

Introduction to ${\rm I\!AT}_E\!{\rm X}$

Xiaoxu Guan High Performance Computing, LSU

June 21, 2017

Overview

- What are $\mathrm{T}_{\!E}\!\mathrm{X}$ and $\mathrm{I}\!\!\!\!^{\mathrm{A}}\!\mathrm{T}_{\!E}\!\mathrm{X}?$
- What can ${\rm I\!AT}_E\!{\rm X}$ do for us?
- Document structure
- Text formatting
- Compile a ${\rm LaTeX}$ file
- Special characters in ${\rm LaTeX}$ file
- Font types, accents, and colors
- Paragraph formatting
- Mathematics and equations
- Tables
- Including figures
- Further reading

What are $T_E X$ and $I \neq T_E X$?

- $T_E X$ and $I_{e}T_E X$ are **typesetting** systems;
- T_EX was designed and created by Donald Knuth in 1978; The goal was to "produce high-quality books using a reasonably minimal amount of effort" (if you're willing to learn);
- $T_E X$ and $I_e T_E X$ are de facto standards for publications in academia, and have widely accepted in math, computer science, physics, and even in social sciences;
- They are **programming** macro languages. What you type is **NOT** what you see; they require the "**compilers**" to process the source T_EX or ET_EX code;
- $\mathbb{P}T_E X$ means Leslie Lamport $T_E X$; it contains a large collection of $T_E X$ macros and processing engines; output files in PostScript or PDF; the latest version is $\mathbb{P}T_E X 2\epsilon$;

TECHNOLOGY

What are $T_E X$ and $I_{e} T_E X$?

\begin{equation}
\bigoint_{\partial \Omega}
{\bm D}\cdot d {\bm S } =
\bigint \mkern-10mu \bigint
\mkern-10mu
\bigint_{\Omega} \rho_{\rm f} dV,
\end{equation}

\begin{equation}
\bigoint_{C}{\bm}E \cdot d\bm{\ell}
= - \frac{d}{dt}\bigint\mkern-10mu
\bigint_{\Sigma}\bm{B}
\cdot d\bm{S}. \end{equation}

\textbf{7.3.6 Boundary Conditions}
In general, the fields, \$\bm E\$, \$\bm
B\$, \$\bm D\$, and \$\bm H\$ will be
discontinuous at a boundary between

$$\oint_{\partial\Omega} \boldsymbol{D} \cdot d\boldsymbol{S} = \iiint_{\Omega} \rho_{\rm f} dV, \quad (1)$$

$$\oint_{C} \boldsymbol{E} \cdot d\boldsymbol{\ell} = -\frac{d}{dt} \iint_{\Sigma} \boldsymbol{B} \cdot d\boldsymbol{S}.$$
(2)

7.3.6 Boundary Conditions

In general, the fields, E, B, D, and H will be discontinuous at a boundary between

\$\ldots\$

Information Technology Services LSU HPC Training Series, Summer 2017

. . .

What can $\operatorname{I\!AT}_E\!\mathrm{X}$ do for us?

 Almost everything we can do on paper: book, paper, letter, report, slides, poster, and figure, etc;

 Almost everything we can do on paper: book, paper, letter, report, slides, poster, and figure, etc;

CHAPTER FIVE

A book chapter

Time Propagation of Partial Differential Equations Using the Short Iterative Lanczos Method and Finite-Element Discrete Variable Representation

Barry I. Schneider^{*,1}, Xiaoxu Guan⁺, Klaus Bartschat[‡]

*Applied and Computational Mathematics Division, Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

- [†]High Performance Computing, Louisiana State University, Baton Rouge, Louisiana, USA
- ¹Department of Physics and Astronomy, Drake University, Des Moines, Iowa, USA
- ¹Corresponding author: e-mail address: barry.schneider@nist.gov

Contents

	Fore	eword	96
2.	Intro	oduction	96
8.	Met	hodology	98
	3.1	Précis	98
	3.2	Time Propagation Using the SIL	100
	3.3	Finite Elements	102
	3.4	The Essential DVR and Its Finite-Element Generalization	103

What can $\mathbb{P}_{T_E} X$ do for us?

