INFORMATION
TECHNOLOGY
SERVICES

Parallel Computing with R

Le Yan
HPC @ LSU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3 . | . l-:i- .
3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

Outline

e Parallel computing primers

* Parallel computing with R
— Implicit parallelism
— Explicit parallelism

e R with GPU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
[ECHNOLOGY
SERVICES

R Is Not Parallel

* Modern computers are equipped with more
than one CPU core

— Your laptop may have 4 or 8 or more
— HPC clusters may have millions

* Rissingle-threaded

— Regardless how many cores are available, R can
only use one of them

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

sy [ESTEE
Cluster Architecture

QB2 Cluster

/

OO0 o000
O0j0000o

0a
00
00 O0go0g0o00
00 O0jp0000o

Login Node Node Node Node
node cpu’core

&

Cluster = multiple nodes (servers) x multiple cores per node

NTER F JTATION

ER FO A
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
2.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
0.0%us 0.0%sy, 0.0%ni,100.0%id, 0.0%wa, 0.0%hi, 0.0%si, O.
Mem: 65876884k total, 9204212k used, 56672672k free, 77028k buffers
Swap: 134217724k total, 14324k used, 134203400k free, 5302204k cached

PID USER PR NI VIRT RES SHRS%MEM TIME+ COMMAND
114903 1lyanl 20 0 1022m 760m 6664 R§99.9F 1.2 0:06.51 R

R running on one node of the QB2 cluster:

Lsu 20 cores total, 1 busy, 19 idle

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

Why Parallel Computing

* Speed

— Running with more cores may speed up the time
to reach solution

* Problem size

— Running with more nodes may allow you to use
more memory than that available on a single node

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
[ECHNOLOGY
SERVICES

How to Achieve Parallelization

e Set up a group of workers

— For sake of simplicity we will use
worker/process/thread interchangeably

 Divide the workload into chunks

* Assign one chunk or a number of chunks to
each worker

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

P
L=

INFORMATION
TECHNOLOGY
SERVICES

Caveats of Parallel Computing

e Using more workers does not always make your
program run faster

 Efficiency of parallel programs

— Defined as speedup divided by number of workers
 Example: 4 workers, 3x speedup, efficiency = 75%; 8
workers, 4x speedup, efficiency = 50%

— Usually decrease with increasing number of workers

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

Is Parallel Computing for You?

» Before parallelizing your R code, need answers to these questions:

— Does your code run slow?

* If no, then do not bother, e.g. it is not wise to spend weeks on parallelizing a
program that finished in 30 seconds;

— Is it parallelizable?

* If no, then do not bother, e.g. not much we can do in R if the target R function
is written in C or Fortran;

* First step in parallelization: performance analysis
— Purpose: locate the “hotspot” first

— Two most frequent used methods in R
* system.time ()
* Rprof () and summaryRprof ()

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

System.time()

Output from system.time () function

User: time spent in user-mode

System: time spent in kernel (I/0 etc.)
Elapsed: wall clock time

Usage: system.time (<code segment>)

> system. time ({
+ A <- matrix(rnorm(10000*10000),10000,10000)
+ Ainv <- solve (A)
+ 1)
user system elapsed
156.582 0.948 16.325

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFOORMATION
TECHNOLOGY
sERVICES

Rprof() and summaryRprof()

Usage:
Profile a code segment: Rprof(); <code segment>; Rprof (NULL)
Print profiling results: summaryRprof ()
> Rprof ()
> A <- matrix(rnorm(10000*10000) ,10000,10000)
> Ainv <- solve (A)
> Rprof (NULL)
> summaryRprof ()
Sby.self

self.time self.pct total.time total.pct
"solve.default" 149.10 94.91 149.34 95.06
" . External" 6.72 4.28 6.72 4.28
"matrix" 1.04 0.66 7.76 4.94
"diag" 0.24 0.15 0.24 0.15
Sby.total

total.time total.pct self.time self.pct
"solve.default" 149.34 95.06 149.10 94.91
"solve" 149.34 95.06 0.00 0.00
"matrix" 7.76 4.94 1.04 0.66
" . External" 6.72 4.28 6.72 4.28
"rnorm" 6.72 4.28 0.00 0.00

Lsu "diag" 0.24 0.15 0.24 0.15

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

Outline

* Parallel computing with R
— Implicit parallelism
— Explicit parallelism

e R with GPU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

Forms of Parallelism in R

* Implicit parallelism
— Use parallel libraries

* Explicit parallelism

— Use parallel packages in R
— We will focus on the parallel package

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
[ECHNOLOGY
SERVICES

Implicit Parallelism

 Some functions in R can call parallel numerical
libraries

— On LONI and LSU HPC clusters this is the multi-
threaded Intel MKL library

— Mostly linear algebraic and related functions

 Example: linear regression, matrix decomposition,
computing inverse and determinant of a matrix

