
Introduction to Deep

Learning
Feng Chen

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

November 08, 2017

Part of slides referenced from

Nvidia, Deep Learning Institute (DLI) Teaching Kit

Stanford, CS231n: Convolutional Neural Networks for Visual Recognition

Martin Görner, Learn TensorFlow and deep learning, without a Ph.D

Topics To Be Discussed

 Fundamentals about Machine Learning

 What is Deep Learning?

– What is a (deep) neural network

– How to train it

 Build a neural network model using Keras/TensorFlow

– MNIST example

• Softmax classification

• Cross-entropy cost function

• A 5 layer deep neural network

• Dropout

• Convolutional networks

– How to utilize HPC

• Run batch jobs

11/08/2017 Introduction to Deep Learning Fall 2017 2

Machine Learning and Deep Learning

11/08/2017 Introduction to Deep Learning Fall 2017 3

Machine Learning

 Machine Learning is the science of getting computers to learn, without

being explicitly programmed.

 Examples are used to train computers to perform tasks that would be

difficult to program

11/08/2017 Introduction to Deep Learning Fall 2017 4

Types of Machine Learning

 Supervised Learning

– Training data is labeled

– Goal is correctly label new data

 Unsupervised Learning

– Training data is unlabeled

– Goal is to categorize the observations

 Reinforcement Learning

– Training data is unlabeled

– System receives feedback for its actions

– Goal is to perform better actions

11/08/2017 Introduction to Deep Learning Fall 2017 5

Applications of Machine Learning

 Handwriting Recognition

– convert written letters into digital letters

 Image Classification

– label images with appropriate categories (e.g. Google Photos)

 Language Translation

– translate spoken and or written languages (e.g. Google Translate)

 Speech Recognition

– convert voice snippets to text (e.g. Siri, Cortana, and Alexa)

 Autonomous Driving

– enable cars to drive

11/08/2017 Introduction to Deep Learning Fall 2017 6

Data-driven Approach

 Instead of trying to specify what every one of the categories of interest

look like directly in code, the approach that we will take is not unlike

one you would take with a child:

– Provide the computer with many examples of each class

– Develop learning algorithms that look at these examples and learn

about the visual appearance of each class.

 This approach is referred to as a data-driven approach.

11/08/2017 Introduction to Deep Learning Fall 2017 7

An example training set for four visual categories. In practice we may have thousands of

categories and hundreds of thousands of images for each category. *(From Stanford CS231n)

Training and Test Data
 Training Data

– data used to learn a model

 Test Data

– data used to assess the accuracy of model

 Overfitting

– Model performs well on training data but poorly on test data

11/08/2017 Introduction to Deep Learning Fall 2017 8

Supervised Learning Algorithms

 Linear Regression

 Decision Trees

 Support Vector Machines

 K-Nearest Neighbor

 Neural Networks

– Deep Learning is the branch of Machine Learning based on Deep

Neural Networks (DNNs, i.e., neural networks composed of more than 1

hidden layer).

– Convolutional Neural Networks (CNNs) are one of the most popular

DNN architectures (so CNNs are part of Deep Learning), but by no

means the only one.

11/08/2017 Introduction to Deep Learning Fall 2017 9

Machine Learning Frameworks
Tool Uses Language

Scikit-Learn
Classification,

Regression, Clustering
Python

Spark MLlib
Classification,

Regression, Clustering
Scala, R, Java

MXNet
Deep learning

framework

Python, R, Julia,

Scala, Go, Javascript

and more

Caffe Neural Networks C++, Python

TensorFlow Neural Networks Python

PyTorch Neural Networks Python

11/08/2017 Introduction to Deep Learning Fall 2017 10

Machine Learning and Deep

Learning

What is Deep Learning

11/08/2017 11

Understanding The Learning Process

 Start from least square method...