 Almost everything we can do on paper: book, paper, letter, report, slides, poster, and figure, etc;

PRL 103, 213201 (2009)

PHYSICAL REVIEW LETTERS

week ending 20 NOVEMBER 2009

TECHNOLOG

Complete Breakup of the Helium Atom by Proton and Antiproton Impact

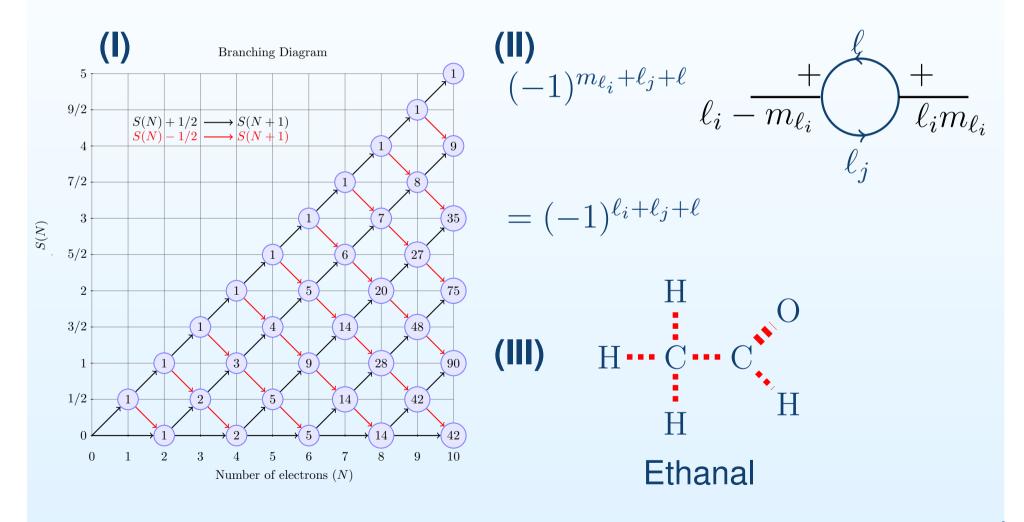
Xiaoxu Guan* and Klaus Bartschat[†]

Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA (Received 5 June 2009; published 17 November 2009)

We present a fully *ab initio*, nonperturbative, time-dependent approach to describe single and double ionization of helium by proton and antiproton impact. The problem is discretized by a flexible finite-element discrete-variable representation on the radial grid. Good agreement with the most recent experimental data for absolute angle-integrated cross sections is obtained for projectile energies between 3 keV and 6 MeV. Also, angle-differential cross sections for two-electron ejection are predicted for a proton impact energy of 6 MeV. The time evaluation of the ionization process is portrayed by displaying the electron density as a function of the projectile location.

DOI: 10.1103/PhysRevLett.103.213201

PACS numbers: 34.50.Fa, 25.40.Ep, 25.43.+t, 36.10.-k


A journal paper

What can $\operatorname{{{ I\!\!\!\! A}} T}_E\! \mathrm{X}$ do for us?

 Almost everything we can do on paper: book, paper, letter, report, slides, poster, and figure, etc;

Information Technology Services LSU HPC Training Series, Summer 2017

TECHNOLOG

What can LATEX do for us?

 Almost everything we can do on paper: book, paper, letter, report, slides, poster, and figure, etc;

(IV) A music note

Global structure:

. . .

- 1 $\documentclass[...]{...}$
- 2 ... % preamble
- 3 \begin{document}
- 4
- 5 $\end{document}$
- The preamble area is used to define new commands, load external packages, and other settings, etc; it controls the entire document;
- General form: \documentclass[options]{class}
- All the contexts after \end{document} are ignored;
- All $\mathrm{T}_E\!\mathrm{X}\,$ and $\mathbb{P}\!\mathrm{T}_E\!\mathrm{X}\,$ control commands and keywords start with an $\backslash;$

- class defines what kind of document needs to be created;
- class needs to be one of the following article, report, book, letter, beamer, proc, slides, ...;
- options specifies the paper size, font size, orientation, number of columns, ...;
- options can be the combination of 10pt, 11pt, 12pt, a4paper, twocolumn, landscape, ...;
- Examples:

• The power of $\mathbb{E}_{T_E}X$ relies on the packages;

\usepackage[options]{graphicx}
\usepackage[options]{tikz}
\usepackage[options]{xcolor}
\usepackage[options]{amsmath}

