
 Introduction to Machine Learning

Fei Li
M.S. Student in Computer Science

Louisiana State University
04/05/2017

Machine Learning Everywhere!

Face Recognition

Sentiment Analysis

National Defense

Cancer Cell Detection

Natural
Language
Processing

What is Machine Learning?

 Tom. Mitchell: Formally, a computer program is said to learn from experience E with respect
 to some class of tasks T and performance measure P. Its performance at tasks in T as
 measured by P, improves with experience.

 H. Simon: Learning denotes changes in the system that are adaptive in the sense that they
 enable the system to do the task or tasks drawn from the same population more efficiently
 and more effectively the next time.

Key Points:
1. Improving performance via experience
2. Perform a task in a situation which has never been

encountered before.

www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer

Key Components in Machine Learning

 Representation:
Decision Tree, Neural Network, Graphical Model, etc.

 Evaluation:
 Accuracy, Precision and Recall, Squared Error, Likelihood, cost, entropy, etc.

 Optimization:
Gradient Descent, Greedy Search, Linear Programming, etc.

Representation Evaluation

Optimization

data
GOOD? YES

NO

DONE!

Application Example: Image Classification

“Motorcycle”

Input: X Output: Y

Source: slides from Prof. Mingxuan Sun, Lousisana State University

Representation: Why it is HARD?

Humans see this

Computers see this

Source: slides from Prof. Mingxuan Sun, Lousisana State University

handles

wheels

Learning Algorithms

motorcycle

others

Source: slides from Prof. Mingxuan Sun, Lousisana State University

Machine Learning: Evaluation

A dataset
Fields class
1.4 2.7 1.9 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
4.1 0.1 0.2 0
etc …

1.4

2.7

1.9

0.7 (0)

Error=0.7

Compare with the
target output

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt

Neural Network Model

actual
output target

output

Adjust weights based on error

1.4

2.7

1.9

0.7 (0)

Error=0.7

Repeat this thousands, maybe millions of times – each time
taking a random training instance, and making slight
weight adjustments
 Algorithms for weight adjustment are designed to make
changes that will reduce the error

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt

Machine Learning: Optimization

Source: slides from Prof. Gogate, UT-Dallas

Source: slides from Prof. Gogate, UT-Dallas

Summary

 Applications

 Definitions

Machine Learning = Representation + Evaluation + Optimization

 When to Use Machine Learning?

Machine Learning in HPC

Environments

Feng Chen

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

April 5, 2017

Topics To Be Discussed

 Fundamentals about Machine Learning

 What is a neural network and how to train it

 Build a basic 1-layer neural network using Keras/TensorFlow

 MNIST example

– Softmax classification

– Cross-entropy cost function

– How to add more layers

– Dropout, learning rate decay...

– How to build convolutional networks

 How to utilize HPC for hyperparameter test?

04/05/2017 Machine Learning in HPC Environments Spring 2017 2

Machine Learning and Deep Learning

04/05/2017 Machine Learning in HPC Environments Spring 2017 3

Machine Learning

 Machine Learning is the ability to teach a computer without explicitly

programming it

 Examples are used to train computers to perform tasks that would be

difficult to program

04/05/2017 Machine Learning in HPC Environments Spring 2017 4

Types of Machine Learning

 Supervised Learning

– Training data is labeled

– Goal is correctly label new data

 Reinforcement Learning

– Training data is unlabeled

– System receives feedback for its actions

– Goal is to perform better actions

 Unsupervised Learning

– Training data is unlabeled

– Goal is to categorize the observations

04/05/2017 Machine Learning in HPC Environments Spring 2017 5

Applications of Machine Learning

 Handwriting Recognition

– convert written letters into digital letters

 Language Translation

– translate spoken and or written languages (e.g. Google Translate)

 Speech Recognition

– convert voice snippets to text (e.g. Siri, Cortana, and Alexa)

 Image Classification

– label images with appropriate categories (e.g. Google Photos)

 Autonomous Driving

– enable cars to drive

04/05/2017 Machine Learning in HPC Environments Spring 2017 6

Features in Machine Learning

 Features are the observations that are used to form predictions

– For image classification, the pixels are the features

– For voice recognition, the pitch and volume of the sound samples are

the features

– For autonomous cars, data from the cameras, range sensors, and GPS

are features

 Extracting relevant features is important for building a model

– Time of day is an irrelevant feature when classifying images

– Time of day is relevant when classifying emails because SPAM often

occurs at night

 Common Types of Features in Robotics

– Pixels (RGB data)

– Depth data (sonar, laser rangefinders)

– Movement (encoder values)

– Orientation or Acceleration (Gyroscope, Accelerometer, Compass)

