
Information Technology Services

LSU HPC Training Series, Spring 2017 p. 1/46

Shell Scripting

Xiaoxu Guan

High Performance Computing, LSU

February 15, 2017

#!/bin/bash

(?<=ˆ >) (?=[a-zA-Z])

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 2/46

Overview

• What is a shell?

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 2/46

Overview

• What is a shell?

• What is bash and why do we need bash?

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 2/46

Overview

• What is a shell?

• What is bash and why do we need bash?

• Bash Shell Scripting
◦ Linux Internal and External Commands;
◦ Shell Parameters;
◦ Standard Input/Output, and Exit Status;
◦ Meta Characters; Control, and Logical Operations;
◦ Quotes; Group Commands;
◦ Special Parameters; Shell Arrays;
◦ Pattern Matching; Arithmetic Operations;
◦ Control Flow: Testing and Looping;
◦ Aliases and Functions;
◦ Regular Expressions;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 2/46

Overview

• What is a shell?

• What is bash and why do we need bash?

• Bash Shell Scripting
◦ Linux Internal and External Commands;
◦ Shell Parameters;
◦ Standard Input/Output, and Exit Status;
◦ Meta Characters; Control, and Logical Operations;
◦ Quotes; Group Commands;
◦ Special Parameters; Shell Arrays;
◦ Pattern Matching; Arithmetic Operations;
◦ Control Flow: Testing and Looping;
◦ Aliases and Functions;
◦ Regular Expressions;

• Summary and Further Reading

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 3/46

What is a shell?

• We are using shell almost every day!

• Shell is a fundamental interface for users or applications to

interact with the Linux OS and kernels;

• Shell is a special program that accepts commands from

users’ keyboard and executes it to get the tasks done;

• Shell is an interpreter for command languages that reads

instructions and commands;

• Shell is a high-level programming language (compared to

C/C++, Fortran, . . .);

• It serves as a bridge between the Linux kernels and

users/applications;

• Don’t be confused with the Linux commands that need to be

ran in a shell;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 4/46

What is a shell?

• Shell has many different flavors from a number of aspects;

• At the system level: (non-)login shells,

(non-)interactive shells;

• At the implementation level: sh, bash, csh, tcsh, zsh, · · ·
• Login shell is the shell where you land once you login into a

Linux machine. Non-login shell might build on the top of
login shell (executing by the shell name).

• It sets up system-wide variables (/etc/bashrc and
/etc/profile) and user-specified variables (∼/.bashrc
and ∼/.bash_profile, if available).

• $ echo $0 (or ps -p $$)

• -bash (login shell) or bash (non-login shell);

• The default shell is bash (Bourne-Again Shell) on most
Linux/Unix/MaC OSs;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 5/46

What is bash and why do we need bash?

• Modern shells are very sophisticated today. You can reuse or

modify the commands you ran before; define our own

shortcuts for the commands; programmable . . .;
• GNU Bash is one of the GNU open source projects;
• Bash is the effectively “standard”, and probably the most

popular shell;
• It’s very useful for Linux/Unix system administration;
• Bash, Python, Perl, and Ruby;
• Many startup scripts were written in Bash. Bash works better

as it’s closer to OS;
• Learning Bash helps us better understand how Linux/Unix

works;
• It’s not hard to master, but it might not be simple either (a lot

of pitfalls): a quick-and-dirty way;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 6/46

What is bash and why do we need bash?

• Bash shell scripting is not for everything:
◦ Lack of rich data structures;
◦ Heavy-duty floating point operations;
◦ Extensive file operations (line-by-line operations);
◦ Potential incompatibilities with other shells, if

portability is critical;
◦ Plotting, . . . ;

• Bash incorporates many features from other shells (ksh and

csh); Significant improvements over sh;

• Enhance your productivity and efficiency;

• Bash supports filename globbing, redirections, piping,

command history, substitution, variable, etc;

• Good for the tasks that repeat many times with minor or no

changes in input parameters;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 7/46

Example Scripts

• This’s the list for the example scripts in the tarball:

01-hello-world.bash

02-quotes.bash

03-case-v0.bash

04-case-v1.bash

05-for-loop-all-headers.bash

06-for-loop-primes.bash

07-while-loop-sleep.bash

08-addition-v0.bash

09-addition-v1.bash

10-quadratic-function.bash

11-arrays.bash

12-alias-for-loop.bash

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 8/46

Bash Shell Commands

• Linux internal and external commands;
• Internal commands: builtin in the shell and no external

executables needed (cd, pwd, echo, type, source, bg, . . .);
• External commands: they are executable, separate files in

your $PATH (ls, mv, cp, rm, . . .);
• $ compgen -b (or -a, -k, -e)

list builtins (-b), aliases (-a), keywords (-k),
exported variables (-e), etc.