 Trying to find

– Parameters (w, b): minimizes the sum of the squares of the errors

– Errors: distance between known data points and predictions

11/08/2017 Introduction to Deep Learning Fall 2017 12

 from Yaser Abu-Mustafa “Learning From Data” Lecture 3

1 1 2 2y w x w x b

Recall From The Least Square Method

 Error

– Cost Function (Loss): J(w), C, L

 Parameters

– Weights and Biases: (w, b)

 Define the cost function of your problem

 Find the set of weights that minimizes the cost function (loss)

11/08/2017 Introduction to Deep Learning Fall 2017 13

Theory: Gradient Descent

 Gradient descent is a first-order iterative optimization algorithm. To

find a local minimum of a function using gradient descent, one takes

steps proportional to the negative of the gradient (or of the

approximate gradient) of the function at the current point.

11/08/2017 Introduction to Deep Learning Fall 2017 14

Mini-batch Gradient Descent

 Batch gradient descent:

– Use all examples in each iteration

 Stochastic gradient descent:

– Use one example in each iteration

 Mini-batch gradient descent

– Use b examples in each iteration

 In the neural network terminology:

– one EPOCH = one forward pass and one backward pass of all the

training examples

– batch size = the number of training examples in one forward/backward

pass. The higher the batch size, the more memory space you'll need.

– number of iterations = number of passes, each pass using [batch size]

number of examples. To be clear, one pass = one forward pass + one

backward pass (we do not count the forward pass and backward pass

as two different passes).

– Example: if you have 1000 training examples, and your batch size is

500, then it will take 2 iterations to complete 1 epoch.

11/08/2017 Introduction to Deep Learning Fall 2017 15

What is a neural network?

 Start from a perceptron

11/08/2017 Introduction to Deep Learning Fall 2017 16

1 1 2 2 3 3() sign

sign

sign

i ii

T

h x w x w x w x b

w x b

b

w x

w1

w2

w3

b
x1

x2

x3

h(x)

+1

1

2

3

x

x

x

x

1

2

3

w

w

w

w

x1 age 23

x2 gender male

x3 annual salary $30,000

b threshold some value

h(x) Approve credit if: h(x)>0

Feature vector: x

Denote as: z

Hypothesis

(Prediction: y)

Weight vector: w

Activation function:

σ(z)=sign(z)

Perceptron To Neuron

 Replace the sign to sigmoid

11/08/2017 Introduction to Deep Learning Fall 2017 17

1 1 2 2 3 3() sigmoid

sigmoid

sigmoid

i ii

T

h x w x w x w x b

w x b

b

w x

b

h(x)

Activation function:

σ(z)=sigmoid(z)

 y h x z

Tz b w x
1

2

3

x

x

x

x

1

2

3

w

w

w

w

Feature vector: x Weight vector: w

w1

w2

w3

x1

x2

x3

+1

Sigmoid Neurons

 Sigmoid activation Function

– In the field of Artificial Neural Networks, the sigmoid function is a type of

activation function for artificial neurons.

 There are many other activation functions. (We will touch later.)

11/08/2017 Introduction to Deep Learning Fall 2017 18

1

1 z
z

e

 z sign z

Network Of Neurons

 A complex network of neurons could make quite subtle decisions

 Deep Neuron Network: Number of hidden layers >1

11/08/2017 Introduction to Deep Learning Fall 2017 19

Types of Neural Networks

11/08/2017 Introduction to Deep Learning Fall 2017 20

Ref: http://www.asimovinstitute.org/neural-network-zoo/

How to Train DNN?

 Backward Propagation

– The backward propagation of errors or backpropagation, is a common

method of training artificial neural networks and used in conjunction with

an optimization method such as gradient descent.

 Deep Neural Networks are hard to train

– learning machines with lots of (typically in range of million) parameters

– Unstable gradients issue

• Vanishing gradient problem

• Exploding gradient problem

– Choice of network architecture and other hyper-parameters is also

important.

– Many factors can play a role in making deep networks hard to train

– Understanding all those factors is still a subject of ongoing research

11/08/2017 Introduction to Deep Learning Fall 2017 21

Hello World of Deep Learning:

Recognition of MNIST

Deep Learning Example

11/08/2017 22

Introducing the MNIST problem

 MNIST (Mixed National Institute of Standards and Technology

database) is a large database of handwritten digits that is commonly

used for training various image processing systems.

 It consists of images of handwritten digits like these:

 The MNIST database contains 60,000 training images and 10,000

testing images.

