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Parallel Computing: Why?

* Getting results faster

— Running in parallel may speed up the time to

reaCh 50|Ut|0n Example: Moving 200 boxes by 1 person vs. 10 people

* Dealing with bigger data sets

— Running in parallel may allow you to use more
memory than that available on a single computer

Example: Moving a grand piano by 1 person vs. 10 people
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Parallel Computing: How?

* |dentify a group of workers

— For sake of simplicity we will use
worker/process/thread interchangeably

* Divide the workload into chunks

* Assign one chunk or a number of chunks to each
worker

* Each worker processes its own assignment in
parallel with other workers

CENTER FOR COMPUTATION E:)NI
P

& TECHNOLOGY

11/1/2017 HPC training series Fall 2017



Parallel Computing: Requirements

 Hardware: modern computers are equipped with
more than one CPU core and are capable of
processing workloads in parallel
— Your laptop/desktop/workstation has many cores
— HPC clusters is composed of many nodes (servers),

each of which has many cores

e Software: many software packages are aware of
parallel hardware and are capable of coordinating
workload processing among workers
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Parallel Computing: Requirements

 Hardware: modern computers are equipped with
more than one CPU core and are capable of
processing workloads in parallel
— Your laptop/desktop/workstation has many cores

— HPC clusters is composed of many nodes (servers),
each of which has many cores

* Base Ris single-threaded, i.e. not parallel

— Regardless how many cores are available, R can only
use one of them
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Parallel Computing: Requirements

 Hardware: modern computers are equipped with
more than one CPU core and are capable of
processing workloads in parallel
— Your laptop/desktop/workstation has many cores

— HPC clusters is composed of many nodes (servers),
each of which has many cores

EN The goal of this training is to show how to
use some R packages to achieve parallel Y%
processing

L5LU)
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Where We Are with Base R

QB2 Cluster
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Login Node Node Node
node  cpy‘core

Cluster = multiple nodes (servers) x multiple cores per node
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What We Want to Achieve

QB2 Cluster

§

F.
/
%}/////

W R S
666 00080

Login Node Node Node

Cluster = multiple nodes (servers) x multiple cores per node
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Parallel Computing: Caveats

* Using more workers does not always make your

program run faster

 Efficiency of paralle

Example: Moving 200 boxes by 200 people vs. 1,000 people

programs

— Low efficiency means idle workers and vice versa

— Defined as speedup divided by number of workers
* 4 workers, 3x speedup, efficiency = 3/4 = 75%

* 8 workers, 4x speedup, efficiency = 4/8 = 50%

— Usually decrease with increasing number of workers
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Is Parallel Computing for You?

m

No

run slow?

m

parallelizable?

m

parallel
already?

L5LU)
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No

Don’t bother, e.g. it is
perhaps not wise to spend
weeks to parallelize a
program that finishes in 30
seconds;

Yes

Don’t bother, e.g. not
much we can do in R if the
target R function is written
in C or Fortran;

11/1/2017 HPC training series Fall 2017

Some R functions utilize
parallel numerical libraries
— they are implicitly
parallel already
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Implicit Parallelization

 Some functions in R can call parallel numerical
libraries

— On LONI and LSU HPC clusters this is the multi-
threaded Intel MKL library

— Mostly linear algebraic and related functions

 Example: linear regression, matrix decomposition,
computing inverse and determinant of a matrix
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0.0%sy, 0.0%ni,100.0%id, 0.0%wa, O0.0%hi, O0.0%si, O0.0%st
2 3%sy, 0.0%ni, 0.0%id, O0.0%wa, O0.0%hi, 0.0%si, O0.0%st
Matrix creation and random number generation
are NOT mmplicitly parallel
Matrix inversion is implicitly parallel
Each node has 20 cores

Only 1 out 20 cores i1s busy when running
this line

a
Swap: 134217724k total 14324k used 134203400k free 5302204k cached
PID USER PR NI VIRT RES SHR S§%CPUR%MEM TIME+ COMMAND
114903 lyanl 20 0 1022m 760m 6664 R§99.9§ 1.2 0:06.51 R

R running on one node of the QB2 cluster:

Lsu 20 cores total, 1 busy, 19 idle SNTT
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_ Lsu TECHNOLOGY

-3%sy, 0.0%ni, 0.0%id, 0.0%wa, O0.0%hi, O0.0%si, 0.0%st
.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, O0.0%si, 0.0%st

