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Machine Learning Everywhere! 

Face Recognition 

Sentiment Analysis 

National Defense 

Cancer Cell Detection 

Natural 
Language 
Processing 



What is Machine Learning? 

 Tom. Mitchell:  Formally, a computer program is said to learn from experience E with respect   
     to some class of tasks T and performance measure P. Its performance at tasks in T as     
     measured by P, improves with experience.  
 
 H. Simon:  Learning denotes changes in the system that are adaptive in the sense that they  
    enable the system to do the task or tasks drawn from the same population more efficiently   
    and more effectively the next time. 

Key Points: 
1. Improving performance via experience 
2. Perform a task in a situation which has never been 

encountered before. 

www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer 



Key Components in Machine Learning 

 Representation:   
Decision Tree, Neural Network, Graphical Model, etc.  

 Evaluation: 
 Accuracy, Precision and Recall, Squared Error, Likelihood, cost, entropy, etc.  

 Optimization: 
Gradient Descent, Greedy Search, Linear Programming, etc.  

Representation Evaluation 

Optimization 

data 
GOOD? YES 

NO 

DONE! 



Application Example: Image Classification 

“Motorcycle” 

Input: X  Output: Y 

Source: slides from Prof. Mingxuan Sun, Lousisana State University 



Representation: Why it is HARD? 

Humans see this  

Computers see this 

Source: slides from Prof. Mingxuan Sun, Lousisana State University 



handles 

wheels 

Learning Algorithms 

motorcycle 

others 

Source: slides from Prof. Mingxuan Sun, Lousisana State University 



Machine Learning: Evaluation 

A  dataset 
Fields               class 
1.4  2.7   1.9         0 
3.8  3.4   3.2         0 
6.4  2.8   1.7         1 
4.1  0.1   0.2         0 
etc … 

1.4 

2.7 

1.9 

0.7    (0) 
 
Error=0.7 

Compare with the 
target output 

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt 

Neural Network Model 

actual 
output target 

output 



Adjust weights based on error 

1.4 

2.7 

1.9 

0.7    (0) 
 
Error=0.7 

Repeat this thousands, maybe millions of times – each time 
taking a random training instance, and making slight  
weight adjustments 
  Algorithms for weight adjustment are designed to make 
changes that will reduce the error 

https://www.macs.hw.ac.uk/~dwcorne/Teaching/introdl.ppt 

Machine Learning: Optimization 



Source: slides from Prof. Gogate, UT-Dallas 



Source: slides from Prof. Gogate, UT-Dallas 



Summary 

 Applications  
 

 Definitions 
 

Machine Learning = Representation + Evaluation + Optimization 
 

 When to Use Machine Learning? 
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Topics To Be Discussed  

 Fundamentals about Machine Learning 

 What is a neural network and how to train it 

 Build a basic 1-layer neural network using Keras/TensorFlow 

 MNIST example 

– Softmax classification 

– Cross-entropy cost function 

– How to add more layers 

– Dropout, learning rate decay... 

– How to build convolutional networks 

 How to utilize HPC for hyperparameter test? 
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Machine Learning and Deep Learning 
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Machine Learning 

 Machine Learning is the ability to teach a computer without explicitly 

programming it 

 

 Examples are used to train computers to perform tasks that would be 

difficult to program 
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Types of Machine Learning 

 Supervised Learning 

– Training data is labeled 

– Goal is correctly label new data 

 Reinforcement Learning 

– Training data is unlabeled 

– System receives feedback for its actions 

– Goal is to perform better actions 

 Unsupervised Learning 

– Training data is unlabeled 

– Goal is to categorize the observations 
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Applications of Machine Learning 

 Handwriting Recognition 

– convert written letters into digital letters 

 Language Translation 

– translate spoken and or written languages (e.g. Google Translate) 

 Speech Recognition 

– convert voice snippets to text (e.g. Siri, Cortana, and Alexa) 

 Image Classification 

– label images with appropriate categories (e.g. Google Photos) 

 Autonomous Driving 

– enable cars to drive 
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Features in Machine Learning 

 Features are the observations that are used to form predictions 

– For image classification, the pixels are the features 

– For voice recognition, the pitch and volume of the sound samples are 

the features 

– For autonomous cars, data from the cameras, range sensors, and GPS 

are features 

 