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
I'ECHNOLOY
SR ICES

on QB2 R is built with Intel MKL library, which is multi-threaded
> system("1ldd /usr/local/packages/r/3.1.0/INTEL-14.0.2/1ib64/R/1ib/1ibR.so")
linux-vdso.so.1l => (0x00007ff£f1el7c000)
libmkl intel 1p64.so =>
/usr/local/compilers/Intel/cluster studio xe 2013.1.046/composer xe 2013 spl.2.14
4/mkl/1ib/intel64/1libmkl intel 1p64.so (0x00002b27£78395000)
libmkl intel thread.so =>
/usr/local/compilers/Intel/cluster studio xe 2013.1.046/composer xe 2013 spl.2.14
4/mkl/1lib/intel64/1libmkl intel thread.so (0x00002b27£7£dc000)
libmkl core.so =>
/usr/local/compilers/Intel/cluster studio xe 2013.1.046/composer xe 2013 spl.2.14
4/mkl/1ib/intel64/1libmkl core.so (0x00002b27£8£c6000)

......

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.3%si, 0.0%st
0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
0.3%sy, 0.0%ni, 0.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
.7 0.0%sy, 0.0%ni, 0.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
.7 0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
.7 0.0%sy, 0.0%ni, 0.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
.0 0.0%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
: 304 otal, 11968768k used, 53908116k free, 77208k buffers
Swap: 1342 7724k total, 14324k used, 134203400k free, 5307564k cached
PID USER PR NI VIRT RES ©SHR S EM TIME+ COMMAND
115515 lyanl 20 0 5025m 3.4g 8392 RP1996.5) 5.4 1:31.54 R

Matrix inverse is implicitly parallel on QB2

Lsu A <- matrix(rnorm(10000%10000),10000,10000)

CENTER FOR COMPUTATION A ARSI LA Y €29
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

Caution with Implicit Parallelism

* Do not run many R instances if they use
parallel libraries

 Example: Running 10 R instances with each
using 20 workers will spawn 200 workers

L5LU)

CENTER FOR COMPUTATION

CCHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

Outline

— Explicit parallelism
R with GPU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
[ECHNOLOGY
SERVICES

Explicit Parallelism - parallel

Package

* IntroducedinR 2.14.1
* |Integrated previousmulticore and snow packages

* Coarse-grained parallelization

— Suit for the chunks of computation are unrelated and do
not need to communicate

 Two ways of using parallel packages
— mc*apply function

— for loop with $dopar%
* Need foreach and doParallel packages

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

P
L=

INFORMATION
TECHNOLOGY
SERVICES

Functionmclapply

* Parallelized version of the 1apply function
— Similar syntax

mclapply (X, FUN, mc.cores = <number of cores>, ..)

— Return a list of the same length as X, each element of
which is the result of applying ‘FUN’ to the
corresponding element of X

e Can use all cores on one node
— But not on multiple nodes

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

=T S

Quadratic Equation: a*x"2 + b*x + ¢ = 0
solve.quad.eq <- function(a, b, c)

{

Return solutions

x.delta <- sqrt(b*b - 4*a*c)

x1l <= (-b + x.delta)/ (2*a)

x2 <= (-b - x.delta)/ (2*a)

return(c(x1l, x2))

}

len <- le7
a <- runif(len, -10, 10); b <- runif (len, -10, 10); ¢ <- runif(len, -10, 10)

#Serial: lapply
resl.s <- lapply(l:len, FUN = function(x) { solve.quad.eqg(a[x], b[x], c[x])})

#Parallel: mclapply with 4 cores

library(parallel)

resl.p <- mclapply(l:len,
FUN = function(x) { solve.quad.eqg(al[x], b[x], c[x]) 1},
mc.cores = 4)

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

=T S

Quadratic Equation: a*x"2 + b*x + ¢ = 0

solve.quad.eq <- function(a, b, c)

{

Return solutions

x.delta <- sqrt(b*b - 4*a*c)

<z 1 (I~ L ~r A~nd+a)N /(DK AN

> system. time (

+resl.s <- lapply(l:len, FUN = function(x) { solve.quad.eq(a[x], b[x], c[x])})

)
user system

358.878 0.3750359.046

> system. time (

resl.p <- mclapply(l:1len,

FUN = function(x) { solve.quad.eq(a[x], b[x], c[x]) },
mc.cores = 4)

)
user system
11.098 0.342f 81.581

library(parallel)

resl.p <- mclapply(l:len,
FUN = function(x) { solve.quad.eqg(al[x], b[x], c[x]) 1},
mc.cores = 4)

