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Topics To Be Discussed 

 Fundamentals about Machine Learning

 What is Deep Learning?

– What is a (deep) neural network 

– How to train it

 Build a neural network model using Keras/TensorFlow

– MNIST example

• Softmax classification

• Cross-entropy cost function

• A 5 layer deep neural network

• Dropout

• Convolutional networks

– How to utilize HPC

• Run batch jobs
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Machine Learning and Deep Learning
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Machine Learning

 Machine Learning is the science of getting computers to learn, without 

being explicitly programmed.

 Examples are used to train computers to perform tasks that would be 

difficult to program
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Types of Machine Learning

 Supervised Learning

– Training data is labeled

– Goal is correctly label new data

 Unsupervised Learning

– Training data is unlabeled

– Goal is to categorize the observations

 Reinforcement Learning

– Training data is unlabeled

– System receives feedback for its actions

– Goal is to perform better actions
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Applications of Machine Learning

 Handwriting Recognition

– convert written letters into digital letters

 Image Classification

– label images with appropriate categories (e.g. Google Photos)

 Language Translation

– translate spoken and or written languages (e.g. Google Translate)

 Speech Recognition

– convert voice snippets to text (e.g. Siri, Cortana, and Alexa)

 Autonomous Driving

– enable cars to drive
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Data-driven Approach

 Instead of trying to specify what every one of the categories of interest 

look like directly in code, the approach that we will take is not unlike 

one you would take with a child: 

– Provide the computer with many examples of each class 

– Develop learning algorithms that look at these examples and learn 

about the visual appearance of each class. 

 This approach is referred to as a data-driven approach.
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An example training set for four visual categories. In practice we may have thousands of 

categories and hundreds of thousands of images for each category. *(From Stanford CS231n)



Training and Test Data
 Training Data

– data used to learn a model

 Test Data

– data used to assess the accuracy of model

 Overfitting

– Model performs well on training data but poorly on test data
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Supervised Learning Algorithms

 Linear Regression

 Decision Trees

 Support Vector Machines

 K-Nearest Neighbor

 Neural Networks

– Deep Learning is the branch of Machine Learning based on Deep 

Neural Networks (DNNs, i.e., neural networks composed of more than 1 

hidden layer).

– Convolutional Neural Networks (CNNs) are one of the most popular 

DNN architectures (so CNNs are part of Deep Learning), but by no 

means the only one.
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Machine Learning Frameworks
Tool Uses Language

Scikit-Learn
Classification, 

Regression, Clustering
Python

Spark MLlib
Classification, 

Regression, Clustering
Scala, R, Java

MXNet
Deep learning 

framework

Python, R, Julia, 

Scala, Go, Javascript

and more

Caffe Neural Networks C++, Python

TensorFlow Neural Networks Python

PyTorch Neural Networks Python
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Machine Learning and Deep 

Learning

What is Deep Learning
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Understanding The Learning Process

 Start from least square method...

 Trying to find 

– Parameters (w, b): minimizes the sum of the squares of the errors 

– Errors: distance between known data points and predictions
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Recall From The Least Square Method

 Error

– Cost Function (Loss): J(w), C, L

 Parameters

– Weights and Biases: (w, b)

 Define the cost function of your problem

 Find the set of weights that minimizes the cost function (loss)
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Theory: Gradient Descent

 Gradient descent is a first-order iterative optimization algorithm. To 

find a local minimum of a function using gradient descent, one takes 

steps proportional to the negative of the gradient (or of the 

approximate gradient) of the function at the current point.
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Mini-batch Gradient Descent

 Batch gradient descent:

– Use all examples in each iteration

 Stochastic gradient descent:

– Use one example in each iteration

 Mini-batch gradient descent

– Use b examples in each iteration

 In the neural network terminology:

– one EPOCH = one forward pass and one backward pass of all the 

training examples

– batch size = the number of training examples in one forward/backward 

pass. The higher the batch size, the more memory space you'll need.

– number of iterations = number of passes, each pass using [batch size] 

number of examples. To be clear, one pass = one forward pass + one 

backward pass (we do not count the forward pass and backward pass 

as two different passes).