11/08/2017 23Introduction to Deep Learning Fall 2017

Example Problem - MNIST

 Recognizes handwritten digits.

 We uses the MNIST dataset, a collection of 60,000 labeled digits that

has kept generations of PhDs busy for almost two decades. You will

solve the problem with less than 100 lines of

Python/Keras/TensorFlow code.

 We will gradually enhance the neural network to achieve above 99%

accuracy by using the mentioned techniques.

11/08/2017 Introduction to Deep Learning Fall 2017 24

Steps for MNIST

 Understand the MNIST data

 Softmax regression layer

 The cost function

11/08/2017 Introduction to Deep Learning Fall 2017 25

The MNIST Data

 Every MNIST data point has two parts: an image of a handwritten digit

and a corresponding label. We'll call the images "x" and the labels "y".

Both the training set and test set contain images and their

corresponding labels;

 Each image is 28 pixels by 28 pixels. We can interpret this as a big

array of numbers:

11/08/2017 Introduction to Deep Learning Fall 2017 26

One Layer NN for MNIST Recognition

 We will start with a very simple model, called Softmax Regression.

 We can flatten this array into a vector of 28x28 = 784 numbers. It

doesn't matter how we flatten the array, as long as we're consistent

between images.

 From this perspective, the MNIST images are just a bunch of points in

a 784-dimensional vector space.

11/08/2017 Introduction to Deep Learning Fall 2017 27

...

28x28

pixels

Result of the Flatten Operation

 The result is that the training images is a matrix (tensor) with a shape

of [60000, 784].

 The first dimension is an index into the list of images and the second

dimension is the index for each pixel in each image.

 Each entry in the tensor is a pixel intensity between 0 and 1, for a

particular pixel in a particular image.

11/08/2017 Introduction to Deep Learning Fall 2017 28

60000

60,000

784

One-hot Vector (One vs All)

 For the purposes of this tutorial, we label the y’s as "one-hot vectors“.

 A one-hot vector is a vector which is 0 in most dimensions, and 1 in a

single dimension.

 How to label an “8”?

– [0,0,0,0,0,0,0,0,1,0]

 What is the dimension of our y matrix (tensor)?

11/08/2017 Introduction to Deep Learning Fall 2017 29

60,000

10

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

...

0 0 0 0 1 0 0 0 0 0

6

3

2

4

5

4

...

4

60,000 labels:

0 1 2 3 4 5 6 7 8 9

Softmax Regressions

 Every image in MNIST is of a handwritten digit between 0 and 9.

 So there are only ten possible things that a given image can be. We

want to be able to look at an image and give the probabilities for it

being each digit.

 For example, our model might look at a picture of an eight and be 80%

sure it's an 8, but give a 6% chance to it being a 4 (because of the top

loop) and a bit of probability to all the others because it isn't 100%

sure.

11/08/2017 Introduction to Deep Learning Fall 2017 30

0 1 2 3 4 5 6 7 8 9

0.04 0.02 0.01 0.01 0.06 0.03 0.01 0.01 0.80 0.01

Softmax Regression
this is a “8”

2 steps in softmax regression - Step 1

 Step 1: Add up the evidence of our input being in certain classes.

– Do a weighted sum of the pixel intensities. The weight is negative if that

pixel having a high intensity is evidence against the image being in that

class, and positive if it is evidence in favor.

11/08/2017 Introduction to Deep Learning Fall 2017 31

,i i j j ij
z W x b

Matrix Representation of softmax layer

11/08/2017 Introduction to Deep Learning Fall 2017 32

784 pixels

X : 60,000 images,

one per line,

flattened

w0,0 w0,1 w0,2 w0,3 … w0,9
w1,0 w1,1 w1,2 w1,3 … w1,9
w2,0 w2,1 w2,2 w2,3 … w2,9
w3,0 w3,1 w3,2 w3,3 … w3,9
w4,0 w4,1 w4,2 w4,3 … w4,9
w5,0 w5,1 w5,2 w5,3 … w5,9
w6,0 w6,1 w6,2 w6,3 … w6,9
w7,0 w7,1 w7,2 w7,3 … w7,9
w8,0 w8,1 w8,2 w8,3 … w8,9

…
w783,0 w783,1 w783,2 … w783,9

7
8

4
 lin

es

broadcast

10 columns

x
x
x
x
x
x
x

softmax()Y X W b

What is the final dimension for X*W?