• $ type command_name [which command_name]
• The internal commands run faster than external ones;
• Commands include aliases, bash scripts (functions), builtins,

keywords, external commands;
• All these can be called in a bash script (but pay attention to

aliases);

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 9/46

Shell Parameters

• Shell parameter is a placeholder to store a value: variables

and special parameters; all parameters can be assigned with

values and can also be referenced;

• Substitution (parameter expansion) means referencing its

value stored in that parameter;

• Builtin variables: $BASH, $BASH_VERSION, $HOME, $PATH,

$MACHTYPE, $SHLVL, . . ., $0, $1, etc;
$my_variable or ${my_variable} [Don’t use $()]

• Variable assignment (avoid using $, @, #, %) and substitution $:

• Be careful with whitespaces (but why?);

• Shell variables are case sensitive;

• Bash variables are untyped (typeless)! It depends on

whether a variable contains only digits or not;

• Define a constant: $ readonly abc=456 ; abc=123

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 10/46

Standard Input and Output

• Redirection facilities (< and >);

• $ my_script < file.inp > results.out

Input (<) from file.inp and
Output (>) to results.out;

• File descriptor 0 is for the standard input (STDIN), 1 for the

standard output (STDOUT), and 2 for the standard error

(STDERR);

• $ my_script 1> script.out 2> script.err

• A single file holding all error and output messages

(two non-standard options: >& or &>)

• Remember that the default value for > is the 1, and 0 for <;

• Compare 1>&2 and 2>&1 (note the spaces);

• The double greater-than sign >> means to append the output;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 11/46

Exit Status

• The builtin exit command can be used to (1) terminate a

script, and (2) return a value for the last executed command;

• The return value is called the exit status (or exit code). Here

zero stands for a successful return (true), while non-zero

value means errors (false or error code);

• It can be used to debug your scripts ($?); All functions,

aliases, commands, bash scripts, . . ., return an exit code;

• Don’t be confused with return, though both are the shell

builtins;
(1) return is used in a function to optionally assign the

function to a particular integer value;
(2) Function calls also return the information on whether it

was successful or not. This is the exit status;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 12/46

Bash Meta Characters

Meta Char. Explanation

Are comments that will not be executed

& Puts the command in the background

$ Expansion; (1) referencing the content of variable,

(2) command substitution $(),

(3) arithmetic computation $(())

\ Escape meta characters; Protect the next

character from being interpreted

as a meta character

; Connects two or more commands in a single line

;; To mark the end of case statement

∼ Means home directory

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 13/46

Bash Meta Characters

Meta Char. Explanation

" " (Double quote) protects the text from being split

allows substitution

’ ’ (Single quote) protects the text from being split

doesn’t allow the substitution (literal meaning)

: A null command (do-nothing operation, true)

| The pipe operator

() The group command starting a sub-shell;

{ } The group command not starting a sub-shell

[Test (builtin, what about]?)

[[]] Test (keyword)

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 14/46

Bash Meta Characters

Meta Char. Explanation

␣␣ Separates the command/arguments

and argument/argument

` ` Enclosed text treated as a command (output)

(()) Means arithmetic expression

$(()) Means arithmetic computation

< > Redirections

! Reverses an exit status or test (negate)

· (1) Source command and (2) hidden filenames

/ Forward slash to separate directories

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 15/46

Control and Logical Operators

Operation Explanation

&& The logical AND

|| The logical OR

! The logical NOT (depending on the exit status)

Ctrl-A Moves cursor to the beginning of the command line

Ctrl-E Moves cursor to the end of the command line

Ctrl-D Log out of a shell

Ctrl-Z Suspends a foreground job

Ctrl-P Repeats the last executed command

Ctrl-L Clears up the screen (clear)

Ctrl-K Clears up the text from the cursor to the end of line

Ctrl-R Searches through history command

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 16/46

Quotes

• That’s where the confusion arose;

• Three types of quotes in Bash: double quotes " ", single

quotes ’ ’, and backticks ` `;