– Example: if you have 1000 training examples, and your batch size is 

500, then it will take 2 iterations to complete 1 epoch.
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What is a neural network?

 Start from a perceptron
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Perceptron To Neuron

 Replace the sign to sigmoid
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Sigmoid Neurons

 Sigmoid activation Function

– In the field of Artificial Neural Networks, the sigmoid function is a type of 

activation function for artificial neurons.

 There are many other activation functions. (We will touch later.)

11/08/2017 Introduction to Deep Learning Fall 2017 18

 
1

1 z
z

e






   z sign z 



Network Of Neurons 

 A complex network of neurons could make quite subtle decisions

 Deep Neuron Network: Number of hidden layers >1
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Types of Neural Networks
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Ref: http://www.asimovinstitute.org/neural-network-zoo/



How to Train DNN?

 Backward Propagation

– The backward propagation of errors or backpropagation, is a common 

method of training artificial neural networks and used in conjunction with 

an optimization method such as gradient descent.

 Deep Neural Networks are hard to train

– learning machines with lots of (typically in range of million) parameters

– Unstable gradients issue 

• Vanishing gradient problem

• Exploding gradient problem

– Choice of network architecture and other hyper-parameters is also 

important. 

– Many factors can play a role in making deep networks hard to train

– Understanding all those factors is still a subject of ongoing research
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Hello World of Deep Learning: 

Recognition of MNIST

Deep Learning Example
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Introducing the MNIST problem

 MNIST (Mixed National Institute of Standards and Technology 

database) is a large database of handwritten digits that is commonly 

used for training various image processing systems.

 It consists of images of handwritten digits like these:

 The MNIST database contains 60,000 training images and 10,000

testing images.
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Example Problem - MNIST

 Recognizes handwritten digits.

 We uses the MNIST dataset, a collection of 60,000 labeled digits that 

has kept generations of PhDs busy for almost two decades. You will 

solve the problem with less than 100 lines of 

Python/Keras/TensorFlow code.

 We will gradually enhance the neural network to achieve above 99% 

accuracy by using the mentioned techniques.
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Steps for MNIST

 Understand the MNIST data

 Softmax regression layer

 The cost function
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The MNIST Data

 Every MNIST data point has two parts: an image of a handwritten digit 

and a corresponding label. We'll call the images "x" and the labels "y". 

Both the training set and test set contain images and their 

corresponding labels;

 Each image is 28 pixels by 28 pixels. We can interpret this as a big 

array of numbers:
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One Layer NN for MNIST Recognition

 We will start with a very simple model, called Softmax Regression.

 We can flatten this array into a vector of 28x28 = 784 numbers. It 

doesn't matter how we flatten the array, as long as we're consistent 

between images. 

 From this perspective, the MNIST images are just a bunch of points in 

a 784-dimensional vector space.
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Result of the Flatten Operation

 The result is that the training images is a matrix (tensor) with a shape 

of [60000, 784]. 

 The first dimension is an index into the list of images and the second 

dimension is the index for each pixel in each image. 

 Each entry in the tensor is a pixel intensity between 0 and 1, for a 

particular pixel in a particular image.
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One-hot Vector (One vs All)

 For the purposes of this tutorial, we label the y’s as "one-hot vectors“.

 A one-hot vector is a vector which is 0 in most dimensions, and 1 in a 

single dimension.

 How to label an “8”?

– [0,0,0,0,0,0,0,0,1,0]

 What is the dimension of our y matrix (tensor)?
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Softmax Regressions

 Every image in MNIST is of a handwritten digit between 0 and 9. 

 So there are only ten possible things that a given image can be. We 

want to be able to look at an image and give the probabilities for it 

being each digit.

 For example, our model might look at a picture of an eight and be 80% 

sure it's an 8, but give a 6% chance to it being a 4 (because of the top 

loop) and a bit of probability to all the others because it isn't 100% 

sure.
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2 steps in softmax regression - Step 1

 Step 1: Add up the evidence of our input being in certain classes.