 Extracting relevant features is important for building a model 

– Time of day is an irrelevant feature when classifying images 

– Time of day is relevant when classifying emails because SPAM often 

occurs at night 

 

 Common Types of Features in Robotics 

– Pixels (RGB data) 

– Depth data (sonar, laser rangefinders) 

– Movement (encoder values) 

– Orientation or Acceleration (Gyroscope, Accelerometer, Compass) 
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Training and Test Data 
 Training Data 

– data used to learn a model 

 Test Data 

– data used to assess the accuracy of model 

 

 Overfitting 

– Model performs well on training data but poorly on test data 
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Bias and Variance 

 Bias: expected difference between model’s prediction and truth 

 Variance: how much the model differs among training sets 

 

 Model Scenarios 

– High Bias: Model makes inaccurate predictions on training data 

– High Variance: Model does not generalize to new datasets 

– Low Bias: Model makes accurate predictions on training data 

– Low Variance: Model generalizes to new datasets 
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Supervised Learning Algorithms 

 Linear Regression 

 Decision Trees 

 Support Vector Machines 

 K-Nearest Neighbor 

 Neural Networks 

– Deep Learning is the branch of Machine Learning based on Deep 

Neural Networks (DNNs, i.e., neural networks composed of more than 1 

hidden layer). 

– Convolutional Neural Networks (CNNs) are one of the most popular 

DNN architectures (so CNNs are part of Deep Learning), but by no 

means the only one. 
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Machine Learning Frameworks 
 

Tool Uses Language 

Scikit-Learn 
Classification, 

Regression, Clustering 
Python 

Spark MLlib 
Classification, 

Regression, Clustering 
Scala, R, Java 

Weka 
Classification, 

Regression, Clustering 
Java 

Caffe Neural Networks C++, Python 

TensorFlow Neural Networks Python 
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Overview of LONI QB2  

Deep Learning Examples on LONI QB2 
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QB2 Hardware Specs 

 QB2 came on-line 5 Nov 2014.  

– It is a 1.5 Petaflop peak performance cluster containing 504 compute 

nodes with  

• 960 NVIDIA Tesla K20x GPU's, and  

• Over 10,000 Intel Xeon processing cores. It achieved 1.052 PF during 

testing.  

 Ranked 46th on the November 2014 Top500 list.  

 480 Compute Nodes, each with: 

– Two 10-core 2.8 GHz E5-2680v2 Xeon processors. 

– 64 GB memory 

– 500 GB HDD 

– 2 NVIDIA Tesla K20x GPU's 
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Inside A QB Cluster Rack 
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Rack 

Infiniband 

Switch 

Compute 

Node 
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Inside A QB2 Dell C8000 Node 
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Storage 

Accelerator 

(GPU) 
Accelerator 

(GPU) 

Processor 

Memory 

Network 

Card 

Processor 
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GPU CPU 

Add GPUs: Accelerate Science Applications 

Deep Learning Practice on LONI QB2 Fall 2016 11/09/2016 16 



Performance Comparison  

CPU-GPU 
 Comparison of runtime for deep learning benchmark problem 

– CIFAR10, 1 Epoch 

11/09/2016 Deep Learning Practice on LONI QB2 Fall 2016 

Speedups: 
537/47=11.4 
537/23=23.3 

17 



Understanding The Learning Process 

 Start from least square method... 

 Trying to find  

– Parameters (w, b): minimizes the sum of the squares of the errors  

– Errors: distance between known data points and predictions 
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 from Yaser Abu-Mustafa “Learning From Data” Lecture 3 

1 1 2 2y w x w x b  



Recall From The Least Square Method 

 Error 

– Cost Function (Loss): J(w), C, L 

 Parameters 

– Weights and Biases: (w, b) 

 

 Define the cost function of your problem 

 Find the set of weights that minimizes the cost function (loss) 
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Theory: Gradient Descent 

 Gradient descent is a first-order iterative optimization algorithm. To 

find a local minimum of a function using gradient descent, one takes 

steps proportional to the negative of the gradient (or of the 

approximate gradient) of the function at the current point. 
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Stochastic Gradient Descent 

 Stochastic gradient descent (SGD), also known as incremental 

gradient descent, is a stochastic approximation of the gradient 

descent optimization method for minimizing an objective function. 