Matrix creation and random number generation
are NOT mmplicitly parallel

Matrix inversion is implicitly parallel

Each node has 20 cores

<- matrix(rnorm(10000*10000),10000,10000)
20 out 20 cores are busy when running
this line

0.0%sy, 0.0%ni, O. O%Id 0.0%wa, O. O%hl 0.0%si, 0.0%st

C C R total, 11968768k used, 53908116k free, 77208k buffers
Swap: 134217724k total, 14324k used, 134203400k free, 5307564k cached
PID USER PR NI VIRT RES SHR S§%CPU %NEM TIME+ COMMAND
115515 lyanl 20 0 5025m 3.4g 8392 RJ1996.5) 5.4 1:31.54 R

R running on one node of the QB2 cluster:

Lsu 20 cores total, 20 busy, O idle SRTT
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Know Your R Program

* Before starting writing programs, you need to be able
to answer these questions

— How do | know the program runs faster after
parallelization?

— Which part of my code slows the execution down (the
most)?
* First step in parallelization: performance analysis

— Purpose: know which part takes how long, and locate the
“hotspot” first

— Two most frequent used methods in R
 system.time()

L5U * rprof() and summaryRprof()
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system.time()

## Output from system.time() function

## User: time spent In user-mode

## System: time spent in kernel (1/0 etc.)
## Elapsed: wall clock time

## Usage: system.time(<code segment>)

system.time(

{
A <- matrix(rnorm(10000*10000),10000,10000)
Ainv <- solve(A)

1))

user systemjelapsed
156.582 0.948] 16.325

How much wall clock time it

=i ‘i;
LS50 takes - perhaps the most CN]
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system.time()

Code Output

[lyan1@gb032 R]$ cat inv_st.R

[1lyan1@gb032 R]$ Rscript inv_st.R

print("*Matrix creation:™)

system.time({
A <- matrix(rnorm(10000*10000),10000,10000)

[1] "Matrix creation:"
user system elapsed
7.437 0.278 7.711

P o - S
1 Matrix inversion:
user system elapsed

print("*Matrix inversion:')
system.time({
Ainv <- solve(A)

19 : :
Measure the execution Note the t\uge Sllscrepancy
between “user” and

times of different functions . L o
elapsed” — it is an indication

of implicit parallelization

LSL) E)NI

149.092 0.7/68 9.417
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rprof() and summaryRprof()

[1yan1@gb032 R]$ cat inv_prof.R

Start profiling \
Rprof()

A <- matrix(rnorm(10000*10000),10000,10000)
o Ainv <- solve(A)
End profiling —— Rprof(NULL)

summaryRprof()
Print profiling ///////

result
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rprof() and summaryRprof()

[1yan1@gb032 R]$ Rscript inv_prof.R

sby.self How much time is spent in this function itself
self_time self._pct total.time total.pct

"solve.default" 153.36 95.09 153.58 95.23
" _External™ 6.68 4.14 6.68 4.14
"matrix" 1.02 0.63 7.70 4.77
"diag" 0.22 0.14 0.22 0.14

How much time is spent in this function and the
$by.total functionsitcalls
total .time total.pct self._time self.pct

"solve.default" 153.58 95.23 153.36 95.09
"solve™ 153.58 95.23 0.00 0.00
"matrix" 7.70 4.77 1.02 0.63
" _External™ 6.68 4.14 6.68 4.14
“rnorm" 6.68 4.14 0.00 0.00
"diag" 0.22 0.14 0.22 0.14
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Writing Parallel R Code —
paral lel Package

 IntroducedinR 2.14.1

* |Integrated previous multicore and snow
nackages
* Coarse-grained parallelization

— Suit for the chunks of computation are unrelated and
do not need to communicate

* Two ways of using paral lel packages
— mc*apply function
— For loop with %dopar%
* Need Foreach and doParal lel packages

CENTER FOR COMPUTATION E;)N I
18

& TECHNOLOGY

11/1/2017 HPC training series Fall 2017



sy [ETEE
Function mclapply

* Parallelized version of the lapply function

— Similar syntax with mc.cores indicates how many
cores/workers to use

mclapply(X, FUN, mc.cores = <number of cores>, .)