– Do a weighted sum of the pixel intensities. The weight is negative if that 

pixel having a high intensity is evidence against the image being in that 

class, and positive if it is evidence in favor.
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Matrix Representation of softmax layer
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2 steps in softmax regression - Step 2

 Step 2: Convert the evidence tallies into our predicted probabilities y 

using the "softmax" function:

 Here softmax is serving as an "activation" function, shaping the 

output of our linear function a probability distribution over 10 cases, 

defined as:
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The softmax layer

 The output from the softmax layer is a set of probability distribution, 

positive numbers which sum up to 1. 

11/08/2017 Introduction to Deep Learning Fall 2017

28x28 

pixels

softmax

...

...

0 1 2 9

784 pixels

weighted sum of all 

pixels + biases
neuron outputs

34

 
 

 
exp

softmax
exp

i

i

jj

z
z

z





Softmax on a batch of images

 More compact representation for “softmaxing” on all the images
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0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.01 0.02 0.01

The Cross-Entropy Cost Function

 For classification problems, the Cross-Entropy cost function works 

better than quadratic cost function.

 We define the cross-entropy cost function for the neural network by:
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Short Summary

 How MNIST data is organized

– X:

• Flattened image pixels matrix

– Y:

• One-hot vector

 Softmax regression layer

– Linear regression

– Output probability for each category

 Cost function

– Cross-entropy
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Implementation in 

Keras/Tensorflow

Deep Learning Example
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Few Words about

Keras, Tensorflow and Theano
 Keras is a high-level neural networks library, written in Python and 

capable of running on top of either TensorFlow or Theano. 

 TensorFlow is an open source software library for numerical 

computation using data flow graphs.

 Theano is a Python library that allows you to define, optimize, and 

evaluate mathematical expressions involving multi-dimensional arrays 

efficiently.
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Introducing Keras

 Keras is a high-level neural networks library, 

 Written in Python and capable of running on top of either TensorFlow

or Theano. 

 It was developed with a focus on enabling fast experimentation. Being 

able to go from idea to result with the least possible delay is key to 

doing good research.

 See more at: https://github.com/fchollet/keras
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Typical Code Structure

 Load the dataset (MNIST) 

 Build the Neural Network/Machine Learning Model

 Train the model
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Software Environment

 What you'll need

– Python 2 or 3 (Python 3 recommended)

– TensorFlow/Keras

– Matplotlib (Python visualization library)

 On LONI QB2 the above modules are already setup for you, simply 

use:

$ module load python/2.7.12-anaconda-tensorflow

OR

$ module load python/3.5.2-anaconda-tensorflow
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Keras - Initialization

# import necessary modules

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten

from keras.layers import Convolution2D, MaxPooling2D

from keras.utils import np_utils

from keras import backend as K
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Load The MNIST Dataset

# load the mnist dataset

import cPickle

import gzip

f = gzip.open('mnist.pkl.gz', 'rb')

# load the training and test dataset

# download https://s3.amazonaws.com/img-datasets/mnist.pkl.gz

# to use in this tutorial

X_train, y_train, X_test, y_test = cPickle.load(f)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

Output of the print line:

(60000, 28, 28) (60000,) (10000, 28, 28) (10000,)
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Preprocessing the MNIST Dataset

# Flatten the image to 1D

X_train = X_train.reshape(X_train.shape[0], img_rows*img_cols)

X_test = X_test.reshape(X_test.shape[0], img_rows*img_cols)

input_shape = (img_rows*img_cols,)

# convert all data to 0.0-1.0 float values

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

X_train /= 255

X_test /= 255

# convert class vectors to binary class matrices

Y_train = np_utils.to_categorical(y_train, nb_classes)

Y_test = np_utils.to_categorical(y_test, nb_classes)
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Build The First softmax Layer

# The Sequential model is a linear stack of layers in Keras

model = Sequential()

#build the softmax regression layer

model.add(Dense(nb_classes,input_shape=input_shape))

model.add(Activation('softmax'))

# Before training a model,

# configure the learning process via the compile method.

# using the cross-entropy loss function (objective)

model.compile(loss='categorical_crossentropy',

#using the stochastic gradient descent (SGD)

optimizer='sgd',

# using accuracy to judge the performance of your model

metrics=['accuracy'])

# fit the model, the training process

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))
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Results Of The First softmax Regression

 Training accuracy vs Test accuracy, loss function

 We reach a test accuracy at 91.7%
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Review The Classified Results
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Adding More Layers?