 SGD samples a subset of summand functions at every step. This is 

very effective in the case of large-scale machine learning problems. 
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J(w) 

Learning steps 



Mini-batch Gradient Descent 

 Batch gradient descent: 

– Use all examples in each iteration 

 Stochastic gradient descent: 

– Use one example in each iteration 

 Mini-batch gradient descent 

– Use b examples in each iteration 

 In the neural network terminology: 

– one EPOCH = one forward pass and one backward pass of all the 

training examples 

– batch size = the number of training examples in one forward/backward 

pass. The higher the batch size, the more memory space you'll need. 

– number of iterations = number of passes, each pass using [batch size] 

number of examples. To be clear, one pass = one forward pass + one 

backward pass (we do not count the forward pass and backward pass 

as two different passes). 

– Example: if you have 1000 training examples, and your batch size is 

500, then it will take 2 iterations to complete 1 epoch. 
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What is a neural network? 

 Start from a perceptron 
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Denote as: z 
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(Prediction: y) 

Weight vector: w 
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Perceptron To Neuron 

 Replace the sign to sigmoid 
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Sigmoid Neurons 

 Sigmoid activation Function 

– In the field of Artificial Neural Networks, the sigmoid function is a type of 

activation function for artificial neurons. 

 

 

 

 

 

 

 

 There are many other activation functions used. (We will touch later.) 
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Network Of Neurons  

 A complex network of neurons could make quite subtle decisions 

 

 

 

 

 

 

 

 Deep Neuron Network: Number of hidden layers >1 
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How to Train DNN? 

 Backward Propagation 

– The backward propagation of errors or backpropagation, is a common 

method of training artificial neural networks and used in conjunction with 

an optimization method such as gradient descent. 

 

 Deep Neural Networks are hard to train 

– learning machines with lots of (typically in range of million) parameters 

– Unstable gradients issue  

• Vanishing gradient problem 

• Exploding gradient problem 

– Choice of network architecture and other hyper-parameters is also 

important.  

– Many factors can play a role in making deep networks hard to train 

– Understanding all those factors is still a subject of ongoing research 
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Hello World of Deep Learning:  

Recognition of MNIST 

Deep Learning Example 
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Introducing the MNIST problem 

 MNIST (Mixed National Institute of Standards and Technology 

database) is a large database of handwritten digits that is commonly 

used for training various image processing systems. 

 It consists of images of handwritten digits like these: 

 

 

 

 

 

 

 

 

 

 

 The MNIST database contains 60,000 training images and 10,000 

testing images. 
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Example Problem - MNIST 

 Recognizes handwritten digits. 

 

 We uses the MNIST dataset, a collection of 60,000 labeled digits that 

has kept generations of PhDs busy for almost two decades. You will 

solve the problem with less than 100 lines of 

Python/Keras/TensorFlow code. 

 

 We will gradually enhance the neural network to achieve above 99% 

accuracy by using the mentioned techniques. 
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Steps for MNIST 

 Understand the MNIST data 

 Softmax regression layer 

 The cost function 
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The MNIST Data 

 Every MNIST data point has two parts: an image of a handwritten digit 

and a corresponding label. We'll call the images "x" and the labels "y". 

Both the training set and test set contain images and their 

corresponding labels; 

 Each image is 28 pixels by 28 pixels. We can interpret this as a big 

array of numbers: 
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One Layer NN for MNIST Recognition 

 We will start with a very simple model, called Softmax Regression. 

 We can flatten this array into a vector of 28x28 = 784 numbers. It 

doesn't matter how we flatten the array, as long as we're consistent 

between images.  

 From this perspective, the MNIST images are just a bunch of points in 

a 784-dimensional vector space. 
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Result of the Flatten Operation 

 The result is that the training images is a matrix (tensor) with a shape 

of [60000, 784].  

 The first dimension is an index into the list of images and the second 

dimension is the index for each pixel in each image.  

 Each entry in the tensor is a pixel intensity between 0 and 1, for a 

particular pixel in a particular image. 
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One-hot Vector (One vs All) 

 For the purposes of this tutorial, we label the y’s as "one-hot vectors“. 

 A one-hot vector is a vector which is 0 in most dimensions, and 1 in a 

single dimension. 