• Double quotes (" "): Allow substitution to occur, and protect

the text from being split; Weak form quoting in the sense of

the bash interpretation for characters in pattern matching;

• Single quotes (’ ’): Protect the text in its literal meaning, any

interpretation by Bash is ignored, and protect the text from

being split; Strong form quoting; A single quote may not

appear between other single quotes; No escaping happens in

single quotes;

• Backticks (` `): Enclosed text runs as a command (output);

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 17/46

Examples on Control and Logical Operators

• $ ls -ltr ; echo `pwd`

• $ my_script && echo `pwd`

• $ echo `pwd` || echo "$USER"

• $ ps aux | grep "$USER"

• $: > my_script.log

• $ cat {file.1,file.2,file.3} > allfiles.123

• $ a=456 ; { a=123; }; echo $a # not a sub-shell

• $ a=456 ; (a=123;); echo $a # starts a sub-shell

• $ echo $?

• $ a=456 ; b=123 ; [$a -eq $b] ; echo $?

• $ a=456 ; b=123 ; ! [$a -eq $b] ; echo $?

• $ a=456 ; b=123 ; [[$a -eq $b]] ; echo $?

• $ test $a -eq $b ; echo $? # the same as [[]]

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 18/46

Group Commands

• Group commands { } and ():

• Remember { and } are the keywords, but (and) are not;

• Two options for { }:

(1) Multiple-line version (separated by a newline) is
{
<command_1>
<command_2>
<command_3>
}

(2) Single-line version (separated by ; and whitespace) is
{␣<command_1> ; <command_2> ; <command_3> ; }

• Don’t forget that { } doesn’t invoke a sub-shell (i.e., in the

same shell);

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 19/46

Group Commands

• Group commands { } and ():

• Remember { and } are the keywords, but (and) are not;

• Two options as well for ():

(1) Multiple-line version (separated by a newline) is
(
<command_1>
<command_2>
<command_3>
)

(2) Single-line version (separated by ; and whitespace) is
(<command_1> ; <command_2> ; <command_3>)

• Don’t forget that () does invoke a sub-shell (i.e., like a child

process); At the end, the semicolon is an optional to ();

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 20/46

Group Commands

• Differences between { } and ()

(1) Starts a sub-shell or not;

(2) Variable scope (visibility): variables in a sub-shell are not
visible to its parent shell (parent process). They are local to
the child process. However, we can use export to transfer
the values of variables from the parent shell to a child shell.
But a child process cannot export variables back to its parent
shell. This is also true for changing directories.

(3) Semicolon (;) at the end of command: in fact semicolon is
a statement terminator that tells shell this is the end of the
statement. If a command terminates properly by itself, there
are no needs to add ; at the end;

• Advantages of launching multiple sub-shells;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 21/46

Questions on Sub-shell?

• Sub-shell is like a child process spawned by the parent

process (shell); Multiple and concurrent sub-shells are

supported;

• Q1: Can we safely quit a sub-shell and get back to the parent

shell?

• Q2: How can I bring the values of variables from a sub-shell

back to its parent shell?

• Q3: In what cases would be it useful to spawn sub-shells?

• Q4: Is there any other benefit to spawn a sub-shell?

• The short answers to Q2 and Q3 are to get files involved!

• Remember all STDIN, STDOUT, or STDERR, and external files on

disks are called files;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 22/46

Special Parameters

Operation Explanation

$? Exit status of the last command

$$ Process ID (keyword)

$0 Command name; $1 is the first argument, etc

$# Number of the positional arguments

$@ Expansion of all the positional arguments,

a list of every words (" ")

$* Expansion of all the positional arguments

a single string containing all of them (" ")

• These are very useful, particularly, in functions, when

arguments need to be parsed;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 23/46

Examples on Control and Logical Operators

• Let’s consider a real bash script using if/fi, [[]], and case

1 #!/bin/bash

2 # how to use case in bash script. # Jan 30, 2016

3 echo #! is called shebang (shabang or hashbang)
4 # check $1 for year.

5 if [[($1 -ne "2015") && ($1 -ne "2016")]] ; then
6 echo "Year must be 2015 or 2016!"

7 echo "Quit!"

8 echo

9 exit 1

10 fi
11 # select year.