2 steps in softmax regression - Step 2

 Step 2: Convert the evidence tallies into our predicted probabilities y

using the "softmax" function:

 Here softmax is serving as an "activation" function, shaping the

output of our linear function a probability distribution over 10 cases,

defined as:

11/08/2017 Introduction to Deep Learning Fall 2017 33

 ,softmax softmaxi i i j j ij
h z W x b x

exp

softmax normalize exp
exp

i

i

jj

z
z z

z

The softmax layer

 The output from the softmax layer is a set of probability distribution,

positive numbers which sum up to 1.

11/08/2017 Introduction to Deep Learning Fall 2017

28x28

pixels

softmax

...

...

0 1 2 9

784 pixels

weighted sum of all

pixels + biases
neuron outputs

34

exp

softmax
exp

i

i

jj

z
z

z

Softmax on a batch of images

 More compact representation for “softmaxing” on all the images

11/08/2017 Introduction to Deep Learning Fall 2017 35

softmax()Y X W b

Predictions Images Weights Biases

Y[60000, 10] [60000, 784] W[784,10] b[10]

matrix multiply broadcast

on all lines

applied on

each line

0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.01 0.02 0.01

The Cross-Entropy Cost Function

 For classification problems, the Cross-Entropy cost function works

better than quadratic cost function.

 We define the cross-entropy cost function for the neural network by:

11/08/2017 Introduction to Deep Learning Fall 2017

 ' log |i i ii
C y P Y y X x

computed probabilities

this is a “6”

“one-hot” encoded ground truth

0 1 2 3 4 5 6 7 8 9

36

0 0 0 0 0 0 1 0 0 0

Cross entropy

Short Summary

 How MNIST data is organized

– X:

• Flattened image pixels matrix

– Y:

• One-hot vector

 Softmax regression layer

– Linear regression

– Output probability for each category

 Cost function

– Cross-entropy

11/08/2017 Introduction to Deep Learning Fall 2017 37

Implementation in

Keras/Tensorflow

Deep Learning Example

11/08/2017 38Introduction to Deep Learning Fall 2017

Few Words about

Keras, Tensorflow and Theano
 Keras is a high-level neural networks library, written in Python and

capable of running on top of either TensorFlow or Theano.

 TensorFlow is an open source software library for numerical

computation using data flow graphs.

 Theano is a Python library that allows you to define, optimize, and

evaluate mathematical expressions involving multi-dimensional arrays

efficiently.

11/08/2017 Introduction to Deep Learning Fall 2017 39

Introducing Keras

 Keras is a high-level neural networks library,

 Written in Python and capable of running on top of either TensorFlow

or Theano.

 It was developed with a focus on enabling fast experimentation. Being

able to go from idea to result with the least possible delay is key to

doing good research.

 See more at: https://github.com/fchollet/keras

11/08/2017 Introduction to Deep Learning Fall 2017 40

https://github.com/fchollet/keras

Typical Code Structure

 Load the dataset (MNIST)

 Build the Neural Network/Machine Learning Model

 Train the model

11/08/2017 Introduction to Deep Learning Fall 2017 41

Software Environment

 What you'll need

– Python 2 or 3 (Python 3 recommended)

– TensorFlow/Keras

– Matplotlib (Python visualization library)

 On LONI QB2 the above modules are already setup for you, simply

use:

$ module load python/2.7.12-anaconda-tensorflow

OR

$ module load python/3.5.2-anaconda-tensorflow

11/08/2017 Introduction to Deep Learning Fall 2017 42

Keras - Initialization

import necessary modules

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten

from keras.layers import Convolution2D, MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

11/08/2017 Introduction to Deep Learning Fall 2017 43

Load The MNIST Dataset

load the mnist dataset

import cPickle

import gzip

f = gzip.open('mnist.pkl.gz', 'rb')

load the training and test dataset

download https://s3.amazonaws.com/img-datasets/mnist.pkl.gz

to use in this tutorial

X_train, y_train, X_test, y_test = cPickle.load(f)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