 How to label an “8”? 

– [0,0,0,0,0,0,0,0,1,0] 

 What is the dimension of our y matrix (tensor)? 
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60,000 

10 

0 0 0 0 0 0 1 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

... 

0 0 0 0 1 0 0 0 0 0 

6 

3 

2 

4 

5 

4 

... 

4 

60,000 labels: 

0 1 2 3 4 5 6 7 8 9 



Softmax Regressions 

 Every image in MNIST is of a handwritten digit between 0 and 9.  

 So there are only ten possible things that a given image can be. We 

want to be able to look at an image and give the probabilities for it 

being each digit. 

 For example, our model might look at a picture of an eight and be 80% 

sure it's an 8, but give a 6% chance to it being a 4 (because of the top 

loop) and a bit of probability to all the others because it isn't 100% 

sure. 
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0 1 2 3 4 5 6 7 8 9 

0.04 0.02 0.01 0.01 0.06 0.03 0.01 0.01 0.80 0.01 

Softmax Regression 
this is a “8” 



2 steps in softmax regression - Step 1 

 Step 1: Add up the evidence of our input being in certain classes. 

– Do a weighted sum of the pixel intensities. The weight is negative if that 

pixel having a high intensity is evidence against the image being in that 

class, and positive if it is evidence in favor. 
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Matrix Representation of softmax layer 
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784 pixels 

X : 60,000 images, 

one per line, 

flattened 

w0,0 w0,1 w0,2 w0,3 … w0,9 
w1,0 w1,1 w1,2 w1,3 … w1,9 
w2,0 w2,1 w2,2 w2,3 … w2,9 
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w5,0 w5,1 w5,2 w5,3 … w5,9 
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w7,0 w7,1 w7,2 w7,3 … w7,9 
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         … 
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2 steps in softmax regression - Step 2 

 Step 2: Convert the evidence tallies into our predicted probabilities y 

using the "softmax" function: 

 

 

 Here softmax is serving as an "activation" function, shaping the 

output of our linear function a probability distribution over 10 cases, 

defined as: 
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Softmax on a batch of images 

 More compact representation for “softmaxing” on all the images 
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softmax( )Y X W b  

 Predictions                      Images            Weights      Biases 
 

 Y[60000, 10]     [60000, 784]  W[784,10]  b[10] 

matrix multiply broadcast 

on all lines 

applied on 

each line 



The softmax layer 

 The output from the softmax layer is a set of probability distribution, 

positive numbers which sum up to 1.  
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0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.01 0.02 0.01 

The Cross-Entropy Cost Function 

 For classification problems, the Cross-Entropy cost function works 

better than quadratic cost function. 

 We define the cross-entropy cost function for the neural network by: 
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0 0 0 0 0 0 1 0 0 0 

Cross entropy 



Short Summary 

 How MNIST data is organized 

– X: 

• Flattened image pixels matrix 

– Y: 

• One-hot vector 

 Softmax regression layer 

– Linear regression 

– Output probability for each category 

 Cost function 

– Cross-entropy 
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Implementation in 

Keras/Tensorflow 

Deep Learning Example 
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Few Words about 

Keras, Tensorflow and Theano 
 Keras is a high-level neural networks library, written in Python and 

capable of running on top of either TensorFlow or Theano.  

 TensorFlow is an open source software library for numerical 

computation using data flow graphs. 

 Theano is a Python library that allows you to define, optimize, and 

evaluate mathematical expressions involving multi-dimensional arrays 

efficiently. 
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Introducing Keras 

 Keras is a high-level neural networks library,  

 Written in Python and capable of running on top of either TensorFlow 

or Theano.  

 It was developed with a focus on enabling fast experimentation. Being 

able to go from idea to result with the least possible delay is key to 

doing good research. 