04/05/2017 Machine Learning in HPC Environments Spring 2017 7

Training and Test Data
 Training Data

– data used to learn a model

 Test Data

– data used to assess the accuracy of model

 Overfitting

– Model performs well on training data but poorly on test data

04/05/2017 Machine Learning in HPC Environments Spring 2017 8

Bias and Variance

 Bias: expected difference between model’s prediction and truth

 Variance: how much the model differs among training sets

 Model Scenarios

– High Bias: Model makes inaccurate predictions on training data

– High Variance: Model does not generalize to new datasets

– Low Bias: Model makes accurate predictions on training data

– Low Variance: Model generalizes to new datasets

04/05/2017 Machine Learning in HPC Environments Spring 2017 9

Supervised Learning Algorithms

 Linear Regression

 Decision Trees

 Support Vector Machines

 K-Nearest Neighbor

 Neural Networks

– Deep Learning is the branch of Machine Learning based on Deep

Neural Networks (DNNs, i.e., neural networks composed of more than 1

hidden layer).

– Convolutional Neural Networks (CNNs) are one of the most popular

DNN architectures (so CNNs are part of Deep Learning), but by no

means the only one.

04/05/2017 Machine Learning in HPC Environments Spring 2017 10

Machine Learning Frameworks

Tool Uses Language

Scikit-Learn
Classification,

Regression, Clustering
Python

Spark MLlib
Classification,

Regression, Clustering
Scala, R, Java

Weka
Classification,

Regression, Clustering
Java

Caffe Neural Networks C++, Python

TensorFlow Neural Networks Python

04/05/2017 Machine Learning in HPC Environments Spring 2017 11

Overview of LONI QB2

Deep Learning Examples on LONI QB2

04/05/2017 12

QB2 Hardware Specs

 QB2 came on-line 5 Nov 2014.

– It is a 1.5 Petaflop peak performance cluster containing 504 compute

nodes with

• 960 NVIDIA Tesla K20x GPU's, and

• Over 10,000 Intel Xeon processing cores. It achieved 1.052 PF during

testing.

 Ranked 46th on the November 2014 Top500 list.

 480 Compute Nodes, each with:

– Two 10-core 2.8 GHz E5-2680v2 Xeon processors.

– 64 GB memory

– 500 GB HDD

– 2 NVIDIA Tesla K20x GPU's

04/05/2017 Machine Learning in HPC Environments Spring 2017 13

Inside A QB Cluster Rack

04/05/2017 Machine Learning in HPC Environments Spring 2017

Rack

Infiniband

Switch

Compute

Node

14

Inside A QB2 Dell C8000 Node

04/05/2017 Machine Learning in HPC Environments Spring 2017

Storage

Accelerator

(GPU)
Accelerator

(GPU)

Processor

Memory

Network

Card

Processor

15

GPU CPU

Add GPUs: Accelerate Science Applications

Deep Learning Practice on LONI QB2 Fall 2016 11/09/2016 16

Performance Comparison

CPU-GPU
 Comparison of runtime for deep learning benchmark problem

– CIFAR10, 1 Epoch

11/09/2016 Deep Learning Practice on LONI QB2 Fall 2016

Speedups:
537/47=11.4
537/23=23.3

17

Understanding The Learning Process

 Start from least square method...

 Trying to find

– Parameters (w, b): minimizes the sum of the squares of the errors

– Errors: distance between known data points and predictions

04/05/2017 Machine Learning in HPC Environments Spring 2017 18

 from Yaser Abu-Mustafa “Learning From Data” Lecture 3

1 1 2 2y w x w x b  

Recall From The Least Square Method

 Error

– Cost Function (Loss): J(w), C, L

 Parameters

– Weights and Biases: (w, b)

 Define the cost function of your problem

 Find the set of weights that minimizes the cost function (loss)

04/05/2017 Machine Learning in HPC Environments Spring 2017 19

Theory: Gradient Descent

 Gradient descent is a first-order iterative optimization algorithm. To

find a local minimum of a function using gradient descent, one takes

steps proportional to the negative of the gradient (or of the

approximate gradient) of the function at the current point.

04/05/2017 Machine Learning in HPC Environments Spring 2017 20

Stochastic Gradient Descent

 Stochastic gradient descent (SGD), also known as incremental

gradient descent, is a stochastic approximation of the gradient

descent optimization method for minimizing an objective function.

 SGD samples a subset of summand functions at every step. This is

very effective in the case of large-scale machine learning problems.

04/05/2017 Machine Learning in HPC Environments Spring 2017 21

J(w)

Learning steps

Mini-batch Gradient Descent

 Batch gradient descent:

– Use all examples in each iteration

 Stochastic gradient descent:

– Use one example in each iteration

 Mini-batch gradient descent

– Use b examples in each iteration

 In the neural network terminology:

– one EPOCH = one forward pass and one backward pass of all the

training examples

– batch size = the number of training examples in one forward/backward

pass. The higher the batch size, the more memory space you'll need.

– number of iterations = number of passes, each pass using [batch size]

number of examples. To be clear, one pass = one forward pass + one

backward pass (we do not count the forward pass and backward pass

as two different passes).