Output of the print line:

(60000, 28, 28) (60000,) (10000, 28, 28) (10000,)

11/08/2017 Introduction to Deep Learning Fall 2017 44

Preprocessing the MNIST Dataset

Flatten the image to 1D

X_train = X_train.reshape(X_train.shape[0], img_rows*img_cols)

X_test = X_test.reshape(X_test.shape[0], img_rows*img_cols)

input_shape = (img_rows*img_cols,)

convert all data to 0.0-1.0 float values

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

X_train /= 255

X_test /= 255

convert class vectors to binary class matrices

Y_train = np_utils.to_categorical(y_train, nb_classes)

Y_test = np_utils.to_categorical(y_test, nb_classes)

11/08/2017 Introduction to Deep Learning Fall 2017 45

One-hot encoding

All grayscale values to 0.0-1.0

Flatten 28x28 image to 1D

Build The First softmax Layer

The Sequential model is a linear stack of layers in Keras

model = Sequential()

#build the softmax regression layer

model.add(Dense(nb_classes,input_shape=input_shape))

model.add(Activation('softmax'))

Before training a model,

configure the learning process via the compile method.

using the cross-entropy loss function (objective)

model.compile(loss='categorical_crossentropy',

#using the stochastic gradient descent (SGD)

optimizer='sgd',

using accuracy to judge the performance of your model

metrics=['accuracy'])

fit the model, the training process

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))

11/08/2017 Introduction to Deep Learning Fall 2017 46

nb_classes=10 input_shape=(784,)

Results Of The First softmax Regression

 Training accuracy vs Test accuracy, loss function

 We reach a test accuracy at 91.7%

11/08/2017 Introduction to Deep Learning Fall 2017 47

91.70%

test accuracy

Review The Classified Results

11/08/2017 Introduction to Deep Learning Fall 2017 48

Correctly classified Incorrectly classified

Adding More Layers?

 Using a 5 fully connected layer model:

11/08/2017 Introduction to Deep Learning Fall 2017 49

sigmoid

tanh

relu

0 1 2 ... 9

200

100

60

30

10
softmax

5 Layer Model In Keras

model = Sequential()

try also tanh, sigmoid

act_func=‘relu’

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dense(100,activation=act_func))

model.add(Dense(60,activation=act_func))

model.add(Dense(30,activation=act_func))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=‘sgd',

metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))

11/08/2017 Introduction to Deep Learning Fall 2017 50

5 Layer Regression – Different Activation

 Training accuracy vs Test accuracy, loss function

 We reach a Test accuracy at 97.35% (sigmoid), 98.06% (tanh)

11/08/2017 Introduction to Deep Learning Fall 2017 51

sigmoid

tanh

Rectified Linear Unit (ReLU)

activation function
 ReLU - The Rectified Linear Unit has become very popular in the last

few years:

 We get a test accuracy of 98.07% with ReLU

11/08/2017 Introduction to Deep Learning Fall 2017 52

relu

 max 0,f z z

Overfitting

Overfitting

 Overfitting occurs when a model is excessively complex, such as

having too many parameters relative to the number of observations. A

model that has been overfit has poor predictive performance, as it

overreacts to minor fluctuations in the training data.

11/08/2017 Introduction to Deep Learning Fall 2017 53

Regression:

Classification:

Regularization - Dropout

 Dropout is an extremely effective, simple and recently introduced

regularization technique by Srivastava et al (2014).

 While training, dropout is implemented by only keeping a neuron

active with some probability p (a hyperparameter), or setting it to zero

otherwise.

 It is quite simple to apply dropout in Keras.

apply a dropout rate 0.25 (drop 25% of the neurons)

model.add(Dropout(0.25))

11/08/2017 Introduction to Deep Learning Fall 2017 54

Apply Dropout To The 5 Layer NN

model = Sequential()

act_func='relu'

p_dropout=0.25 # apply a dropout rate 25 %

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dropout(p_dropout))

model.add(Dense(100,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(60,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(30,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=‘sgd',

metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))

11/08/2017 Introduction to Deep Learning Fall 2017 55

Results Using p_dropout=0.25

 Resolve the overfitting issue

 Sustained 98.26% accuracy

11/08/2017 Introduction to Deep Learning Fall 2017 56

98.26%

test accuracy

Why Using Fully Connected Layers?