— Return a list of the same length as X, each element of
which is the result of applying ‘FUN’ to the
corresponding element of X

00

e Can use all cores on one node 0 O .-
— But not on multiple nodes 00

00

L5LU)
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# Quadratic Equation: a*x™"2 + b*x + c =
solve.quad.eq <- function(a, b, ©)

{

# Return solutions

x.delta <- sqrt(b*b - 4*a*c)

Function solve.quad.eq

x1 <= (<b + x.delta)/(2*a) Input: three coefficients of a quadratic equation
x2 <- (=b - x.delta)/(2*a) Output: solutions of the quadratic equation
return(c(x1, x2))

+

len <- le7 Create 10 million sets of randomly generated coefficients

a <- runif(len, -10, 10); b <- runif(len, -10, 10); ¢ <- runif(len, -10, 10)

#Serial: lapply lapply function: call the solve.quad.eq function for each set of coefficients
resl.s <- lapply(l:len, FUN = function(x) { solve.quad.eq(a[x], b[x], cIxDD})

sparallel: mclapply with 4 cores mclapply function: same arguments with one

library(parallel) extra: mc.cores
resl.p <- mclapply(l:len,

FUN = function(x) { solve.quad.eq(a[x], b[x], cI[x]) },
mc.cores = 4)

CENTER FOR COMPUTATION WT‘T
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# Quadratic Equation: a*x™"2 + b*x + c =
solve.quad.eq <- function(a, b, ©)

{

# Return solutions Function solve.quad.eq

x.delta <- sqrt(b*b - 4*a*c) . .. . :
N PN Input: three coefficients of a quadratic equation

> system.time(

+resl.s <- lapply(l:len, FUN = function(x) { solve.quad.eq(a[x], b[x], c[xD}P)

)
user system

358.878 0.375) 359.046

> system.time(

resl.p <- mclapply(l:len,

FUN = function(x) { solve.quad.eq(a[x], b[x], cI[x]) },
mc.cores = 4)

)
user system
11.098 0.342F 81.581
sparallel: mclapply with 4 cores mclapply function: same arguments with one

library(parallel) extra: mc.cores

resl.p <- mclapply(l:len,
FUN = function(x) { solve.quad.eq(a[x], b[x1. cI[x1) }.
mc.cores = 4)

CENTER FOR COMPUTATION WT‘T
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# Quadratic Equation: a*x™"2 + b*x + c =
solve.quad.eq <- function(a, b, ©)

{

# Return solutions Function solve.quad.eq

x.delta <- sqrt(b*b - 4*a*c) . .. . :
N PN Input: three coefficients of a quadratic equation

> system.time(
tresl.s <- lapply(l:len, FUN = function(x) { solve.quad.eq(a[x], b[x], cIx]D}P

)
user system It’s always a good idea to check the efficiency of a
358.878 0.375) 359.046 parallel program:

> system.time(
+ resl.p <- mclapply(l:len,
+ FUN = func Speedup =359.046/81.581 = 4.40

: . MC.COFesS = Ffficiency = 4.40/4 = 110% (!)
user system
11.098 0.342F 81.581

sparallel: mclapply with 4 cores mclapply function: same arguments with one

library(parallel) extra: mc.cores

resl.p <- mclapply(l:len,
FUN = function(x) { solve.quad.eq(a[x], b[x1. cI[x1) }.
mc.cores = 4)

CENTER FOR COMPUTATION WT‘T
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%dopar¥

 From doParallel package
— On top of packages parallel, foreach, 1terator

* Purpose: parallelize a ¥or loop
 Can run on multiple nodes

0oag 0000

OO0 R OO0 |00
00oy0oa

00
0ag

00100

L5LU)
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%dopar®%

* Steps
— Create a cluster of workers (makeCluster)
— Register the cluster (registerDoParallel)

— Process the for loop in parallel (foreach ..
%dopar)

— Stop the cluster (stopCluster)

LS50
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%dopar%: On A Single Node

# Parallel version with %dopar%

# Workload:
# Create 1,000 random samples, each with | # Step 1: Create a cluster of 4 workers
# 1,000,000 observations from a standard | cl <- makeCluster(4)

# normal distribution, then take a
# summary for each sample. # Step 2: Register the cluster
registerDoParallel(cl)

iters <- 1000
# Step 3: Process the loop

# Sequential version Is <- foreach(icount(iters)) %dopar% {
for (i in 1l:iters) { to. Is<-rnorm(1e6)

to.Is <- rnorm(le6) to. Is<-summary(to.ls)

to.ls <- summary(to.ls) }
+

# Step 4: Stop the cluster
stopCluster(cl)

LSL) N
CENTER FOR COMPUTATION )
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%dopar%: On A Single Node