– Example: if you have 1000 training examples, and your batch size is

500, then it will take 2 iterations to complete 1 epoch.

 04/05/2017 Machine Learning in HPC Environments Spring 2017 22

What is a neural network?

 Start from a perceptron

04/05/2017 Machine Learning in HPC Environments Spring 2017 23

 

 

 

1 1 2 2 3 3() sign

sign

sign

i ii

T

h x w x w x w x b

w x b

b

   

 

 



w x

w1

w2

w3

b

x1

x2

x3

h(x)

+1

1

2

3

x

x

x

 
 


 
  

x

1

2

3

w

w

w

 
 


 
  

w

x1 age 23

x2 gender male

x3 annual salary $30,000

b threshold some value

h(x) Approve credit if: h(x)>0

Feature vector: x

Denote as: z

Hypothesis

(Prediction: y)

Weight vector: w

Activation function:

σ(z)=sign(z)

Perceptron To Neuron

 Replace the sign to sigmoid

04/05/2017 Machine Learning in HPC Environments Spring 2017 24

 

 

 

1 1 2 2 3 3() sigmoid

sigmoid

sigmoid

i ii

T

h x w x w x w x b

w x b

b

   

 

 



w x

b

h(x)

Activation function:

σ(z)=sigmoid(z)

   y h x z 

Tz b w x
1

2

3

x

x

x

 
 


 
  

x

1

2

3

w

w

w

 
 


 
  

w

Feature vector: x Weight vector: w

w1

w2

w3

x1

x2

x3

+1

Sigmoid Neurons

 Sigmoid activation Function

– In the field of Artificial Neural Networks, the sigmoid function is a type of

activation function for artificial neurons.

 There are many other activation functions used. (We will touch later.)

04/05/2017 Machine Learning in HPC Environments Spring 2017 25

 
1

1 z
z

e






   z sign z 

Network Of Neurons

 A complex network of neurons could make quite subtle decisions

 Deep Neuron Network: Number of hidden layers >1

04/05/2017 Machine Learning in HPC Environments Spring 2017 26

How to Train DNN?

 Backward Propagation

– The backward propagation of errors or backpropagation, is a common

method of training artificial neural networks and used in conjunction with

an optimization method such as gradient descent.

 Deep Neural Networks are hard to train

– learning machines with lots of (typically in range of million) parameters

– Unstable gradients issue

• Vanishing gradient problem

• Exploding gradient problem

– Choice of network architecture and other hyper-parameters is also

important.

– Many factors can play a role in making deep networks hard to train

– Understanding all those factors is still a subject of ongoing research

04/05/2017 Machine Learning in HPC Environments Spring 2017 27

Hello World of Deep Learning:

Recognition of MNIST

Deep Learning Example

04/05/2017 28

Introducing the MNIST problem

 MNIST (Mixed National Institute of Standards and Technology

database) is a large database of handwritten digits that is commonly

used for training various image processing systems.

 It consists of images of handwritten digits like these:

 The MNIST database contains 60,000 training images and 10,000

testing images.

04/05/2017 29 Machine Learning in HPC Environments Spring 2017

Example Problem - MNIST

 Recognizes handwritten digits.

 We uses the MNIST dataset, a collection of 60,000 labeled digits that

has kept generations of PhDs busy for almost two decades. You will

solve the problem with less than 100 lines of

Python/Keras/TensorFlow code.

 We will gradually enhance the neural network to achieve above 99%

accuracy by using the mentioned techniques.

04/05/2017 Machine Learning in HPC Environments Spring 2017 30

Steps for MNIST

 Understand the MNIST data

 Softmax regression layer

 The cost function

04/05/2017 Machine Learning in HPC Environments Spring 2017 31

The MNIST Data

 Every MNIST data point has two parts: an image of a handwritten digit

and a corresponding label. We'll call the images "x" and the labels "y".

Both the training set and test set contain images and their

corresponding labels;

 Each image is 28 pixels by 28 pixels. We can interpret this as a big

array of numbers:

04/05/2017 Machine Learning in HPC Environments Spring 2017 32

One Layer NN for MNIST Recognition

 We will start with a very simple model, called Softmax Regression.

 We can flatten this array into a vector of 28x28 = 784 numbers. It

doesn't matter how we flatten the array, as long as we're consistent

between images.

 From this perspective, the MNIST images are just a bunch of points in

a 784-dimensional vector space.

04/05/2017 Machine Learning in HPC Environments Spring 2017 33

...

28x28

pixels

Result of the Flatten Operation

 The result is that the training images is a matrix (tensor) with a shape

of [60000, 784].

 The first dimension is an index into the list of images and the second

dimension is the index for each pixel in each image.

 Each entry in the tensor is a pixel intensity between 0 and 1, for a

particular pixel in a particular image.