 See more at: https://github.com/fchollet/keras  
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Typical Code Structure  

 Load the dataset (MNIST)  

 Build the Neural Network/Machine Learning Model 

 Train the model 
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Software Environment 

 What you'll need 

– Python 2 or 3 (Python 3 recommended) 

– TensorFlow/Keras 

– Matplotlib (Python visualization library) 

 On LONI QB2 the above modules are already setup for you, simply 

use: 

$ module load python/2.7.12-anaconda-tensorflow 

OR 

$ module load python/3.5.2-anaconda-tensorflow 
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Keras - Initialization 

# import necessary modules 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Activation, Flatten 

from keras.layers import Convolution2D, MaxPooling2D 

from keras.utils import np_utils 

from keras import backend as K 
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Load The MNIST Dataset 

# load the mnist dataset 

import cPickle 

import gzip 

f = gzip.open('mnist.pkl.gz', 'rb') 

# load the training and test dataset 

# download https://s3.amazonaws.com/img-datasets/mnist.pkl.gz  

# to use in this tutorial 

X_train, y_train, X_test, y_test = cPickle.load(f) 

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape) 

 

 

Output of the print line: 

(60000, 28, 28) (60000,) (10000, 28, 28) (10000,) 
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Preprocessing the MNIST Dataset 

# Flatten the image to 1D 

X_train = X_train.reshape(X_train.shape[0], img_rows*img_cols) 

X_test = X_test.reshape(X_test.shape[0], img_rows*img_cols) 

input_shape = (img_rows*img_cols,) 

 

 

# convert all data to 0.0-1.0 float values 

X_train = X_train.astype('float32') 

X_test = X_test.astype('float32') 

X_train /= 255 

X_test /= 255 

 

# convert class vectors to binary class matrices 

Y_train = np_utils.to_categorical(y_train, nb_classes) 

Y_test = np_utils.to_categorical(y_test, nb_classes) 
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One-hot encoding 

All grayscale values to 0.0-1.0 

Flatten 28x28 image to 1D 



Build The First softmax Layer 

# The Sequential model is a linear stack of layers in Keras 

model = Sequential() 

#build the softmax regression layer 

model.add(Dense(nb_classes,input_shape=input_shape)) 

model.add(Activation('softmax')) 

 

# Before training a model,  

# configure the learning process via the compile method. 

# using the cross-entropy loss function (objective) 

model.compile(loss='categorical_crossentropy',  

       #using the stochastic gradient descent (SGD) 

              optimizer='sgd',   

              # using accuracy to judge the performance of your model 

              metrics=['accuracy']) 

# fit the model, the training process 

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, 

          verbose=1, validation_data=(X_test, Y_test)) 

04/05/2017 Machine Learning in HPC Environments Spring 2017 52 

nb_classes=10 input_shape=(784,) 



Results Of The First softmax Regression 

 Training accuracy vs Test accuracy, loss function 

 We reach a Training accuracy at 91.7% 
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91.70%  

test accuracy 



Review The Classified Results 
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Adding More Layers? 

 Using a 5 fully connected layer model: 
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5 Layer Model In Keras 

model = Sequential() 

# try also tanh, sigmoid 

act_func=‘relu' 

model.add(Dense(200,activation=act_func,input_shape=input_shape)) 

model.add(Dense(100,activation=act_func)) 

model.add(Dense( 60,activation=act_func)) 

model.add(Dense( 30,activation=act_func)) 

model.add(Dense(nb_classes,activation='softmax')) 

model.compile(loss='categorical_crossentropy',optimizer=‘sgd', 

              metrics=['accuracy']) 

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch, 

          verbose=1, validation_data=(X_test, Y_test)) 
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5 Layer Regression – Different Activation 

 Training accuracy vs Test accuracy, loss function 

 We reach a Test accuracy at 97.35% (sigmoid), 98.06% (tanh) 
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Rectified Linear Unit (ReLU)  

activation function 
 ReLU - The Rectified Linear Unit has become very popular in the last 

few years: 

 

 

 We get a test accuracy of 98.07% with ReLU 
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Overfitting 

 Overfitting occurs when a model is excessively complex, such as 

having too many parameters relative to the number of observations. A 

model that has been overfit has poor predictive performance, as it 

overreacts to minor fluctuations in the training data. 
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Classification: 



Regularization - Dropout 

 Dropout is an extremely effective, simple and recently introduced 

regularization technique by Srivastava et al (2014). 

 

 

 

 

 

 

 

 While training, dropout is implemented by only keeping a neuron 

active with some probability p (a hyperparameter), or setting it to zero 

otherwise. 

 It is quite simple to apply dropout in Keras. 