12 case "$1" in
13 2015) echo "==== $1 Calendar ===="; cal $1 ;;
14 2016) echo "==== $1 Calendar ===="; cal $1 ;;
15 esac
16 exit 0

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 24/46

Shell Arrays

• Array variable contains multiple variables, and array index

starts from zero;

• Bash supports one-dimensional arrays, and sparse array;

• $ my_array=("Alice" "Bill" "Cox" "David")

• $ my_array[0]="Alice" ; my_array[1]="Bill" ;

my_array[5]="John" ; my_array[10]="Collin"

• Explicit declaration of array: $ declare -a my_array

• Referencing an array element ${my_array[1]}, etc;

• Get the number of arrays elements: ${#my_array[@]}

• List all arrays elements: ${my_array[*]} or ${my_array[@]}
(" " might be needed);

• Destroy array variables:
$ unset my_array or $ unset my_array[2]

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 25/46

Pattern Matching in Shell

• Pattern matching was designed for
(1) selecting filenames;
(2) certain strings satisfying a desired format;

Pattern matching includes















Globs,

Extended Globs,

Regular Expressions (ver. > 3.0).
• Globs:

(1) * : matches any strings including the null string;
$ echo * or $ ls *

(2) ? : matches any single character;
$ echo a? or $ rm ??

(3) [. . .] : matches any one of enclosed characters;
$ ls a[123]*.dat or $ rm [!a-z]*.dat

• Bash also provides extra features through Extended Globs;

• By default, these features (extended globs) were turned off;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 26/46

Arithmetic Operations (let and bc)

• Arithmetic expansion with (()) [works only for integer

operations]: $ echo $((3-5)) or $ ((n -= 2))

• Arithmetic evaluation: let (builtin for integers only) or

bc (external for high-precision floating-point operations);

• Be careful with whitespaces in let;
$ let t=1 + 4; echo $t or $ let t="1 + 4"; echo $t

• $ t=3.4 ; t=`echo "$t + 1.2" | bc`; echo $t

• $ t=3.434059; t=`echo "scale=5;$tˆ4" | bc`; echo $t

• $ echo "ibase=10;obase=2;256" | bc

convert between decimal and binary numbers
(ibase = input base, obase = output base);

• $ echo "c(4)" | bc -l # compute cos(4) in radians;
"-l" loads predefined math libs; the default scale is 20;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 27/46

Test Constructs

• Every programming language needs to have good test

constructs;

• Bash supports three types of test constructs:
test, [, and [[]] ;

• Builtin commands test and [, while [[]] are keywords;

• All test constructs return an exit status: success (0) or false

(non-zero value);

• Bash provides if/then/fi construct to support conditional

branching;

• However, note Bash if/then/fi can be used alone without

involving test constructs;

if grep -q "toys" my_file.dat
then echo "Mom, I found it."

fi

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 28/46

General Form of if/then/fi construct

• Note elif is identical to else if;

• Multi-line version using [:

if [condition_1]
then

command_1
command_2

elif [condition_2]
then

command_3
command_4

else
command_5

fi

• Or using test with relevant options:
if test condition_1

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 29/46

General Form of if/then/fi Construct

• Note elif is identical to else if;

• Single-line version using [[]]:

if [[condition_1]] ; then
command_1 ; command_2

else if [[condition_2]] ; then
command_3 ; command_4

else if [[condition_3]] ; then
command_6 ; command_7

else ; command_8
fi

• Bash shell offers comparison operators for both integers and

strings; however, note the differences!

• For integer comparison: -eq (is equal to); -ne (not equal to);

-ge (means >); -lt (less than), etc;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 30/46

General Form of if/then/fi Construct

Operation Explanation

-z zero-length string (null string)

-n string is not null

!n is not equal to

< is less than

> is greater than

• Similarly to C, Bash uses the ASCII code for string comp.;

• Bash also supports nested if/then/if constructs:

if [[condition_1]] ; then
if [[condition_2]] ; then

command_1 ; command_2
fi

fi

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 31/46

General Form of if/then/fi Construct

File Operation Explanation

-e existence or not

-d directory or not

-f regular file

-s zero-size file

-nt f1 -nt f2 (if file f1 is newer than f2)

-O you’re the file owner

my_file=$1 # $1 is the 1st arg. of the script.
if [[-f my_file]] ; then

do something here
else

do something else here
fi

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 32/46

Loop Constructs

• Bash also supports rich loop constructs so they become

more powerful;

• Loop blocks are the repeatable code blocks that having same

structures (for-in-do-done);