 Using a 5 fully connected layer model:
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5 Layer Model In Keras

model = Sequential()

# try also tanh, sigmoid

act_func=‘relu’

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dense(100,activation=act_func))

model.add(Dense( 60,activation=act_func))

model.add(Dense( 30,activation=act_func))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=‘sgd',

metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))
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5 Layer Regression – Different Activation

 Training accuracy vs Test accuracy, loss function

 We reach a Test accuracy at 97.35% (sigmoid), 98.06% (tanh)
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Rectified Linear Unit (ReLU) 

activation function
 ReLU - The Rectified Linear Unit has become very popular in the last 

few years:

 We get a test accuracy of 98.07% with ReLU
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Overfitting

 Overfitting occurs when a model is excessively complex, such as 

having too many parameters relative to the number of observations. A 

model that has been overfit has poor predictive performance, as it 

overreacts to minor fluctuations in the training data.
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Regularization - Dropout

 Dropout is an extremely effective, simple and recently introduced 

regularization technique by Srivastava et al (2014).

 While training, dropout is implemented by only keeping a neuron 

active with some probability p (a hyperparameter), or setting it to zero 

otherwise.

 It is quite simple to apply dropout in Keras.

# apply a dropout rate 0.25 (drop 25% of the neurons)

model.add(Dropout(0.25))
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Apply Dropout To The 5 Layer NN

model = Sequential()

act_func='relu'

p_dropout=0.25 # apply a dropout rate 25 %

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dropout(p_dropout))

model.add(Dense(100,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense( 60,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense( 30,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=‘sgd',

metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))
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Results Using p_dropout=0.25

 Resolve the overfitting issue

 Sustained 98.26% accuracy
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Why Using Fully Connected Layers?

 Such a network architecture does not take into account the spatial 

structure of the images. 

– For instance, it treats input pixels which are far apart and close together 

on exactly the same weight.

 Spatial structure must instead be inferred from the training data. 

 Is there an architecture which tries to take advantage of the spatial 

structure?
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Convolution Neuron Network 

(CNN) 

 Deep convolutional network is one of the most widely used types of 

deep network.

 In a layer of a convolutional network, one "neuron" does a weighted 

sum of the pixels just above it, across a small region of the image 

only. It then acts normally by adding a bias and feeding the result 

through its activation function. 

 The big difference is that each neuron reuses the same weights 

whereas in the fully-connected networks seen previously, each neuron 

had its own set of weights.
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How Does CNN Work?

 By sliding the patch of weights (filter) across the image in both 

directions (a convolution) you obtain as many output values as there 

were pixels in the image (some padding is necessary at the edges).
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Three basic ideas about CNN

 Local receptive fields

 Shared weights and biases: 

 Pooling
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Pooling Layer

 Convolutional neural networks also contain pooling layers. Pooling 

layers are usually used immediately after convolutional layers. 

 What the pooling layers do is simplify the information in the output 

from the convolutional layer.

 We can think of max-pooling as a way for the network to ask whether a 

given feature is found anywhere in a region of the image. It then 

throws away the exact positional information.
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Convolutional Network With 

Fully Connected Layers
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Stacking And Chaining 

Convolutional Layers in Keras
model = Sequential()

# Adding the convulation layers

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],

border_mode='valid',

input_shape=input_shape))

model.add(Activation('relu'))

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=pool_size))

model.add(Dropout(0.25))

# Fully connected layers

model.add(Flatten())

model.add(Dense(256,activation='relu'))

model.add(Dropout(0.25))

model.add(Dense(nb_classes,activation('softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adadelta',
metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1,callbacks=[history], validation_data=(X_test, Y_test))
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Challenging The 99% Testing Accuracy