# apply a dropout rate 0.25 (drop 25% of the neurons) 

model.add(Dropout(0.25)) 
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Apply Dropout To The 5 Layer NN 

model = Sequential() 

act_func='relu' 

p_dropout=0.25 # apply a dropout rate 25 % 

model.add(Dense(200,activation=act_func,input_shape=input_shape)) 

model.add(Dropout(p_dropout)) 

model.add(Dense(100,activation=act_func)) 

model.add(Dropout(p_dropout)) 

model.add(Dense( 60,activation=act_func)) 

model.add(Dropout(p_dropout)) 

model.add(Dense( 30,activation=act_func)) 

model.add(Dropout(p_dropout)) 

model.add(Dense(nb_classes,activation='softmax')) 

model.compile(loss='categorical_crossentropy',optimizer=‘sgd', 

              metrics=['accuracy']) 

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch, 

          verbose=1, validation_data=(X_test, Y_test)) 
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Results Using p_dropout=0.25 

 Resolve the overfitting issue 

 Sustained 98.26% accuracy 
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98.26%  

test accuracy 



Why Using Fully Connected Layers? 

 Such a network architecture does not take into account the spatial 

structure of the images.  

– For instance, it treats input pixels which are far apart and close together 

on exactly the same weight. 

 Spatial structure must instead be inferred from the training data.  

 

 Is there an architecture which tries to take advantage of the spatial 

structure? 
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Convolution Neuron Network  

(CNN)  
 

 

 

 

 

 

 

 

 Deep convolutional network is one of the most widely used types of 

deep network. 

 In a layer of a convolutional network, one "neuron" does a weighted 

sum of the pixels just above it, across a small region of the image 

only. It then acts normally by adding a bias and feeding the result 

through its activation function.  

 The big difference is that each neuron reuses the same weights 

whereas in the fully-connected networks seen previously, each neuron 

had its own set of weights. 
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How Does CNN Work? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 By sliding the patch of weights (filter) across the image in both 

directions (a convolution) you obtain as many output values as there 

were pixels in the image (some padding is necessary at the edges). 
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Three basic ideas about CNN 

 Local receptive fields 

 Shared weights and biases:  

 Pooling 
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Pooling Layer 

 Convolutional neural networks also contain pooling layers. Pooling 

layers are usually used immediately after convolutional layers.  

 What the pooling layers do is simplify the information in the output 

from the convolutional layer. 

 We can think of max-pooling as a way for the network to ask whether a 

given feature is found anywhere in a region of the image. It then 

throws away the exact positional information. 
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Convolutional Network With  

Fully Connected Layers 
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Stacking And Chaining  

Convolutional Layers in Keras 
model = Sequential() 

# Adding the convulation layers 

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], 

                        border_mode='valid', 

                        input_shape=input_shape)) 

model.add(Activation('relu')) 

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1])) 

model.add(Activation('relu')) 

model.add(MaxPooling2D(pool_size=pool_size)) 

model.add(Dropout(0.25)) 

# Fully connected layers 

model.add(Flatten())  

model.add(Dense(256,activation='relu')) 

model.add(Dropout(0.25)) 

model.add(Dense(nb_classes,activation('softmax')) 

model.compile(loss='categorical_crossentropy', optimizer='adadelta',                
  metrics=['accuracy']) 

 

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, 

          verbose=1,callbacks=[history], validation_data=(X_test, Y_test)) 
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Challenging The 99% Testing Accuracy 

 By using the convolution layer and the fully connected layers, we 

reach a test accuracy of 99.23%  
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Review The Classified Results of CNN 
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Feed More Data: 

Using Expanded Dataset 
 We can further increase the test accuracy by expanding the 

mnist.pkl.gz dataset, reaching a nearly 99.6% test accuracy 
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Examples of Convolution NN 

 LeNet (1998) 

 

 

 

 

 AlexNet (2012) 

 

 

 

 

 

 GoogleLeNet (2014) 
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Machine Learning Courses List 

 Machine Learning in Coursera 

https://www.coursera.org/learn/machine-learning 

 Learning from Data (Caltech) 

https://work.caltech.edu/telecourse.html 

 Convolutional Neural Networks for Visual Recognition 

http://cs231n.github.io/ 

 Deep Learning for Natural Language Processing 

https://cs224d.stanford.edu/ 
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How To Run Multiple Tests For 

Hyper-parameters? 