 Such a network architecture does not take into account the spatial

structure of the images.

– For instance, it treats input pixels which are far apart and close together

on exactly the same weight.

 Spatial structure must instead be inferred from the training data.

 Is there an architecture which tries to take advantage of the spatial

structure?

11/08/2017 Introduction to Deep Learning Fall 2017 57

Convolution Neuron Network

(CNN)

 Deep convolutional network is one of the most widely used types of

deep network.

 In a layer of a convolutional network, one "neuron" does a weighted

sum of the pixels just above it, across a small region of the image

only. It then acts normally by adding a bias and feeding the result

through its activation function.

 The big difference is that each neuron reuses the same weights

whereas in the fully-connected networks seen previously, each neuron

had its own set of weights.

11/08/2017 Introduction to Deep Learning Fall 2017 58

convolutional

subsampling

convolutional

subsampling

convolutional

subsampling

from Martin Görner Learn TensorFlow and deep learning, without a Ph.D

https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd.html

How Does CNN Work?

 By sliding the patch of weights (filter) across the image in both

directions (a convolution) you obtain as many output values as there

were pixels in the image (some padding is necessary at the edges).

11/08/2017 Introduction to Deep Learning Fall 2017 59

28

28

1

28x28x1 image

3x3x1 filter

convolve (slide) over all

spatial locations

activation map

1

28

28

Three basic ideas about CNN

 Local receptive fields

 Shared weights and biases:

 Pooling

11/08/2017 Introduction to Deep Learning Fall 2017 60

Pooling Layer

 Convolutional neural networks also contain pooling layers. Pooling

layers are usually used immediately after convolutional layers.

 What the pooling layers do is simplify the information in the output

from the convolutional layer.

 We can think of max-pooling as a way for the network to ask whether a

given feature is found anywhere in a region of the image. It then

throws away the exact positional information.

11/08/2017 Introduction to Deep Learning Fall 2017 61

Convolutional Network With

Fully Connected Layers

11/08/2017 Introduction to Deep Learning Fall 2017 62

convolutional layer

32 output channels

convolutional layer

32 output channels

28x28x1

200

3x3x32

fully connected layer

softmax layer10

3x3x32

32

32

Stacking And Chaining

Convolutional Layers in Keras
model = Sequential()

Adding the convulation layers

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],

border_mode='valid',

input_shape=input_shape))

model.add(Activation('relu'))

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=pool_size))

model.add(Dropout(0.25))

Fully connected layers

model.add(Flatten())

model.add(Dense(256,activation='relu'))

model.add(Dropout(0.25))

model.add(Dense(nb_classes,activation('softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adadelta',
metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1,callbacks=[history], validation_data=(X_test, Y_test))

11/08/2017 Introduction to Deep Learning Fall 2017 63

nb_filters=32 kernel_size=(3,3)

input_shape=(28,28)

Challenging The 99% Testing Accuracy

 By using the convolution layer and the fully connected layers, we

reach a test accuracy of 99.23%

11/08/2017 Introduction to Deep Learning Fall 2017 64

99.23%

test accuracy

Review The Classified Results of CNN

11/08/2017 Introduction to Deep Learning Fall 2017 65

Correctly classified Incorrectly classified

Feed More Data:

Using Expanded Dataset
 We can further increase the test accuracy by expanding the

mnist.pkl.gz dataset, reaching a nearly 99.6% test accuracy

11/08/2017 Introduction to Deep Learning Fall 2017 66

99.57%

test accuracy

Examples of Convolution NN

 LeNet (1998)

 AlexNet (2012)

 GoogleLeNet (2014)