 By using the convolution layer and the fully connected layers, we 

reach a test accuracy of 99.23%

11/08/2017 Introduction to Deep Learning Fall 2017 64

99.23% 

test accuracy



Review The Classified Results of CNN
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Feed More Data:

Using Expanded Dataset
 We can further increase the test accuracy by expanding the 

mnist.pkl.gz dataset, reaching a nearly 99.6% test accuracy
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Examples of Convolution NN

 LeNet (1998)

 AlexNet (2012)

 GoogleLeNet (2014)
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Machine Learning Courses List

 Machine Learning in Coursera

https://www.coursera.org/learn/machine-learning

 Learning from Data (Caltech)

https://work.caltech.edu/telecourse.html

 Convolutional Neural Networks for Visual Recognition

http://cs231n.github.io/

 Deep Learning for Natural Language Processing

https://cs224d.stanford.edu/
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Overview of LONI QB2 

Deep Learning Examples on LONI QB2
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QB2 Hardware Specs

 QB2 came on-line 5 Nov 2014. 

– It is a 1.5 Petaflop peak performance cluster containing 504 compute 

nodes with 

• 960 NVIDIA Tesla K20x GPU's, and 

• Over 10,000 Intel Xeon processing cores. It achieved 1.052 PF during 

testing. 

 Ranked 46th on the November 2014 Top500 list. 

 480 Compute Nodes, each with:

– Two 10-core 2.8 GHz E5-2680v2 Xeon processors.

– 64 GB memory

– 500 GB HDD

– 2 NVIDIA Tesla K20x GPU's
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Inside A QB Cluster Rack
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Inside A QB2 Dell C8000 Node
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GPUCPU

Add GPUs: Accelerate Science Applications
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Performance Comparison 

CPU-GPU
 Comparison of runtime for deep learning benchmark problem

– CIFAR10, 1 Epoch
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Speedups:
537/47=11.4
537/23=23.3
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Submit and Monitor Your Jobs

Deep Learning Examples on LONI QB2
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Two Job Types

 Interactive job

– Set up an interactive environment on compute nodes for users

• Advantage: can run programs interactively

• Disadvantage: must be present when the job starts

– Purpose: testing and debugging, compiling

• Do not run on the head node!!!

• Try not to run interactive jobs with large core count, which is a waste of 

resources)

 Batch job

– Executed without user intervention using a job script

• Advantage: the system takes care of everything

• Disadvantage: can only execute one sequence of commands which cannot 

changed after submission

– Purpose: production run
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PBS Script (MNIST) 

Tensorflow Backend
#!/bin/bash

#PBS -l nodes=1:ppn=20

#PBS -l walltime=72:00:00

#PBS -q workq

#PBS -N cnn.tf.gpu

#PBS -o cnn.tf.gpu.out

#PBS -e cnn.tf.gpu.err

#PBS -A loni_loniadmin1

cd $PBS_O_WORKDIR

# use the tensorflow backend

export KERAS_BACKEND=tensorflow

# use this python module key to access tensorflow, theano and keras

module load python/2.7.12-anaconda

python mnist_cnn.py
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Steps to Submit Jobs

[fchen14@qb1 ml_tut]$ cd /project/fchen14/machine_learning/ml_tut

[fchen14@qb1 ml_tut]$ qsub sbm_cifar10_cnn_tensorflow.pbs

305669.qb3

[fchen14@qb1 ml_tut]$ qstat -u fchen14

qb3:

Req'd Req'd Elap

Job ID               Username    Queue    Jobname          SessID NDS   TSK    Memory Time  S Time

-------------------- ----------- -------- ---------------- ------ ----- ------ ------ ----- - -----

305667.qb3           fchen14     workq cnn.tf.gpu 25633     1     20    -- 72:00 R   --

305669.qb3           fchen14     k40      cnn.tf.gpu -- 1     20    -- 72:00 R   --