• These packages allow you to include a graph, draw a figure, use color, and special AMS math fonts, etc;

```
\begin{document}
```

\title{"Hello World" from LaTeX!}

\author{John Cox}

\date{May 27, 2004}

\maketitle

% Document Environment

 $\end{document}$

• The other useful environments:

\begin{abstract}	\begin{center}	\begin{minipage}{6.5cm}
• • •		•••
\end{abstract}	\end{center}	\end{minipage}

• Sectioning commands:

. . .

```
\section{Introduction to \rm{\LaTeX}}
```

\section{Document structure of a \rm{\LaTeX} file }

\chapter{Introduction to \rm{\LaTeX} }

\chapter{Document structure of a \rm{\LaTeX} file}

How to compile a ${\rm TeX}$ file?

- Run latex or tex on the source file to generate a dvi file; DVI stands for the device independent file format (xdvi to view it). Other files (.log, .aux, etc) are also generated. DVI can be converted to PostScript (PS), PDF, SVG formats;
- Run dvips -o mypaper.ps mypaper.dvi to create the PostScript (PS) file;
- Run ps2pdf mypaper.ps to create the PDF file;

$$\begin{array}{c} \text{mypaper.tex} \xrightarrow[]{\text{latex}} \text{mypaper.dvi} \xrightarrow[]{\text{dvips}} \text{mypaper.ps} \\ \xrightarrow[]{\text{ps2pdf}} \text{mypaper.pdf} \end{array}$$

• Generate the PDF directly from the tex source: pdflatex

mypaper.tex $\xrightarrow{\text{pdflatex}}$ mypaper.pdf

Special characters in ${\rm I\!AT}_E\!{\rm X}$

- There are 10 characters reserved by $\rm LaTeX$ and are only used on commands: \$ & % # \sim _ \ { }
- Except for the **new lines**, most **white spaces** in the source file are ignored, so focus on **logical** concepts;
- Dashes: three different lengths of dash: (-), - (-), - (--)
- White space after a period: in some cases, a period doesn't mean to end a sentence: et al., etc., and cont.
- Quotation markers: ""(' ' double quotes' '), ' ' (' single quotes')
- Preventing line breaks: add a glue or put it in a box. Dr. Cox (this should be avoided, Dr.~Cox), Section~5, 12~seconds, Or \mbox{Dr.\ Cox}.
- Emphasizing text: use \emph{Hello, World!} to create

Hello, World!

& TECHNOLOGY

Font types, accents, and colors

Italic fonts Medium series Default Roman family SMALL CAPS Sans serif family Text in boldface \textit{Italic fonts}
\textmd{Medium series}
\textrm{Default Roman family}
\textsc{Small caps}
\textsf{Sans serif family}
\textbf{Text in boldface}

† \dag ‡ \ddag © \copyright § \S ¶ \P Å \AA å \aa	£ æ		,
# \# % \% \$ \\$ & \& {	\{	} \}	

Information Technology Services LSU HPC Training Series, Summer 2017

TECHNOLOG

Font sizes and colors

Hello{\tiny Hello}Hello{\scriptsize Hello}Hello{\footnotesize Hello}Hello{\small Hello}Hello{\normalsize Hello}Hello{\large Hello}Hello{\Large Hello}Hello{\LARGE Hello}Hello{\Large Hello}Hello{\Large Hello}Hello{\huge Hello}Hello{\Huge Hello}

\usepackage{color} Or \usepackage{xcolor};

Hello World!Hello \textcolor{red}{World!}Hello World!\textcolor{blue}{Hello} World!

• Define our own colors:

Paragraph formatting

- Use the environments to control alignment:

\begin{flushright}...\end{flushright}
\begin{flushleft}...\end{flushleft}
\begin{center}...\end{center}

- Start a new line: \\ (double backslash), \newline, or \hfill \break
 1 in~72 pt
- Start a new paragraph: $par or a blank line; 1 mm \simeq 2.84 pt$
- Horizontal space: \hspace{1cm}, or \hfill ex, or em
- Vertical space: \vspace{2in}, or \vfill
- In addition, use \smallskip, \medskip, Or \bigskip to control vertical space: +3pt or -1pt (\smallskip), 6pt or -2pt (\medskip), +12pt or -4pt (\bigskip);

Paragraph formatting

 By default in a given section, the first paragraph does not indent; but the indention of other paragraphs can be controlled by \parindent;

\setlength{\parindent}{0ex} % zero indent.
\setlength{\parskip}{10pt} % space bet. para.