Machine Learning in HPC Environments 
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Hyperparameters 

 Most machine learning algorithms involve “hyperparameters” which 

are variables set before actually optimizing the model's parameters. 

Setting the values of hyperparameters can be seen as model selection, 

i.e. choosing which model to use from the hypothesized set of 

possible models. 

 Examples of hyperparameters in Deep Neuron Network models: 

– Number of Hidden Units 

– Mini-batch Size 

– Number of filters 

– … 
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Example Problem 

 I want to test which model works best if I have: 

– 128, 256, 512 hidden units 

– Mini-batch size=50, 100, 200 

– Number of filters=8, 16, 32 

 Total 3x3=27 combinations 

– Submit 27 jobs? 

– Or we can do better? 
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Usage of GNU Parallel 

 GNU parallel is a shell tool for executing jobs in parallel using one or 

more computers (compute nodes).  

 A job can be a single command or a small script that has to be run for 

each of the lines in the input.  

 The typical input is a list of files, a list of hosts, a list of users, a list of 

URLs, or a list of tables.  

 See more at: https://www.gnu.org/software/parallel/  

https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/


GNU Parallel Example Script 

#!/bin/bash 

#PBS -l nodes=3:ppn=20 

#PBS -l walltime=2:00:00 

#PBS -q workq 

#PBS -N MNST_HYPER 

#-j oe 

#PBS -A loni_loniadmin3 

 

cd $PBS_O_WORKDIR 

export KERAS_BACKEND=tensorflow 

SECONDS=0 

parallel --joblog logfile \ 

         -j 1 \ 

         --slf $PBS_NODEFILE \ 

         --workdir $PBS_O_WORKDIR \ 

         python mnist_hparam.py ::: 1 2 3 ::: 256 512 1024 

echo took $SECONDS secs. 
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Waste 

Load Balancing in GNU Parallel 

 GNU Parallel spawns the next job when one finishes - keeping the 

nodes active and thus saving time. 
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Submit and Monitor Your Jobs 

Deep Learning Examples on LONI QB2 
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Two Job Types 

 Interactive job 

– Set up an interactive environment on compute nodes for users 

• Advantage: can run programs interactively 

• Disadvantage: must be present when the job starts 

– Purpose: testing and debugging, compiling 

• Do not run on the head node!!! 

• Try not to run interactive jobs with large core count, which is a waste of 

resources) 

 Batch job 

– Executed without user intervention using a job script 

• Advantage: the system takes care of everything 

• Disadvantage: can only execute one sequence of commands which cannot 

changed after submission 

– Purpose: production run 
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PBS Script (MNIST)  

Tensorflow Backend 
#!/bin/bash 

#PBS -l nodes=1:ppn=20 

#PBS -l walltime=72:00:00 

#PBS -q workq 

#PBS -N cnn.tf.gpu 

#PBS -o cnn.tf.gpu.out 

#PBS -e cnn.tf.gpu.err 

#PBS -A loni_loniadmin1 

 

cd $PBS_O_WORKDIR 

# use the tensorflow backend 

export KERAS_BACKEND=tensorflow  

# use this python module key to access tensorflow, theano and keras 

module load python/2.7.12-anaconda 

python mnist_cnn.py 
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Steps to Submit Jobs 

[fchen14@qb1 ml_tut]$ cd /project/fchen14/machine_learning/ml_tut 

[fchen14@qb1 ml_tut]$ qsub sbm_cifar10_cnn_tensorflow.pbs 

305669.qb3 

[fchen14@qb1 ml_tut]$ qstat -u fchen14 

 

qb3: 

                                                                         Req'd  Req'd   Elap 

Job ID               Username    Queue    Jobname          SessID NDS   TSK    Memory Time  S Time 

-------------------- ----------- -------- ---------------- ------ ----- ------ ------ ----- - ----- 

305667.qb3           fchen14     workq    cnn.tf.gpu        25633     1     20    --  72:00 R   -- 

305669.qb3           fchen14     k40      cnn.tf.gpu          --      1     20    --  72:00 R   -- 