[fchen14@qb1 ml_tut]$ qshow 305669.qb3

PBS job: 305669.qb3, nodes: 1

Hostname  Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)

qb002       24 0.32 205  4 fchen14:python:166G:1.6G:0.1 fchen14:305669:103M:1M

PBS_job=305669.qb3 user=fchen14 allocation=loni_loniadmin1 queue=k40 total_load=0.32 cpu_hours=0.11 
wall_hours=0.05 unused_nodes=0 total_nodes=1 ppn=20 avg_load=0.32 avg_cpu=205% avg_mem=1647mb 
avg_vmem=170438mb top_proc=fchen14:python:qb002:166G:1.6G:0.1hr:205% 
toppm=msun:python:qb002:169456M:1190M node_processes=4
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Job Monitoring - Linux Clusters 

 Check details on your job using qstat

$ qstat -n -u $USER  : For quick look at nodes assigned to you 

$ qstat -f jobid : For details on your job 

$ qdel jobid : To delete job 

 Check approximate start time using showstart

$ showstart jobid

 Check details of your job using checkjob

$ checkjob jobid

 Check health of your job using qshow

$ qshow jobid

 Dynamically monitor node status using top 

– See next slides

 Monitor GPU usage using nvidia-smi

– See next slides

 Please pay close attention to the load and the memory consumed by 

your job!
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Using the “top” command

 The top program provides a dynamic real-time view of a running 

system.
[fchen14@qb1 ml_tut]$ ssh qb002

Last login: Mon Oct 17 22:50:16 2016 from qb1.loni.org

[fchen14@qb002 ~]$ top

top - 15:57:04 up 24 days,  5:38,  1 user,  load average: 0.44, 0.48, 0.57

Tasks: 606 total,   1 running, 605 sleeping,   0 stopped,   0 zombie

Cpu(s):  9.0%us,  0.8%sy,  0.0%ni, 90.2%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st

Mem:  132064556k total,  9759836k used, 122304720k free,   177272k buffers

Swap: 134217720k total,        0k used, 134217720k free,  5023172k cached

PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND

21270 fchen14   20   0  166g 1.6g 237m S 203.6  1.3  16:42.05 python

22143 fchen14   20   0 26328 1764 1020 R  0.7  0.0   0:00.76 top

83 root      20   0     0    0    0 S  0.3  0.0  16:47.34 events/0

97 root      20   0     0    0    0 S  0.3  0.0   0:25.80 events/14

294 root      39  19     0    0    0 S  0.3  0.0  59:45.52 kipmi0

1 root      20   0 21432 1572 1256 S  0.0  0.0   0:01.50 init

2 root      20   0     0    0    0 S  0.0  0.0   0:00.02 kthreadd
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Monitor GPU Usage

 Use nvidia-smi to monitor GPU usage:
[fchen14@qb002 ~]$ nvidia-smi -l

Thu Nov  3 15:58:52 2016

+------------------------------------------------------+

| NVIDIA-SMI 352.93     Driver Version: 352.93         |

|-------------------------------+----------------------+----------------------+

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util Compute M. |

|===============================+======================+======================|

|   0  Tesla K40m          On   | 0000:03:00.0     Off |                    0 |

| N/A   34C    P0   104W / 235W |  11011MiB / 11519MiB |     77%      Default |

+-------------------------------+----------------------+----------------------+

|   1  Tesla K40m          On   | 0000:83:00.0     Off |                    0 |

| N/A   32C    P0    61W / 235W |  10950MiB / 11519MiB |      0%      Default |

+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+

| Processes:                                                       GPU Memory |

|  GPU       PID  Type  Process name                               Usage      |

|=============================================================================|

|    0     21270    C   python                                       10954MiB |

|    1     21270    C   python                                       10893MiB |

+-----------------------------------------------------------------------------+
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Future Trainings

 This is the last training for this semester

– Keep an eye on future HPC trainings at:

• http://www.hpc.lsu.edu/training/tutorials.php#upcoming

 Programming/Parallel Programming workshops in Summer

 Visit our webpage: www.hpc.lsu.edu 
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