+
+
+
+

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

%dopar%

From doParallel package
— On top of packages parallel, foreach, iterator

* Purpose: parallelize a for loop
 Can run on multiple nodes
* Steps

— Create a cluster of workers

— Register the cluster

— Process the for loop in parallel
— Stop the cluster

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

%dopar%: On A Single Node

Workload:

Create 1,000 random samples, each with
1,000,000 observations from a standard
normal distribution, then take a
summary for each sample.

iters <- 1000

Sequential version

for (i in l:iters) {
to.1ls <- rnorm(leo6)
to.ls <- summary(to.ls)

LS50

CENTER FOR COMPUTATION

& TECHNOLOGY

3/22/2017

Parallel version with %dopar$

Step 1: Create a cluster of 4 workers
cl <- makeCluster (4)

Step 2: Register the cluster
registerDoParallel (cl)

Step 3: Process the loop

ls<-foreach (icount (iters))
to.ls<-rnorm(leb6)
to.ls<-summary (to.ls)

sdopars |

Step 4: Stop the cluster
stopCluster (cl)

HPC training series Spring 2017

NFRYR { ATTON]
III[!!!;5Ei[1!:lIII-!!Ei”IIll NiCH
LS AT | SRt

%dopar%: On A Single Node

Sequential
> system. time (ith $dopars
Workload: + for (i in 1l:iters) {
4 Create 1,000 randof ¥ to.ls <- rnorm(le6) luster of 4 workers
1,000,000 P —— to.1ls <- summary(to.ls)
normal distributiof T }
summary for each sam}+) he cluster
user systemfjelapsed 1)
Trere <= 1000 60.249 3.499
e loop
Sequential version # Parallel with 4 cores ters)) %dopar% {
for (i in l:iters) {|> System.time ({
to.ls <- rnorm(le6 + cl <- makeCluster (4) 1s)
to.ls <- summary (t + registerDoParallel (cl)
} + ls<-foreach(icount(iters)) %dopar% ({
+ to.ls<-rnorm(leb) luster
+ to.ls<-summary (to.ls)
+ }
+ stopCluster (cl)
+ 1)
Lsu user syste
0.232 0.032§ 17.738
CENTER FOR COMPUTATION

& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

makeCluster ()

e On the same node:

cl <- makeCluster (<number of workers>)

* On multiple nodes:

cl <- makeCluster (<list of hostnames>)

— Example: create 4 workers, 2 on gb101 and 2 on
qbl02

cl <- makeCluster (c(“gbl01”,”gbl01”,”gbl02”,”gbl02"))

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVIIES

Sdopar%: On Multiple Nodes

Read all host names

hosts <-
as.vector (unique (read.table (Sys.getenv ("PBS NODEFILE")
, stringsAsFactors=F)) [,1])

Count number of hosts
nh <- length (hosts)

Use 4 workers

nc <- 4

Make a cluster on multiple nodes
cl <- makeCluster (rep(hosts , each = nc/nh))
registerDoParallel (cl)

ls<-foreach (icount (iters)) %dopar$%s {

to.ls<-rnorm(leo)
to.ls<-summary (to.ls)

Lsu stopCluster (cl)

CENTER FOR COMPUTATI
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

The Million Second Question

* How many workers should one use?
 What should be the standard?

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

Wall clock time vs. number of workers for rnorm()

100-
a0-

O
E
-~
= == On one node
o == On multiple nodes
% 2|:|-
=

0-

5.

i 0
Number of workers
CENTER FOR COMPUTATION

& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

Wall clock time vs. number of workers for rnorm()

100-

ls<-foreach (icount (iters)) %dopar$% {
to.ls<-rnorm(leob6)
50- to.ls<-summary (to.ls)

18]

E

e

g @ On one node

O = On multiple nodes

% 2|:|-

=

i 0

Mumber of workers

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

Wall clock time

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017

Number of workers

HPC training series Spring 2017

= On one node
== On multiple nodes

INPFORMAT IO
TECHNOLOGY
T B L

SFRVICES

Wall clock time vs. number of workers for quadratic equation solver

res2.p <- foreach(i=l:core, .combine='rbind') %dopar%

{

local data for results
res <- matrix (0, nrow=chunk.size, ncol=2)
for(x in ((i-1) *chunk.size+1) : (i*chunk.size)) {

res[x - (i-1)*chunk.size,] <- solve.quad.eqg(a[x], b[x], c[x])

}

return local results
res

Wall clock time

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

Number of workers

INFORMATION
[ECHNOLOGY
SERVICES

The Million Second Question

* Parallel programs have overhead

— Extra time spent on coordinating workers, which
cause efficiency to drop with increasing number of
workers

* How many workers should one use?
— It depends

 What should be the standard?