[fchen14@qb1 ml_tut]$ qshow 305669.qb3 

PBS job: 305669.qb3, nodes: 1 

Hostname  Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours) 

qb002       24 0.32 205  4 fchen14:python:166G:1.6G:0.1 fchen14:305669:103M:1M 

PBS_job=305669.qb3 user=fchen14 allocation=loni_loniadmin1 queue=k40 total_load=0.32 cpu_hours=0.11 
wall_hours=0.05 unused_nodes=0 total_nodes=1 ppn=20 avg_load=0.32 avg_cpu=205% avg_mem=1647mb 
avg_vmem=170438mb top_proc=fchen14:python:qb002:166G:1.6G:0.1hr:205% 
toppm=msun:python:qb002:169456M:1190M node_processes=4 
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Job Monitoring - Linux Clusters  

 Check details on your job using qstat  

$ qstat -n -u $USER  : For quick look at nodes assigned to you  

$ qstat -f jobid     : For details on your job  

$ qdel jobid         : To delete job  

 Check approximate start time using showstart   

$ showstart jobid  

 Check details of your job using checkjob 

$ checkjob jobid  

 Check health of your job using qshow  

$ qshow jobid 

 Dynamically monitor node status using top  

– See next slides 

 Monitor GPU usage using nvidia-smi  

– See next slides 

 

 Please pay close attention to the load and the memory consumed by 

your job! 
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Using the “top” command 

 The top program provides a dynamic real-time view of a running 

system. 
[fchen14@qb1 ml_tut]$ ssh qb002 

Last login: Mon Oct 17 22:50:16 2016 from qb1.loni.org 

[fchen14@qb002 ~]$ top 

top - 15:57:04 up 24 days,  5:38,  1 user,  load average: 0.44, 0.48, 0.57 

Tasks: 606 total,   1 running, 605 sleeping,   0 stopped,   0 zombie 

Cpu(s):  9.0%us,  0.8%sy,  0.0%ni, 90.2%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st 

Mem:  132064556k total,  9759836k used, 122304720k free,   177272k buffers 

Swap: 134217720k total,        0k used, 134217720k free,  5023172k cached 

 

   PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND 

 21270 fchen14   20   0  166g 1.6g 237m S 203.6  1.3  16:42.05 python 

 22143 fchen14   20   0 26328 1764 1020 R  0.7  0.0   0:00.76 top 

    83 root      20   0     0    0    0 S  0.3  0.0  16:47.34 events/0 

    97 root      20   0     0    0    0 S  0.3  0.0   0:25.80 events/14 

   294 root      39  19     0    0    0 S  0.3  0.0  59:45.52 kipmi0 

     1 root      20   0 21432 1572 1256 S  0.0  0.0   0:01.50 init 

     2 root      20   0     0    0    0 S  0.0  0.0   0:00.02 kthreadd 
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Monitor GPU Usage 

 Use nvidia-smi to monitor GPU usage: 
[fchen14@qb002 ~]$ nvidia-smi -l 

Thu Nov  3 15:58:52 2016 

+------------------------------------------------------+ 

| NVIDIA-SMI 352.93     Driver Version: 352.93         | 

|-------------------------------+----------------------+----------------------+ 

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC | 

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. | 

|===============================+======================+======================| 

|   0  Tesla K40m          On   | 0000:03:00.0     Off |                    0 | 

| N/A   34C    P0   104W / 235W |  11011MiB / 11519MiB |     77%      Default | 

+-------------------------------+----------------------+----------------------+ 

|   1  Tesla K40m          On   | 0000:83:00.0     Off |                    0 | 

| N/A   32C    P0    61W / 235W |  10950MiB / 11519MiB |      0%      Default | 

+-------------------------------+----------------------+----------------------+ 

 

+-----------------------------------------------------------------------------+ 

| Processes:                                                       GPU Memory | 

|  GPU       PID  Type  Process name                               Usage      | 

|=============================================================================| 

|    0     21270    C   python                                       10954MiB | 

|    1     21270    C   python                                       10893MiB | 

+-----------------------------------------------------------------------------+ 
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Future Trainings 

 This is the last training for this semester 

– Keep an eye on future HPC trainings at: 

• http://www.hpc.lsu.edu/training/tutorials.php#upcoming  

 

 Programming/Parallel Programming workshops in Summer 

 

 Visit our webpage: www.hpc.lsu.edu  
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