• Bash provides three types of loop constructs: for, while, and

until loops; Again for, in, while, until, do, and done are all

the bash builtin keywords;

for arg in [list]
do

command_1
command_2

done

• [list] can be any valid multiple variables including wild

cards (* and ?), or even a valid output from a command;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 33/46

Loop Constructs

• The other example:

for i in {a..z}
do

command_1
command_2

done

• Bash also supports C-style three-expression loops;

• Using double parentheses (());

maxt=200
for ((t=0; t <= maxt; t++))
do

command_1
command_2

done

• The for-loop rules are the same as those of C;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 34/46

Loop Constructs

• while loop:

• This needs to be combined with a test (true or false);

• while-[[]]-do-done

a=200 ; b=100
while [["$a" -gt "$b"]]
do

echo "a = $a"; a=`expr $a - 1`
done

• The while-loop is similar to those of C: test at the loop top;
• This complements the functionality provided by for loop, for

instance, in the cases of unknown iterations before entering
a loop;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 35/46

Loop Controls

• Similarly to C, we can use the builtin commands break and

continue to control loop behaviors;
• break jumps out of loops (break the loop), while continue

jumps to the next loop iteration within the loop. In both
cases, some commands are skipped in the loop;

a=1 ; counter=0 ; amax=1000;
while [["$a" -lt "$amax"]]
do

a=$(($a+2))
let counter=couter+1
if [["$a" -ge 100]] ; then

break
fi

done
echo "counter = $counter"

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 36/46

Aliases

• Alias is a lightweight shortcut for a long or complicated

command (substitution/expansion);

• Bash provides limited support for aliases;

• That doesn’t mean we cannot use aliases in bash scripts; we

can use them in some simple cases;

• All aliases can be replaced by functions;

• Using both double quotes (" ") and single quotes (’ ’)

should be fine;
$ alias rm=’rm -i’
$ alias smic="ssh -XY xiaoxu@smic.hpc.lsu.edu"

• Restrictions on aliases:
(1) Aliases cannot be expanded recursively;
(2) Aliases would not work in the constructs of if/then,

loops, and functions;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 37/46

Bash Functions

• Bash functions are similar to other languages like functions in

C and functions/subroutines in Fortran;

• C-style definition:

name_function ()

{
command_1
command_2
command_3

}

• Single-line version:

funct () { command_1 ; command_2 ; command_3 [;] }

• The difference from C: in Bash scripts the function definition

must appear earlier than where the function call happens;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 38/46

Bash Functions

• Local and global variables in bash functions;

#!/bin/bash

name_function ()

{
this’s a local variable.

local locl_var=123
this’s a global variable.

glob_var=456
}

name_function

echo "locl_var = $locl_var"
echo "glob_var = $glob_var"

• Declare local variables through local;
• A local variable is invisible outside of function;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 39/46

Passing Arguments to Bash Scripts

• Bash scripts accept arguments at run-time;

• $0 stands for the command (including script, function, etc);

• $1 stands for the first argument passed to the $0;

• $2 stands for the second argument passed to the $0;

• ...;

• ${10} stands for the 10th argument passed to the $0;

Operation Explanation

$$ the PID of the current process

$? the exit code of the last executed command

$* the list of arguments fed the current process

$# how many arguments in $*

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 40/46

Function Example: Addition

Below is an example for the function to add two integers:

addition-v0.bash1 #!/bin/bash
2
3 echo $1 $2
4 a=$1
5 b=$2
6 echo $#
7 function_add() {
8 function_add=$(($a+$b))
9 }

10 function_add
11 echo "sum =" $function_add

• $./addition-v0.bash 12 34

• Can we make it work better (say, for addition of any numbers,

and defensive programming)?

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 41/46

Regular Expressions (REs or Regexs)

• RE is a group of characters (including meta characters) that

match specified textual patterns in files;

• Why do we need REs? They are needed by the Linux

commands/utilities grep, sed, awk, vi, emacs, etc;

• Don’t be confused with Bash Globs;

• Character set (no metas), anchor set (specifying the

positions), and modifiers (range of characters);

Operator Explanation

. Matches any single character

? The preceding item is optional and

will be matched 6 1 times

* The preceding item will be matched > 0 times

+ The preceding item will be matched > 1 times

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 42/46

Regular Expressions (REs or Regexs)