# Workload:
# Create 1,000 randor
# 1,000,000 observat
# normal distributiol
summary for each samj

iters <- 1000

# Sequential version
for (1 in 1l:iters) {
to.Is <- rnorm(le6;
to.ls <- summary (t¢

}

LS50

CENTER FOR COMPUTATION

# Sequential

system.time(

for (1 in 1l:iters) {
to.Is <- rnorm(1e6)
to.ls <- summary(to.ls)

systemj elapsed

3.499) 63.739

# Parallel with 4 cores
system.time({

cl <- makeCluster(4)
registerDoParallel(cl)
Is<-foreach(icount(iters)) %dopar®% {

to.Is<-rnorm(1e6)
to. Is<-summary(to.lIs)

+
)
user
60.249

b
stopCluster(cl)
)
user system
0.232 0.032y 17.738

1th %dopar%

luster of 4 workers

he cluster

D

e loop
ters)) %dopar% {

I1s)

luster

& TECHNOLOGY

11/1/2017 HPC training series Fall 2017




%dopar%: One Single Node

# Workload:
# Create 1,000 randor
# 1,000,000 observat
# normal distributiol
summary for each samj
iters <- 1000
# Sequential version
for (1 in 1l:iters) {
to.Is <- rnorm(le6;
to.ls <- summary (t¢

}

LS50

CENTER FOR COMPUTATION

# Sequential

system.time(

for (1 in 1l:iters) {
to.Is <- rnorm(1e6)
to.ls <- summary(to.ls)

systemj elapsed

3.499) 63.739
# Parallel with 4 cores
system.time({

cl <- makeCluster(4)
registerDoParallel(cl)

+
)
user
60.249

Is<-foreach(icount(iters)) %dopar®% {

to.Is<-rnorm(1e6)
to. Is<-summary(to.lIs)

b
stopCluster(cl)

1))
0.032§ 17.7/38

user
0.232

1th %dopar%

luster of 4 workers

he cluster

D
Speedup =63.739/17.738 = 3.59
Efficiency = 3.59/4 = 90% [
I1s)
luster
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makeCluster ()

* We specify how many workers to use
* On the same node:

cl <- makeCluster(<number of workers>)

* On multiple nodes:

cl <- makeCluster(<list of hostnames>)

— Example: create 4 workers, 2 on gb101 and 2 on
qb102

cl <- makeCluster(c(“qb101”,”gb101”,”gb102”,”gb102"))

LS50
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%dopar%: Multiple Nodes on QB2
Cluster

# Read all host names
hosts <-

as.vector(unique(read.table(Sys.getenv("'PBS NODEFILE"),stringsAsFactors=F))[,1])
# Count number of hosts

nh <- length(hosts) Get the host names of the nodes
# Use 4 workers
nc <- 4

# Make a cluster on multiple nodes

cl <- makeCluster(rep(hosts , each = nc/nh)) Same steps for the rest of the code:

- Make a cluster
registerDoParallel(cl) - Register the cluster
_ _ - Process loop with %dopar%
Is<-foreach(icount(iters)) %dopar®% { - Stop the cluster

to.Is<-rnorm(1e6)
to. Is<-summary(to.lIs)

}

¢t stopCluster(cl)

11/1/2017 HPC training series Fall 2017 29
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Running Parallel R Codes

* Now we have a R code that can run in parallel
* So the next question is:

— How do we know how many workers we should
we run it with?

 The more the better (faster)?

LS50
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Lsu TR
Running Parallel R Codes

Now we have a R code that can run in parallel
* So the next question is:

— How do we know how many workers we should
we run it with?

* The more the better (faster)?