11/08/2017 Introduction to Deep Learning Fall 2017 67

Machine Learning Courses List

 Machine Learning in Coursera

https://www.coursera.org/learn/machine-learning

 Learning from Data (Caltech)

https://work.caltech.edu/telecourse.html

 Convolutional Neural Networks for Visual Recognition

http://cs231n.github.io/

 Deep Learning for Natural Language Processing

https://cs224d.stanford.edu/

11/08/2017 Introduction to Deep Learning Fall 2017 68

https://www.coursera.org/learn/machine-learning
https://work.caltech.edu/telecourse.html
http://cs231n.github.io/
https://cs224d.stanford.edu/

Overview of LONI QB2

Deep Learning Examples on LONI QB2

11/08/2017 69

QB2 Hardware Specs

 QB2 came on-line 5 Nov 2014.

– It is a 1.5 Petaflop peak performance cluster containing 504 compute

nodes with

• 960 NVIDIA Tesla K20x GPU's, and

• Over 10,000 Intel Xeon processing cores. It achieved 1.052 PF during

testing.

 Ranked 46th on the November 2014 Top500 list.

 480 Compute Nodes, each with:

– Two 10-core 2.8 GHz E5-2680v2 Xeon processors.

– 64 GB memory

– 500 GB HDD

– 2 NVIDIA Tesla K20x GPU's

11/08/2017 Introduction to Deep Learning Fall 2017 70

Inside A QB Cluster Rack

11/08/2017 Introduction to Deep Learning Fall 2017

Rack

Infiniband

Switch

Compute

Node

71

Inside A QB2 Dell C8000 Node

11/08/2017 Introduction to Deep Learning Fall 2017

Storage

Accelerator

(GPU)
Accelerator

(GPU)

Processor

Memory

Network

Card

Processor

72

GPUCPU

Add GPUs: Accelerate Science Applications

Introduction to Deep Learning Fall 201711/08/2017 73

Performance Comparison

CPU-GPU
 Comparison of runtime for deep learning benchmark problem

– CIFAR10, 1 Epoch

11/08/2017 Introduction to Deep Learning Fall 2017

Speedups:
537/47=11.4
537/23=23.3

74

Submit and Monitor Your Jobs

Deep Learning Examples on LONI QB2

11/08/2017 75

Two Job Types

 Interactive job

– Set up an interactive environment on compute nodes for users

• Advantage: can run programs interactively

• Disadvantage: must be present when the job starts

– Purpose: testing and debugging, compiling

• Do not run on the head node!!!

• Try not to run interactive jobs with large core count, which is a waste of

resources)

 Batch job

– Executed without user intervention using a job script

• Advantage: the system takes care of everything

• Disadvantage: can only execute one sequence of commands which cannot

changed after submission

– Purpose: production run

11/08/2017 Introduction to Deep Learning Fall 2017 76

PBS Script (MNIST)

Tensorflow Backend
#!/bin/bash

#PBS -l nodes=1:ppn=20

#PBS -l walltime=72:00:00

#PBS -q workq

#PBS -N cnn.tf.gpu

#PBS -o cnn.tf.gpu.out

#PBS -e cnn.tf.gpu.err

#PBS -A loni_loniadmin1

cd $PBS_O_WORKDIR

use the tensorflow backend

export KERAS_BACKEND=tensorflow

use this python module key to access tensorflow, theano and keras

module load python/2.7.12-anaconda

python mnist_cnn.py

11/08/2017 Introduction to Deep Learning Fall 2017

Tells the job

scheduler

how much

resource you

need.

How will you

use the

resources?

77

Steps to Submit Jobs

[fchen14@qb1 ml_tut]$ cd /project/fchen14/machine_learning/ml_tut

[fchen14@qb1 ml_tut]$ qsub sbm_cifar10_cnn_tensorflow.pbs

305669.qb3

[fchen14@qb1 ml_tut]$ qstat -u fchen14

qb3:

Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

-------------------- ----------- -------- ---------------- ------ ----- ------ ------ ----- - -----