Operator Explanation

{N} The preceding item matched N times

{N,} The preceding item matched > N times

{N,M} The preceding item matched > N , but 6 M times

- represents the range if it’s not first or last

in a list or the ending point of a range in a list

ˆ Matches the beginning of a line; also represents

the characters not in the range of a list

$ Matches the empty string at the end of a line

\b Matches the empty string at the edge of a word

\< Match the empty string at the beginning of word

\> Match the empty string at the end of word

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 43/46

Regular Expressions (REs or Regexs)

• Matching strings form subsets of the specified pattern;

(1) . matches any one character, except a newline (line
break); The pattern ad.pt ←֓ adapted, iadopt, ad␣pt;

(2) * matches any number of repeats of the preceding
character (including zero occurrence);
The pattern 10na* ←֓ 10n, 210nab, 10naaa;

(3) ˆ matches the beginning of the line.
The pattern ˆed ←֓ I finished the editing of files.

(4) $ matches a line ending with a particular pattern;
The pattern ed$ ←֓ I finished the editing of files.

(5) ˆ$ matches blank lines;

(6) [ˆa-c] matches every single character except a, b, and c;

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 44/46

Regular Expressions (REs)

• More examples? Let’s consider the editor vi:
Delete all blank lines: :g/ˆ$/d
Search all 2-digit numbers: \d\d
Search all non-digit words: \D
Search all whitespaces: \s
What shall I find if I search: the*?
Search all 3-letter words: \s\w\w\w\s
Search all 3-letter words that start with capital letters:
\u\w\w

• What do we get to match the following patterns?
(\ to escape)

es\+
gs\=
s\{2}
[0-9]
·

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 45/46

Regular Expressions (REs)

• Even more examples? Let’s consider the editor sed:
• GNU sed is a stream editor; In most cases, sed is not

sensitive to double or single quotes;
$ sed "s/RE/SUB/" my_file.dat
$ echo "shell scripting" | sed "s/[si]/?/g"
$ echo "shell scripting 101" | sed "s/[ˆ0-9]/0/g"

• A word (\w) in sed means any combination of lowercases,
uppercases, numbers, and underscores (_);
$ echo "shell scripting 101" | \
sed "s/\w\w\w\w/=/g"

$ echo "shell scripting: 101 (02/17/2016)" | \
sed "s/[[:alnum:]]/+/g" # the same as [a-zA-Z0-9]

$ echo "My cat was educated." | \
sed "s/\<cat\>/dog/g"

$ echo "egg" | sed "s/e\+/=/g/"

Information Technology Services

LSU HPC Training Series, Spring 2017 p. 46/46

Summary and Further Reading

The best way to master shell scripting

is to write scripts yourself!

Quotes, Whitespaces, Parentheses,

and Meta Characters.

Shell Scripting→ REs→ sed, awk, vi, emacs, . . .

Advanced Bash Scripting Guide, Mendel Cooper (2008).
The Comprehensive List of Bash References.

Questions?
sys-help@loni.org

http://www.bashcookbook.com/bashinfo/

	Overview
	Overview
	Overview
	Overview
	Overview

	Overview
	What is a blueshell?
	What is a blueshell?
	 What is bluebash and why do we need bluebash?
	 What is bluebash and why do we need bluebash?
	 Example Scripts
	 Bash Shell Commands
	 *-1mm Shell Parameters
	 Standard Input and Output
	 Exit Status
	 Bash Meta Characters
	 Bash Meta Characters
	 Bash Meta Characters
	 Control and Logical Operators
	 Quotes
	 Examples on Control and Logical Operators
	 Group Commands
	 Group Commands
	 Group Commands
	 Questions on Sub-shell?
	 Special Parameters
	 Examples on Control and Logical Operators
	 Shell Arrays
	 Pattern Matching in Shell
	 Arithmetic Operations (bluelet and bluebc)
	 Test Constructs
	 General Form of blueif/then/fi construct
	 General Form of blueif/then/fi Construct
	 General Form of blueif/then/fi Construct
	 General Form of blueif/then/fi Construct
	 Loop Constructs
	 Loop Constructs
	 Loop Constructs
	 Loop Controls
	 Aliases
	 Bash Functions
	 Bash Functions
	 Passing Arguments to Bash Scripts
	 Function Example: Addition
	 Regular Expressions (REs or Regexs)
	 Regular Expressions (REs or Regexs)
	 Regular Expressions (REs or Regexs)
	 Regular Expressions (REs)
	 Regular Expressions (REs)
	 Summary and Further Reading