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
[ECHNOLOGY
SERVICES

Memory Management

* Replica of data objects could be generated for
every worker
— Memory usage would increase with the number of
workers
* R does not necessarily clean them up even if
you close the cluster

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

I . S

res2.p <- foreach(i=l:core, .combine='rbind') %dopar%
{
local data for results
res <- matrix (0, nrow=chunk.size, ncol=2)
for(x in ((i-1) *chunk.size+1) : (i*chunk.size)) {
res[x - (i-1)*chunk.size,] <- solve.quad.eqg(a[x], b[x], c[x])

}

return local results

res
}

PID USER PR NI SHR S %$CPU $%SMEM TIME+ COMMAND
87483 lyanl 20 0 b692 R 100.0 0.5 0:02.08 R
87492 lyanl 20 0 b692 R 100.0 0.5 0:02.08 R
87465 lyanl 20 0 b692 R 99.4 0.5 0:02.08 R
87474 lyanl 20 0 b692 R 99.4 0.5 0:02.08 R

4 workers

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

T SU

rea? n <— fareach(i=1-+rngxa mhine="rhind'") Sdonar%

PID USER PR NI VIRT SHR S %CPU 3%MEM TIME+ COMMAND
87514 lyanl 20 0 501 692 R 99.8 0.4 0:03.6F R
87523 lyanl 20 0 501 692 R 99.8 0.4 0:03.6F R
87676 lyanl 20 0 501 6692 R 99.8 0.4 0:03. R
87505 lyanl 20 0 501 692 R 99.5 0.4 0:03. R
87532 lyanl 20 0 501 692 R 99.5 0.4 0:03.6F R
87577 lyanl 20 0 501 6692 R 99.5 0.4 0:03.6F R
87613 lyanl 20 0 501 692 R 99.2 0.4 0:03. R
87640 lyanl 20 0 501 6692 R 99.2 0.4 0:03. R
87649 lyanl 20 0 501 6692 R 99.2 0.4 0:03. R
87667 lyanl 20 0 501 6692 R 99.2 0.4 0:03. R
87586 lyanl 20 0 501 692 R 98.8 0.4 0:03. R
87631 lyanl 20 0 501 692 R 98.8 0.4 0:03. R
87658 lyanl 20 0 501 692 R 98.8 0.4 0:03. R
87550 lyanl 20 0 501 6692 R 98.5 0.4 0:03. R
87622 lyanl 20 0 501 692 R 98.5 0.4 0:03. R
87568 lyanl 20 0 501 6692 R 97.5 0.4 0:03. R
87604 lyanl 20 0 501 6692 R 96.2 0.4 0:03.5@B R
87559 lyanl 20 0 501 6692 R 91.5 0.4 0:03. R
87595 lyanl 20 0 501 6692 R 87.9 0.4 0:03.2F R
87541 lyanl 20 0 501 6692 R 86.9 0.4 0:03.20 R

20 workers

LS50

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

Outline

e R with GPU

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

I S
R with GPU

* GPU stands for Graphic Processing Unit
— Can accelerate certain types of computation
— All nodes on LONI QB2 cluster are equipped with GPU

* Package gpuR brings the processing power of GPU to R

ORDER <- 8192
A = matrix(rnorm
B = matrix (rnorm

ORDER"2), nrow=0RDER)
ORDER"2), nrow=0RDER)
vclA = vclMatrix (rnorm (ORDER”2), nrow=0ORDER, ncol=0RDER)
vclB = vclMatrix (rnorm (ORDER”2), nrow=0ORDER, ncol=0RDER)
system.time (C <- A %*% B)
user system elapsed
55.375 0.189 2.901
> system.time (vclC <- vclA $*% vclB)
user system elapsed

Lsu 0.011 0.002 0.047

CENTER FOR COMPUTATTUN
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

V V. V V V V

sy [ETEE
Deep Learning in R

e Since 2012, Deep Neural Network (DNN) has gained great
popularity in applications such as

— Image and pattern recognition
— Natural language processing

* There are a few R packages that support DNN
— MXNet (multiple nodes with GPU support)
— H2o0 (multiple nodes)
— Darch
— Deepnet
— Rpud

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

References

e ParallelR (www.parallelr.com)
— Code: https://github.com/PatricZhao/ParallelR

R Documentation for packages mentioned in
this tutorial

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

=TT S
Training Next Week

e March 29%": Intermediate Python Programming

— Focus on popular Python modules numpy, matplotlib and scipy
to get users familiar with building quick Python real world
computing solutions.

— Serve as a quick crash training on Python for the upcoming
tutorial on Machine Learning.
* March 28t™: Agave Platform: Running Jobs on HPC Without
the Command Line

— The Agave Platform was developed to make it easy for scientists
to take their existing code and "webify" it, or enable it for use as
a Gateway.

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

INFORMATION
TECHNOLOGY
SERVICES

Thank youl!

L5LU)

CENTER FOR COMPUTATION
& TECHNOLOGY

3/22/2017 HPC training series Spring 2017