04/05/2017 Machine Learning in HPC Environments Spring 2017 34

60000

60,000

784

One-hot Vector (One vs All)

 For the purposes of this tutorial, we label the y’s as "one-hot vectors“.

 A one-hot vector is a vector which is 0 in most dimensions, and 1 in a

single dimension.

 How to label an “8”?

– [0,0,0,0,0,0,0,0,1,0]

 What is the dimension of our y matrix (tensor)?

04/05/2017 Machine Learning in HPC Environments Spring 2017 35

60,000

10

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

...

0 0 0 0 1 0 0 0 0 0

6

3

2

4

5

4

...

4

60,000 labels:

0 1 2 3 4 5 6 7 8 9

Softmax Regressions

 Every image in MNIST is of a handwritten digit between 0 and 9.

 So there are only ten possible things that a given image can be. We

want to be able to look at an image and give the probabilities for it

being each digit.

 For example, our model might look at a picture of an eight and be 80%

sure it's an 8, but give a 6% chance to it being a 4 (because of the top

loop) and a bit of probability to all the others because it isn't 100%

sure.

04/05/2017 Machine Learning in HPC Environments Spring 2017 36

0 1 2 3 4 5 6 7 8 9

0.04 0.02 0.01 0.01 0.06 0.03 0.01 0.01 0.80 0.01

Softmax Regression
this is a “8”

2 steps in softmax regression - Step 1

 Step 1: Add up the evidence of our input being in certain classes.

– Do a weighted sum of the pixel intensities. The weight is negative if that

pixel having a high intensity is evidence against the image being in that

class, and positive if it is evidence in favor.

04/05/2017 Machine Learning in HPC Environments Spring 2017 37

,i i j j ij
z W x b 

Matrix Representation of softmax layer

04/05/2017 Machine Learning in HPC Environments Spring 2017 38

784 pixels

X : 60,000 images,

one per line,

flattened

w0,0 w0,1 w0,2 w0,3 … w0,9
w1,0 w1,1 w1,2 w1,3 … w1,9
w2,0 w2,1 w2,2 w2,3 … w2,9
w3,0 w3,1 w3,2 w3,3 … w3,9
w4,0 w4,1 w4,2 w4,3 … w4,9
w5,0 w5,1 w5,2 w5,3 … w5,9
w6,0 w6,1 w6,2 w6,3 … w6,9
w7,0 w7,1 w7,2 w7,3 … w7,9
w8,0 w8,1 w8,2 w8,3 … w8,9
 …
w783,0 w783,1 w783,2 … w783,9

7
8

4
 lin

es

broadcast

10 columns

x
x
x
x
x
x
x

softmax()Y X W b  

2 steps in softmax regression - Step 2

 Step 2: Convert the evidence tallies into our predicted probabilities y

using the "softmax" function:

 Here softmax is serving as an "activation" function, shaping the

output of our linear function a probability distribution over 10 cases,

defined as:

04/05/2017 Machine Learning in HPC Environments Spring 2017 39

     ,softmax softmaxi i i j j ij
h z W x b  x

    
 

 
exp

softmax normalize exp
exp

i

i

jj

z
z z

z
 



Softmax on a batch of images

 More compact representation for “softmaxing” on all the images

04/05/2017 Machine Learning in HPC Environments Spring 2017 40

softmax()Y X W b  

 Predictions Images Weights Biases

 Y[60000, 10] [60000, 784] W[784,10] b[10]

matrix multiply broadcast

on all lines

applied on

each line

The softmax layer

 The output from the softmax layer is a set of probability distribution,

positive numbers which sum up to 1.

04/05/2017 Machine Learning in HPC Environments Spring 2017

28x28

pixels

softmax

...

...

0 1 2 9

784 pixels

weighted sum of all

pixels + biases
neuron outputs

41

 
 

 
exp

softmax
exp

i

i

jj

z
z

z



0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.01 0.02 0.01

The Cross-Entropy Cost Function

 For classification problems, the Cross-Entropy cost function works

better than quadratic cost function.

 We define the cross-entropy cost function for the neural network by:

04/05/2017 Machine Learning in HPC Environments Spring 2017

 ' 'logi iC y y  

computed probabilities

this is a “6”

“one-hot” encoded ground truth

 0 1 2 3 4 5 6 7 8 9

42

0 0 0 0 0 0 1 0 0 0

Cross entropy

Short Summary

 How MNIST data is organized

– X:

• Flattened image pixels matrix

– Y:

• One-hot vector

 Softmax regression layer

– Linear regression

– Output probability for each category

 Cost function

– Cross-entropy

04/05/2017 Machine Learning in HPC Environments Spring 2017 43

Implementation in

Keras/Tensorflow

Deep Learning Example

04/05/2017 44 Machine Learning in HPC Environments Spring 2017

Few Words about

Keras, Tensorflow and Theano
 Keras is a high-level neural networks library, written in Python and

capable of running on top of either TensorFlow or Theano.

 TensorFlow is an open source software library for numerical

computation using data flow graphs.