The answer is: scaling test (trial and error)

L5LU)
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cl <- makePSOCKcluster(rep(hosts , each = clusterSize[i1]/nh))
registerDoParallel(cl)

t <- system.time(
Is <- foreach(icount(iters)) %dopar% {
to.Is <- rnorm(1e6)
to.ls <- summary(to.ls) Nothing isreturned, so chunks of the

3 workload are independent of each other

)

stopCluster(cl)

LS50
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Wall clock time vs. number of workers for rnorm()

Is <- foreach(icount(iters)) %dopar% {
100~ - to.Is<-rnorm(l1e6)
to. Is<-summary(to.ls)
+
50+
)
c
Q
o
&L 204
[}
E
X
8
S 10- On one node (20 cores total)
T
=
5- On two nodes (40 cores total)

We call this relationship between

the number of workers and run

time the “scaling behavior”. Ideal behavior

T T
1 10
Number of workers
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Wall clock time vs. number of workers for rnorm()
\

Is <- foreach(icount(iters)) %dopar% {
100- - to. Is<-rnorm(1e6)
to. Is<-summary(to.ls)

b5

50-
Y
5
3
£ 20~
()]
E
x
- Observ?tl?ns: . _ On one node (20 cores total)
= - Deviation from ideal behavior should-he
= expected;

5- - Number of workers can differ from number On two nodes (40 cores total)

more workers than the number of cores;

- More is not necessarily faster, and could be
slower; Ideal behavior

of cores, but it doesn’t make sense to have

10
Number of workers
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res2.p <- foreach(i=1l:core, .combine="rbind®) %dopar%
{

# local data for results
res <- matrix(0, nrow=chunk.size, ncol=2)
for(x 1n ((1-1)*chunk.size+l):(1*chunk.size)) {
res[x - (1-1)*chunk.size,] <- solve.quad.eq(a[x], b[x], c[x])
+

# return local results :
res The results from each chunk are aggregated into

} “res2.p”, so chunks of the workload are
independent

LS50
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Wall clock time vs. number of workers for quadratic equation solver

50+
On two nodes (40 cores total)
’On one node (20 cores total)
©20-
E
5
g10-
5_
Ideal behavior

Number of workers

LS50
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Wall clock time vs. number of workers for quadratic equation solver

50 -

On two nodes (40 cores total)

“_On one node (20 cores total)

Wall clock time
no
o

—_
o
1

Observations:

- If there is data dependency, performance
deteriorates faster (compared to cases
where there is none);

- Performance deteriorates faster when some ‘
workers on one node and some on the other; " Ideal behavior

1 10

Number of workers
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What we have learned about parallel
(R) codes

* With increasing number of workers, efficiency
decreases, and eventually adding more workers slows
it down

* Best scaling behaviors are typically found with codes
with no data dependency (we call it “embarrassingly
parallel”)

e With this in mind, when developing our codes, we
should reduce data dependency as much as possible

& TECHNOLOGY
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How Many Workers to Use

Wall clock time vs. number of workers for quadratic equation sclver

50 -

n
(=}
1

Wall clock time

If there is no constraint,
minimize the wall clock time

—
(=)
1

5- Sometimes our goal should
be to maximize efficiency

1

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

11/1/2017 HPC training series Fall 2017

Number of workers




summary:
Steps of Developing Parallel (R) Codes

* Step 1: Analyze performance

— Find “hot spots” — parallelizable code segments that slow down
the execution the most

Step 2: Parallelize code segments

e Step 3: Run scaling tests

— How do efficiency and run time change with increasing number
of workers?

— What are the optimal number of workers?

Step 4: Is the code fast enough?

— If yes, stop developing (for now) and move on to production
runs;

— If no, go back to step 1 and start another iteration.

CENTER FOR COMPUTATION E;)N I
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Memory Management

* Replica of data objects could be created for every
worker
— Memory usage would increase with the number of
workers
* R does not necessarily clean them up even if you
close the cluster
— Need to monitor memory footprint closely

— The RproT function is capable of memory profiling as
well
LSL) RoNI
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res2.p <- foreach(i=1:core, .combine="rbind") %dopar%
{
# local data for results
res <- matrix(0, nrow=chunk.size, ncol=2)
for(x 1n ((1-1)*chunk.size+l):(1*chunk.size)) {
res[x - (i-1)*chunk.size,] <- solve.quad.eq(a[x], b[x], c[x])

}
# return local results
res

}

PID USER PR NI SHR S %CPU %MEM TIME+ JCOMMAND
87483 lyanl 20 0 5692 R 100.0 0.5 0:02.0% R
87492 lyanl 20 0 5692 R 100.0 0.5 0:02.0% R
87465 lyanl 20 0 5692 R 99.4 0.5 0:02.04 R
87474 lyanl 20 0 5692 R 99.4 0.5 0:02.0% R

With 4 workers: .ﬁ
JLSU C Memory=314%4=1256 B TN
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sy [l

rec? n <— fareach(i=1-coge nmhine="rhind") W%don:

PlD USER PR NI VIRT SHR S %CPU %MEM TlME+ COMMAND
87514 lyanl 20 0 501 5692 R 99.8 0.4 0:03.68 R
87523 lyanl 20 0 501 5692 R 99.8 0.4 0:03.68 R
87676 lyanl 20 0 501 5692 R 99.8 0.4 0:03.6L R
87505 lyanl 20 0 501 5692 R 99.5 0.4 0:03.68 R
87532 lyanl 20 0 501 5692 R 99.5 0.4 0:03.68 R
87577 lyanl 20 0 501 5692 R 99.5 0.4 0:03.68 R
87613 lyanl 20 0 501 5692 R 99.2 0.4 0:03.6L R
87640 lyanl 20 0 501 5692 R 99.2 0.4 0:03.6L R
87649 lyanl 20 0 501 5692 R 99.2 0.4 0:03.6L R
87667 lyanl 20 0 501 5692 R 99.2 0.4 0:03.6L R
87586 lyanl 20 0 501 5692 R 98.8 0.4 0:03.5p R
87631 lyanl 20 0 501 5692 R 98.8 0.4 0:03.6p R
87658 lyanl 20 0 501 5692 R 98.8 0.4 0:03.6p R
87550 lyanl 20 0 501 5692 R 98.5 0.4 0:03.6p R
87622 lyanl 20 0 501 5692 R 98.5 0.4 0:03.6p R
87568 lyanl 20 0 501 5692 R 97.5 0.4 0:03.5p R
87604 lyanl 20 0 501 5692 R 96.2 0.4 0:03.5p R
87559 lyanl 20 0 501 5692 R 91.5 0.4 0:03.3p R
87595 lyanl 20 0 501 5692 R 87.9 0.4 0:03.2F R
87541 lyanl 20 0 501 5692 R 86.9 0.4 0:03.2P R

With 20 workers: \%
LS Memory=276*20=55200mB Wy
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sy [l

res? n <— foreach(i=1-coxe nmhine="rhind") %dnona

PID USER PR NI VIRT §RES PBHR S %CPU %MEM TIME+ COMMAND
87514 lyanl 20 0O 501my 276m B692 R 99.8 0.4 0:03.68 R
87523 lyanl 20 0O 501ng 276m B692 R 99.8 0.4 0:03.68 R
87676 lyanl 20 0O 501ng 276m B692 R 99.8 0.4 0:03.6f R
87505 lyanl 20 0O 501nmg 276m B692 R 99.5 0.4 0:03.68 R
87532 lyanl 20 0O 501nmg 276m B692 R 99.5 0.4 0:03.68 R
87577 lyanl 20 0O 501nmg 276m B692 R 99.5 0.4 0:03.68 R
87613 lyanl 20 0O 501nmg 276m B692 R 99.2 0.4 0:03.6f R
87640 lyanl 20 0O 501nmg 276m B692 R 99.2 0.4 0:03.6f R
87649 lyanl 20 0O 501nmg 276m B692 R 99.2 0.4 0:03.6f R
87667 lyanl 20 0O 501nmg 276m B692 R 99.2 0.4 0:03.6f R
87586 lyanl 20 0O 501my 276m 692 R 98.8 0.4 0:03.5p R
87631 lyanl 20 0O 501mg 276m B692 R 98.8 0.4 0:03.6p R
87658 lyanl 20 0O 501my 276m 692 R 98.8 0.4 0:03.6p R
87550 lyanl 20 0O 501nmg 276m B692 R 98.5 0.4 0:03.6p R
87622 lyanl 20 0O 501mg 276m B692 R 98.5 0.4 0:03.6p R
87568 lyanl 20 0 301n The memory footprint doesn’t increase linearly with the
87604 lyanl 20 0 501n :
87559 lyani 50 O 501 number of workers, but quite close, so we need to
87595 lyanl 20 0 501r monitor it closely when changing the number of workers.
87541 lyanl 20 0 501ﬂ|276m F692 R 8.9 0.4 fTOS-ZE R I

With 20 workers: @ -
S0 Memory = 27620 = 5520 MB NI
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R with GPU

* GPU stands for Graphic Processing Unit
— Originally designed to process graphic data

— Can tremendously accelerate certain types of
computation as well, e.g. matrix multiplications