305667.qb3 fchen14 workq cnn.tf.gpu 25633 1 20 -- 72:00 R --

305669.qb3 fchen14 k40 cnn.tf.gpu -- 1 20 -- 72:00 R --

[fchen14@qb1 ml_tut]$ qshow 305669.qb3

PBS job: 305669.qb3, nodes: 1

Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)

qb002 24 0.32 205 4 fchen14:python:166G:1.6G:0.1 fchen14:305669:103M:1M

PBS_job=305669.qb3 user=fchen14 allocation=loni_loniadmin1 queue=k40 total_load=0.32 cpu_hours=0.11
wall_hours=0.05 unused_nodes=0 total_nodes=1 ppn=20 avg_load=0.32 avg_cpu=205% avg_mem=1647mb
avg_vmem=170438mb top_proc=fchen14:python:qb002:166G:1.6G:0.1hr:205%
toppm=msun:python:qb002:169456M:1190M node_processes=4

11/08/2017 Introduction to Deep Learning Fall 2017 78

Job Monitoring - Linux Clusters

 Check details on your job using qstat

$ qstat -n -u $USER : For quick look at nodes assigned to you

$ qstat -f jobid : For details on your job

$ qdel jobid : To delete job

 Check approximate start time using showstart

$ showstart jobid

 Check details of your job using checkjob

$ checkjob jobid

 Check health of your job using qshow

$ qshow jobid

 Dynamically monitor node status using top

– See next slides

 Monitor GPU usage using nvidia-smi

– See next slides

 Please pay close attention to the load and the memory consumed by

your job!

11/08/2017 Introduction to Deep Learning Fall 2017 79

Using the “top” command

 The top program provides a dynamic real-time view of a running

system.
[fchen14@qb1 ml_tut]$ ssh qb002

Last login: Mon Oct 17 22:50:16 2016 from qb1.loni.org

[fchen14@qb002 ~]$ top

top - 15:57:04 up 24 days, 5:38, 1 user, load average: 0.44, 0.48, 0.57

Tasks: 606 total, 1 running, 605 sleeping, 0 stopped, 0 zombie

Cpu(s): 9.0%us, 0.8%sy, 0.0%ni, 90.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 132064556k total, 9759836k used, 122304720k free, 177272k buffers

Swap: 134217720k total, 0k used, 134217720k free, 5023172k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

21270 fchen14 20 0 166g 1.6g 237m S 203.6 1.3 16:42.05 python

22143 fchen14 20 0 26328 1764 1020 R 0.7 0.0 0:00.76 top

83 root 20 0 0 0 0 S 0.3 0.0 16:47.34 events/0

97 root 20 0 0 0 0 S 0.3 0.0 0:25.80 events/14

294 root 39 19 0 0 0 S 0.3 0.0 59:45.52 kipmi0

1 root 20 0 21432 1572 1256 S 0.0 0.0 0:01.50 init

2 root 20 0 0 0 0 S 0.0 0.0 0:00.02 kthreadd

11/08/2017 Introduction to Deep Learning Fall 2017 80

Monitor GPU Usage

 Use nvidia-smi to monitor GPU usage:
[fchen14@qb002 ~]$ nvidia-smi -l

Thu Nov 3 15:58:52 2016

+--+

| NVIDIA-SMI 352.93 Driver Version: 352.93 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

|===============================+======================+======================|

| 0 Tesla K40m On | 0000:03:00.0 Off | 0 |

| N/A 34C P0 104W / 235W | 11011MiB / 11519MiB | 77% Default |

+-------------------------------+----------------------+----------------------+

| 1 Tesla K40m On | 0000:83:00.0 Off | 0 |

| N/A 32C P0 61W / 235W | 10950MiB / 11519MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

+---+

| Processes: GPU Memory |

| GPU PID Type Process name Usage |

|===|

| 0 21270 C python 10954MiB |

| 1 21270 C python 10893MiB |

+---+

11/08/2017 Introduction to Deep Learning Fall 2017 81

Future Trainings

 This is the last training for this semester

– Keep an eye on future HPC trainings at:

• http://www.hpc.lsu.edu/training/tutorials.php#upcoming

 Programming/Parallel Programming workshops in Summer

 Visit our webpage: www.hpc.lsu.edu

11/08/2017 Introduction to Deep Learning Fall 2017 82

http://www.hpc.lsu.edu/training/tutorials.php#upcoming