 Theano is a Python library that allows you to define, optimize, and

evaluate mathematical expressions involving multi-dimensional arrays

efficiently.

04/05/2017 Machine Learning in HPC Environments Spring 2017 45

Introducing Keras

 Keras is a high-level neural networks library,

 Written in Python and capable of running on top of either TensorFlow

or Theano.

 It was developed with a focus on enabling fast experimentation. Being

able to go from idea to result with the least possible delay is key to

doing good research.

 See more at: https://github.com/fchollet/keras

04/05/2017 Machine Learning in HPC Environments Spring 2017 46

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras

Typical Code Structure

 Load the dataset (MNIST)

 Build the Neural Network/Machine Learning Model

 Train the model

04/05/2017 Machine Learning in HPC Environments Spring 2017 47

Software Environment

 What you'll need

– Python 2 or 3 (Python 3 recommended)

– TensorFlow/Keras

– Matplotlib (Python visualization library)

 On LONI QB2 the above modules are already setup for you, simply

use:

$ module load python/2.7.12-anaconda-tensorflow

OR

$ module load python/3.5.2-anaconda-tensorflow

04/05/2017 Machine Learning in HPC Environments Spring 2017 48

Keras - Initialization

import necessary modules

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten

from keras.layers import Convolution2D, MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

04/05/2017 Machine Learning in HPC Environments Spring 2017 49

Load The MNIST Dataset

load the mnist dataset

import cPickle

import gzip

f = gzip.open('mnist.pkl.gz', 'rb')

load the training and test dataset

download https://s3.amazonaws.com/img-datasets/mnist.pkl.gz

to use in this tutorial

X_train, y_train, X_test, y_test = cPickle.load(f)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

Output of the print line:

(60000, 28, 28) (60000,) (10000, 28, 28) (10000,)

04/05/2017 Machine Learning in HPC Environments Spring 2017 50

Preprocessing the MNIST Dataset

Flatten the image to 1D

X_train = X_train.reshape(X_train.shape[0], img_rows*img_cols)

X_test = X_test.reshape(X_test.shape[0], img_rows*img_cols)

input_shape = (img_rows*img_cols,)

convert all data to 0.0-1.0 float values

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

X_train /= 255

X_test /= 255

convert class vectors to binary class matrices

Y_train = np_utils.to_categorical(y_train, nb_classes)

Y_test = np_utils.to_categorical(y_test, nb_classes)

04/05/2017 Machine Learning in HPC Environments Spring 2017 51

One-hot encoding

All grayscale values to 0.0-1.0

Flatten 28x28 image to 1D

Build The First softmax Layer

The Sequential model is a linear stack of layers in Keras

model = Sequential()

#build the softmax regression layer

model.add(Dense(nb_classes,input_shape=input_shape))

model.add(Activation('softmax'))

Before training a model,

configure the learning process via the compile method.

using the cross-entropy loss function (objective)

model.compile(loss='categorical_crossentropy',

 #using the stochastic gradient descent (SGD)

 optimizer='sgd',

 # using accuracy to judge the performance of your model

 metrics=['accuracy'])

fit the model, the training process

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

 verbose=1, validation_data=(X_test, Y_test))

04/05/2017 Machine Learning in HPC Environments Spring 2017 52

nb_classes=10 input_shape=(784,)

Results Of The First softmax Regression

 Training accuracy vs Test accuracy, loss function

 We reach a Training accuracy at 91.7%

04/05/2017 Machine Learning in HPC Environments Spring 2017 53

91.70%

test accuracy

Review The Classified Results

04/05/2017 Machine Learning in HPC Environments Spring 2017 54

Correctly classified Incorrectly classified

Adding More Layers?

 Using a 5 fully connected layer model:

04/05/2017 Machine Learning in HPC Environments Spring 2017 55

sigmoid

tanh

relu

0 1 2 ... 9

200

100

60

30

10
softmax

5 Layer Model In Keras

model = Sequential()

try also tanh, sigmoid

act_func=‘relu'

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dense(100,activation=act_func))

model.add(Dense(60,activation=act_func))

model.add(Dense(30,activation=act_func))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=‘sgd',

 metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

 verbose=1, validation_data=(X_test, Y_test))

04/05/2017 Machine Learning in HPC Environments Spring 2017 56

5 Layer Regression – Different Activation

 Training accuracy vs Test accuracy, loss function

 We reach a Test accuracy at 97.35% (sigmoid), 98.06% (tanh)

04/05/2017 Machine Learning in HPC Environments Spring 2017 57

sigmoid

tanh

Rectified Linear Unit (ReLU)

activation function
 ReLU - The Rectified Linear Unit has become very popular in the last

few years:

 We get a test accuracy of 98.07% with ReLU

04/05/2017 Machine Learning in HPC Environments Spring 2017 58

relu

   max 0,f z z

Overfitting

Overfitting

 Overfitting occurs when a model is excessively complex, such as

having too many parameters relative to the number of observations. A

model that has been overfit has poor predictive performance, as it

overreacts to minor fluctuations in the training data.