— All nodes on LONI QB2 cluster are equipped with
two GPU'’s

* Package gpuR brings the processing power of
GPU to R

CENTER FOR COMPUTATION E;)N I
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Example: Matrix Multiplication on GPU

[lyanl@gb032 R]$ cat matmul_gpu.R
# Load necessary library

library(gpuR)

ORDER <- 8192

# On CPU On CPU: Create matrix A and B, then multiply them

A <- matrix(rnorm(ORDER™2), nrow=0RDER)

B <- matrix(rnorm(ORDER™2), nrow=0RDER)

ctime <- system.time(C <- A %*% B)

print(paste("'On CPU:",ctime["elapsed'], ' 'seconds'))

On GPU: Create matrix A and B (with a different function

4 0n GPU than on CPU), then multiply them

vclA <- vclIMatrix(rnorm(ORDER™2), nrow=0RDER, ncol=0RDER)
vclB <- vclIMatrix(rnorm(ORDER™2), nrow=0RDER, ncol=0RDER)
gtime <- system.time(vclC <- vclA %*% vclB)
print(paste("'On GPU:",gtime["elapsed'], ' 'seconds'))

Ls print(paste("'The speedup i1s",ctime["elapsed'"]/gtime["'elapsed])) E)l\lI
CENTER FOR COM
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Example: Matrix Multiplication on GPU

[lyanl@gqb072 R]$ Rscript matmul_gpu.R
Loading required package: methods
Number of platforms: 1
- platform: NVIDIA Corporation: OpenCL 1.2 CUDA 8.0.0
- gpu Index: O
- Tesla K20Xm
- gpu Index: 1
- Tesla K20Xm
checked all devices
completed initialization
gpuR 1.2.1
Attaching package: “gpuR’
The following objects are masked from “pe Wow! Huge speedup!

Especially so given the
CPU results are obtained

[1] "On CPU: 4.295 seconds™ with 20 cores (implicitly
[1] "On GPU: 0.0309999999999988 seconds' para“e”

[1] "The speedup is 138.54838709678"

LS Z!;)NI

colnames, svd
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The Other Side of The Coin

[lyanl@gb072 R]$ cat matmul gpu overall_.R
# Load necessary library
library(gpuR)

Same code with only one difference:
Now we are measuring the run time including
# 0n CPU matrix creation.

ORDER <- 8192

ctime <- system.time({

A <- matrix(rnorm(ORDER”"2), nrow=0ORDER)

B <- matrix(rnorm(ORDER™2), nrow=0ORDER)

C <- A %*% B

1),

print(paste(''On CPU:",ctime["'elapsed'], ''seconds'))

# On GPU

gtime <- system.time({

vclA <- vclIMatrix(rnorm(ORDER™2), nrow=0ORDER, ncol=0RDER)
vclB <- vclIMatrix(rnorm(ORDER™2), nrow=0ORDER, ncol=0RDER)
vclC <- vclA %*% vcliB

)
print(paste(''On GPU:",gtime[elapsed'], ' 'seconds™)) B
LS N1
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The Other Side of The Coin

[lyanl@gb072 R]$ Rscript matmul gpu overall.R
Loading required package: methods
Number of platforms: 1
- platform: NVIDIA Corporation: OpenCL 1.2 CUDA 8.0.0
- gpu Index: O
- Tesla K20Xm
- gpu Index: 1
- Tesla K20Xm
checked all devices
completed initialization
gpuR 1.2.1

Attaching package: “gpuR’ This time, not impressive at all:
Matrix creation is not much work, but

The following objects are mask .,,ing data to/from GPU takes a lot
of time.
And again, wall clock time is what

[1] "On CPU: 14.298 seconds™ matters at the end of day.
[1] "On GPU: 13.897 seconds"

[1] "The speedup is 1.02885514859322" e
LSI! N1
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Deep Learning in R

e Since 2012, Deep Neural Network (DNN) has gained great
popularity in applications such as

— Image and pattern recognition
— Natural language processing

 There are a few R packages that support DNN
— MXNet (multiple nodes with GPU support)
— H2o (multiple nodes)
— Darch
— Deepnet
— Rpud

LS50
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References

e ParallelR (www.parallelr.com)
— Code: https://github.com/PatricZhao/ParallelR

* R Documentation for packages mentioned in
this tutorial
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Thank you!

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

11/1/2017 HPC training series Fall 2017 52




