaving R code and human readable texts
together

• The knitr and rmarkdown packages can
convert them into documents of various
formats

• Help make your research reproducible

10/4/2017 HPC training series Fall 2017 87

Not Covered

• Statistical analysis (e.g regression models,
machine learning/data mining)

• Advanced missing data treatment
• Advanced data manipulation
• Categorical data (factor)
• Graphics in R
• Parallel Processing in R

10/4/2017 HPC training series Fall 2017 88

Learning R

• User documentation on CRAN
– An Introduction on R: http://cran.r-

project.org/doc/manuals/r-release/R-intro.html
• Online tutorials (tons of them)

– http://www.cyclismo.org/tutorial/R/
• Online courses (e.g. Coursera)
• Educational R packages

– Swirl: Learn R in R

10/4/2017 HPC training series Fall 2017 89

Next Tutorial – Introduction to R Graphics

• This training will provide an introduction to
the R graphics in detail

• Date: Oct 11th, 2017

10/4/2017 HPC training series Fall 2017 90

More R Tutorial – Parallel Computing
with R

• This training will help you take advantage of the
processing power of HPC clusters, computer
programs need to be able to run in parallel.

• How to use the "parallel" package in R and a few
related packages to parallelize and enhance the
performance of R programs

• Date: Oct 25th, 2017

10/4/2017 HPC training series Fall 2017 91

Getting Help

• User Guides
– LSU HPC:

http://www.hpc.lsu.edu/docs/guides.php#hpc
– LONI:http://www.hpc.lsu.edu/docs/guides.php#loni

• Documentation: http://www.hpc.lsu.edu/docs
• Contact us

– Email ticket system: sys-help@loni.org
– Telephone Help Desk: 225-578-0900

10/4/2017 HPC training series Fall 2017 92

Questions?

10/4/2017 HPC training series Fall 2017 93

Exercises 1
1. Create a vector of the positive odd integers less than 100

(Hint: use seq function).
2. Remove the values greater than 60 and less than 80.
3. Create a data frame called cone with two elements:

R <- c(2.27, 1.98, 1.69, 1.88, 1.64, 2.14)
H <- c(8.28, 8.04, 9.06, 8.70, 7.58, 8.34)
Recall the volume of a cone with radius R and height H is given by
ଵ

ଷ
ଶ . Make the third element as V, which is the volume of the

cone.

10/4/2017 HPC training series Fall 2017 94

Exercises 2
1. Import dataset forbes, save it as forbes
2. Run the following commands:

head(forbes)
str(forbes)
summary(forbes)

3. Remove the observations with missing values
4. Find all German companies with negative profit
5. Find the 50 companies in the Forbes dataset with the highest profit
6. Find the average value of sales for the companies in each country (Hint: use

tapply function)
7. Find the number of companies in each country with profits above 5 billion US

dollars

10/4/2017 HPC training series Fall 2017 95