04/05/2017 Machine Learning in HPC Environments Spring 2017 59

Regression:

Classification:

Regularization - Dropout

 Dropout is an extremely effective, simple and recently introduced

regularization technique by Srivastava et al (2014).

 While training, dropout is implemented by only keeping a neuron

active with some probability p (a hyperparameter), or setting it to zero

otherwise.

 It is quite simple to apply dropout in Keras.

apply a dropout rate 0.25 (drop 25% of the neurons)

model.add(Dropout(0.25))

04/05/2017 Machine Learning in HPC Environments Spring 2017 60

Apply Dropout To The 5 Layer NN

model = Sequential()

act_func='relu'

p_dropout=0.25 # apply a dropout rate 25 %

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dropout(p_dropout))

model.add(Dense(100,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(60,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(30,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=‘sgd',

 metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

 verbose=1, validation_data=(X_test, Y_test))

04/05/2017 Machine Learning in HPC Environments Spring 2017 61

Results Using p_dropout=0.25

 Resolve the overfitting issue

 Sustained 98.26% accuracy

04/05/2017 Machine Learning in HPC Environments Spring 2017 62

98.26%

test accuracy

Why Using Fully Connected Layers?

 Such a network architecture does not take into account the spatial

structure of the images.

– For instance, it treats input pixels which are far apart and close together

on exactly the same weight.

 Spatial structure must instead be inferred from the training data.

 Is there an architecture which tries to take advantage of the spatial

structure?

04/05/2017 Machine Learning in HPC Environments Spring 2017 63

Convolution Neuron Network

(CNN)

 Deep convolutional network is one of the most widely used types of

deep network.

 In a layer of a convolutional network, one "neuron" does a weighted

sum of the pixels just above it, across a small region of the image

only. It then acts normally by adding a bias and feeding the result

through its activation function.

 The big difference is that each neuron reuses the same weights

whereas in the fully-connected networks seen previously, each neuron

had its own set of weights.

04/05/2017 Machine Learning in HPC Environments Spring 2017 64

convolutional

subsampling

convolutional

subsampling

convolutional

subsampling

from Martin Görner Learn TensorFlow and deep learning, without a Ph.D

https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd.html
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd.html
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd.html
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd.html
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd.html

How Does CNN Work?

 By sliding the patch of weights (filter) across the image in both

directions (a convolution) you obtain as many output values as there

were pixels in the image (some padding is necessary at the edges).

04/05/2017 Machine Learning in HPC Environments Spring 2017 65

28

28

1

28x28x1 image

3x3x1 filter

convolve (slide) over all

spatial locations

activation map

1

28

28

Three basic ideas about CNN

 Local receptive fields

 Shared weights and biases:

 Pooling

04/05/2017 Machine Learning in HPC Environments Spring 2017 66

Pooling Layer

 Convolutional neural networks also contain pooling layers. Pooling

layers are usually used immediately after convolutional layers.

 What the pooling layers do is simplify the information in the output

from the convolutional layer.

 We can think of max-pooling as a way for the network to ask whether a

given feature is found anywhere in a region of the image. It then

throws away the exact positional information.

04/05/2017 Machine Learning in HPC Environments Spring 2017 67

Convolutional Network With

Fully Connected Layers

04/05/2017 Machine Learning in HPC Environments Spring 2017 68

convolutional layer

32 output channels

convolutional layer

32 output channels

28x28x1

200

3x3x32

fully connected layer

softmax layer 10

3x3x32

32

32

Stacking And Chaining

Convolutional Layers in Keras
model = Sequential()

Adding the convulation layers

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],

 border_mode='valid',

 input_shape=input_shape))

model.add(Activation('relu'))

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=pool_size))

model.add(Dropout(0.25))

Fully connected layers

model.add(Flatten())

model.add(Dense(256,activation='relu'))

model.add(Dropout(0.25))

model.add(Dense(nb_classes,activation('softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adadelta',
 metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

 verbose=1,callbacks=[history], validation_data=(X_test, Y_test))

04/05/2017 Machine Learning in HPC Environments Spring 2017 69

nb_filters=32 kernel_size=(3,3)

input_shape=(28,28)

Challenging The 99% Testing Accuracy

 By using the convolution layer and the fully connected layers, we

reach a test accuracy of 99.23%

04/05/2017 Machine Learning in HPC Environments Spring 2017 70

99.23%

test accuracy

Review The Classified Results of CNN

04/05/2017 Machine Learning in HPC Environments Spring 2017 71

Correctly classified Incorrectly classified

Feed More Data:

Using Expanded Dataset
 We can further increase the test accuracy by expanding the

mnist.pkl.gz dataset, reaching a nearly 99.6% test accuracy

04/05/2017 Machine Learning in HPC Environments Spring 2017 72

99.57%

test accuracy

Examples of Convolution NN

 LeNet (1998)

 AlexNet (2012)

 GoogleLeNet (2014)

04/05/2017 Machine Learning in HPC Environments Spring 2017 73

Machine Learning Courses List

 Machine Learning in Coursera

https://www.coursera.org/learn/machine-learning

 Learning from Data (Caltech)

https://work.caltech.edu/telecourse.html

 Convolutional Neural Networks for Visual Recognition

http://cs231n.github.io/

 Deep Learning for Natural Language Processing

https://cs224d.stanford.edu/

04/05/2017 Machine Learning in HPC Environments Spring 2017 74

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://work.caltech.edu/telecourse.html
https://work.caltech.edu/telecourse.html
http://cs231n.github.io/
https://cs224d.stanford.edu/
https://cs224d.stanford.edu/

How To Run Multiple Tests For

Hyper-parameters?

Machine Learning in HPC Environments

04/05/2017 75

Hyperparameters

 Most machine learning algorithms involve “hyperparameters” which

are variables set before actually optimizing the model's parameters.

Setting the values of hyperparameters can be seen as model selection,

i.e. choosing which model to use from the hypothesized set of

possible models.

 Examples of hyperparameters in Deep Neuron Network models:

– Number of Hidden Units

– Mini-batch Size

– Number of filters

– …

04/05/2017 76

Example Problem

 I want to test which model works best if I have:

– 128, 256, 512 hidden units

– Mini-batch size=50, 100, 200

– Number of filters=8, 16, 32

 Total 3x3=27 combinations

– Submit 27 jobs?

– Or we can do better?

04/05/2017 Machine Learning in HPC Environments Spring 2017 77

Usage of GNU Parallel

 GNU parallel is a shell tool for executing jobs in parallel using one or

more computers (compute nodes).

 A job can be a single command or a small script that has to be run for

each of the lines in the input.

 The typical input is a list of files, a list of hosts, a list of users, a list of

URLs, or a list of tables.

 See more at: https://www.gnu.org/software/parallel/

https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/

GNU Parallel Example Script

#!/bin/bash

#PBS -l nodes=3:ppn=20

#PBS -l walltime=2:00:00

#PBS -q workq

#PBS -N MNST_HYPER

#-j oe

#PBS -A loni_loniadmin3

cd $PBS_O_WORKDIR

export KERAS_BACKEND=tensorflow

SECONDS=0

parallel --joblog logfile \

 -j 1 \

 --slf $PBS_NODEFILE \

 --workdir $PBS_O_WORKDIR \

 python mnist_hparam.py ::: 1 2 3 ::: 256 512 1024

echo took $SECONDS secs.

04/05/2017 Machine Learning in HPC Environments Spring 2017 79

specify a log file

One job per node

Use 3 nodes for the job for 9 tests

3 sets of convolution layers

3 numbers of hidden units

Waste

Load Balancing in GNU Parallel

 GNU Parallel spawns the next job when one finishes - keeping the

nodes active and thus saving time.

11/02/2016 Distributed Workload with GNU Parallel 80

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Waste

Waste

Job 1
Job 2 Job 3

Job 4

Job 5 Job 6

Job 7

Job 8
Job 9

Waste

Without Load Balancing With Load Balancing

Cpu0 Cpu1 Cpu2 Cpu0 Cpu1 Cpu2

E
x
e
c
u
t
i
o
n

T
i
m
e

Submit and Monitor Your Jobs

Deep Learning Examples on LONI QB2

04/05/2017 81

Two Job Types

 Interactive job

– Set up an interactive environment on compute nodes for users

• Advantage: can run programs interactively

• Disadvantage: must be present when the job starts

– Purpose: testing and debugging, compiling

• Do not run on the head node!!!

• Try not to run interactive jobs with large core count, which is a waste of

resources)

 Batch job

– Executed without user intervention using a job script

• Advantage: the system takes care of everything

• Disadvantage: can only execute one sequence of commands which cannot

changed after submission

– Purpose: production run

04/05/2017 Machine Learning in HPC Environments Spring 2017 82

PBS Script (MNIST)

Tensorflow Backend
#!/bin/bash

#PBS -l nodes=1:ppn=20

#PBS -l walltime=72:00:00

#PBS -q workq

#PBS -N cnn.tf.gpu

#PBS -o cnn.tf.gpu.out

#PBS -e cnn.tf.gpu.err

#PBS -A loni_loniadmin1

cd $PBS_O_WORKDIR

use the tensorflow backend

export KERAS_BACKEND=tensorflow

use this python module key to access tensorflow, theano and keras

module load python/2.7.12-anaconda

python mnist_cnn.py

04/05/2017 Machine Learning in HPC Environments Spring 2017

Tells the job

scheduler

how much

resource you

need.

How will you

use the

resources?

83

Steps to Submit Jobs

[fchen14@qb1 ml_tut]$ cd /project/fchen14/machine_learning/ml_tut

[fchen14@qb1 ml_tut]$ qsub sbm_cifar10_cnn_tensorflow.pbs

305669.qb3

[fchen14@qb1 ml_tut]$ qstat -u fchen14

qb3:

 Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

-------------------- ----------- -------- ---------------- ------ ----- ------ ------ ----- - -----

305667.qb3 fchen14 workq cnn.tf.gpu 25633 1 20 -- 72:00 R --

305669.qb3 fchen14 k40 cnn.tf.gpu -- 1 20 -- 72:00 R --

[fchen14@qb1 ml_tut]$ qshow 305669.qb3

PBS job: 305669.qb3, nodes: 1

Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)

qb002 24 0.32 205 4 fchen14:python:166G:1.6G:0.1 fchen14:305669:103M:1M

PBS_job=305669.qb3 user=fchen14 allocation=loni_loniadmin1 queue=k40 total_load=0.32 cpu_hours=0.11
wall_hours=0.05 unused_nodes=0 total_nodes=1 ppn=20 avg_load=0.32 avg_cpu=205% avg_mem=1647mb
avg_vmem=170438mb top_proc=fchen14:python:qb002:166G:1.6G:0.1hr:205%
toppm=msun:python:qb002:169456M:1190M node_processes=4

04/05/2017 Machine Learning in HPC Environments Spring 2017 84

Job Monitoring - Linux Clusters

 Check details on your job using qstat

$ qstat -n -u $USER : For quick look at nodes assigned to you

$ qstat -f jobid : For details on your job

$ qdel jobid : To delete job

 Check approximate start time using showstart

$ showstart jobid

 Check details of your job using checkjob

$ checkjob jobid

 Check health of your job using qshow

$ qshow jobid

 Dynamically monitor node status using top

– See next slides

 Monitor GPU usage using nvidia-smi

– See next slides

 Please pay close attention to the load and the memory consumed by

your job!

04/05/2017 Machine Learning in HPC Environments Spring 2017 85

Using the “top” command

 The top program provides a dynamic real-time view of a running

system.
[fchen14@qb1 ml_tut]$ ssh qb002

Last login: Mon Oct 17 22:50:16 2016 from qb1.loni.org

[fchen14@qb002 ~]$ top

top - 15:57:04 up 24 days, 5:38, 1 user, load average: 0.44, 0.48, 0.57

Tasks: 606 total, 1 running, 605 sleeping, 0 stopped, 0 zombie

Cpu(s): 9.0%us, 0.8%sy, 0.0%ni, 90.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 132064556k total, 9759836k used, 122304720k free, 177272k buffers

Swap: 134217720k total, 0k used, 134217720k free, 5023172k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 21270 fchen14 20 0 166g 1.6g 237m S 203.6 1.3 16:42.05 python

 22143 fchen14 20 0 26328 1764 1020 R 0.7 0.0 0:00.76 top

 83 root 20 0 0 0 0 S 0.3 0.0 16:47.34 events/0

 97 root 20 0 0 0 0 S 0.3 0.0 0:25.80 events/14

 294 root 39 19 0 0 0 S 0.3 0.0 59:45.52 kipmi0

 1 root 20 0 21432 1572 1256 S 0.0 0.0 0:01.50 init

 2 root 20 0 0 0 0 S 0.0 0.0 0:00.02 kthreadd

04/05/2017 Machine Learning in HPC Environments Spring 2017 86

Monitor GPU Usage

 Use nvidia-smi to monitor GPU usage:
[fchen14@qb002 ~]$ nvidia-smi -l

Thu Nov 3 15:58:52 2016

+--+

| NVIDIA-SMI 352.93 Driver Version: 352.93 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

|===============================+======================+======================|

| 0 Tesla K40m On | 0000:03:00.0 Off | 0 |

| N/A 34C P0 104W / 235W | 11011MiB / 11519MiB | 77% Default |

+-------------------------------+----------------------+----------------------+

| 1 Tesla K40m On | 0000:83:00.0 Off | 0 |

| N/A 32C P0 61W / 235W | 10950MiB / 11519MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

+---+

| Processes: GPU Memory |

| GPU PID Type Process name Usage |

|===|

| 0 21270 C python 10954MiB |

| 1 21270 C python 10893MiB |

+---+

04/05/2017 Machine Learning in HPC Environments Spring 2017 87

Future Trainings

 This is the last training for this semester

– Keep an eye on future HPC trainings at:

• http://www.hpc.lsu.edu/training/tutorials.php#upcoming

 Programming/Parallel Programming workshops in Summer

 Visit our webpage: www.hpc.lsu.edu

04/05/2017 Machine Learning in HPC Environments Spring 2017 88

http://www.hpc.lsu.edu/training/tutorials.php#upcoming
http://www.hpc.lsu.edu/training/tutorials.php#upcoming