\noindent This is the second paragraph ...

• Global setting for text alignment:

\usepackage[document]{ragged2e}

- The above package also supports \RaggedRight, \RaggedLeft, \Centering, and \justify;
- Sometimes, we need to indent to the whole block of a paragraph: {\addtolength{\leftskip}{5mm} ...}

• In a sentence, use either \ldots , or (\ldots) , for instance,

In this work we demonstrate that $\alpha^2 + \beta^2 \gg \pi/4$ is only correct if the Euler condition $\nabla x = 0$ is satisfied.

• (automatically) Assign number to an equation:

We propose a new numerical approach to solve the time-dependent Schrödinger equation

$$i\hbar \frac{\partial \Psi(t)}{\partial t} = H(t)\Psi(t) \tag{4}$$

for a multi-electron atom in intense laser pulses.

• In a sentence, use either \ldots , or (\ldots) , for instance,

In this work we demonstrate that $\alpha^2 + \beta^2 \gg \pi/4$ is only correct if the Euler condition $\nabla x = 0$ is satisfied.

In this work we demonstrate that $\lambda^2 + \beta^2 \g \i \$ is only correct if the Euler condition $\lambda \ x=0$ is satisfied.

• (automatically) Assign number to an equation:

We propose a new numerical approach to solve the time-dependent Schr\"odinger equation \begin{equation} i\hbar \frac{\partial \Psi(t)}{\partial t} = H(t) \Psi(t) \end{equation} for a multi-electron atom in intense laser pulses.

• Greek letters:

$lpha$ \alpha	eta \beta	$\gamma \$ gamma	δ \delta
α (ατρπα	p (beta		
ϵ \epsilon	$arepsilon$ \varepsilon	ζ \zeta	η \eta
$ heta$ \theta	$artheta$ \vartheta	ι \iota	κ \kappa
λ \lambda	μ \mu	$ u$ \nu	ξ \xi
0 0	π \pi	$arpi$ \varpi	$ ho$ \rho
ϱ \varrho	$\sigma \ \texttt{\sigma}$	ς \varpsigma	$ au$ \tau
v \upsilon	$\phi \ \$	$arphi$ \varphi	χ \chi
ψ \psi	$arphi$ \varphi	$\omega \$ omega	
Γ \Gamma	$\Lambda \setminus Lambda \Sigma \setminus$	Sigma $\Psi \setminus P$	si
Δ \Delta	$\Xi \setminus Xi \qquad \Upsilon \setminus$	Ingilon $0 \setminus 0$	mogo
		Upsilon $\Omega \setminus 0$	mega
Θ \Thelta	$\Pi \setminus Pi \Phi \setminus$	Phi	

Subscripts (_) and superscripts (^):

 a^b \$a^b\$ A_2^3 \$A_2^{3}\$ $d_{11,24}$ \$d_{11,24}\$

- Fractions ($frac{}{}$): $y = \frac{a-b}{a+b}$ \$y= $frac{a-b}{a+b}$
- Roots: $\sqrt{z^2 + 1}$ \$\sqrt{z^2+1}\$ $\sqrt[k]{3}$ \$\sqrt[k]{3}\$
- Calligraphic fonts: C + F > Q ${\rm C+F>Q}$
- Integrals: $\iint F(\mu,\nu)d\mu d\nu$ \$\iint F(\mu,\nu)d\mu d\nu\$
- Limits: $\lim_{x\to+\infty} f(x) \quad \text{im}_{x \in \mathbb{F}} f(x)$

$\leftarrow \ \$	\leftarrow \longleftarrow	↑ \uparrow
$\Leftarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\iff \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	↑ \Uparrow
$ ightarrow$ \rightarrow	\implies \Longrightarrow	$\mapsto \mbox{mapsto}$
\uparrow \updownarrow	\nwarrow	

• Relation symbols:

\leq \leq	\geq \geq	$\equiv \$ equiv	⊨ \models	$\ \ $
\prec \prec	\succ \succ	\sim \sim	\perp \perp	⊳ \bowtie
\ll \11	$\gg \gg$	\simeq \simeq	\mid	$pprox$ \approx
\subset \subset	\supset \supset	$\cong \setminus \texttt{cong}$	\neq \neq	\doteq \doteq
\in \in	ightarrow ni	$\notin \$ \notin	\propto \propto	$\vdash \setminus vdash$

• Other useful math symbols:

X \aleph	/ \prime	$\forall \ \$	∞ \infty	\hbar \hbar
∂ \partial	$\exists \exists$	$i \in \mathcal{I}$	$ abla$ \nabla	¬ ∖neg
$j \setminus jmath$	$\sqrt{\ \ }$ surd	♭ \flat	\triangle \triangle	ℓ \ell
℘ ∖wp	$ op$ \top	¦ \natural	ℜ \Re	$\Im \in \mathbb{Z}$
\perp \bot	‡ ∖sharp		$\angle \$ angle	

• Binary symbols:

$\pm \mbox{pm}$	$\mp \mbox{mp}$	$\cap \$	$\diamond \$ diamond	\oplus \oplus
$\times \$ times	⊎ \uplus	\ominus \ominus	÷ \div	□ \seqcap
∐ \sqcup	\otimes \otimes	* \ast	\oslash \oslash	$\star \$
$\vee \$	\odot \odot	○ \circ	$\land \land $	† \dagger
• \bullet	\setminus \setminus	‡ \‡	$\cdot \$ \cdot	<pre>> \wr</pre>

Predefined math functions:

arccos \arccos	arcsin \arcsin	arctan \arctan	arg \arg
$\cosh \cosh$	$\cot \setminus \cot$	$\coth \coth$	$\csc \csc$
det \det	$\dim \dim$	$\exp \exp$	lg \lg
inf \inf	$\ln \ln$	log \log	$\max \max$
Pr \Pr	sec \sec	$\sin \sin$	tan \tan

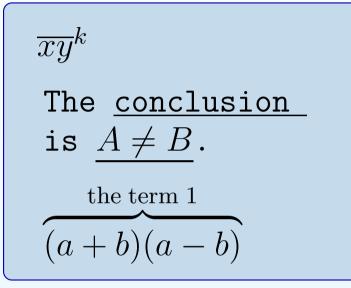
The array environment for math equations

• How shall we represent a matrix or a multiline equation?

$$\begin{pmatrix} a+b & b & c-d \\ \mu & 0 & a-b \\ a^2 & 1 & \mu\nu \end{pmatrix}$$
(6)

\begin{equation}
\left(
\begin{array}{ccc}
 a+b & b & c-d \\
 \mu & 0 & a-b \\
 a^2 & 1 & \mu\nu
\end{array} \right)
\end{equation}

$$3x + 5y = 10$$
$$-2x - y = 4x$$


Use the environment eqnarray and eqnarray*;

One above another & accent in math mode

• Use \overline{}^{}, \underbrace{}_{}, \overbrace^{};

\$\overline{xy}^{k}\$

The \underline{\tt conclusion } is \underline{\$A\neq B\$}.

\$\overbrace{(a+b)(a-b)}^
{\rm the\; term\; 1}\$

- Accents in math mode:
 - \hat{z} λz

 - $\bar{z} \$

- \check{z} \check{z}
- \dot{z} \det{z}
- \ddot{z} $\lambda ddot{z}$

- \breve{z} \scriptstyle{z}
- \tilde{z} \tilde{z}
- \vec{z} \sqrt{z}
- \underline{z} (underline{z}) \overline{z} (overline{z})

Fine-tuned spacing & fonts in math mode

\$\mi	$d ! \mid$	negative thin space
\$\mi	$d : \mid$	medium space
\$\mi	d\mid\$	thin space
\$\mi	$d\;\mid$	thick space
	d <mark>\</mark> ∟\mid\$	interword space
$\Sigma + \nabla \Phi$	\$\mathi	t{\Sigma+\nabla\Phi}\$
$\Sigma + \nabla \Phi$	\$\mathr	m{\Sigma+\nabla\Phi}\$
$\mathbf{\Sigma}+ abla \mathbf{\Phi}$	\$\mathb	f{\Sigma+\nabla\Phi}\$
$\Sigma + abla \Phi$	\$\matht	t{\Sigma+\nabla\Phi}\$

WORLD \$\mathcal{WORLD}\$

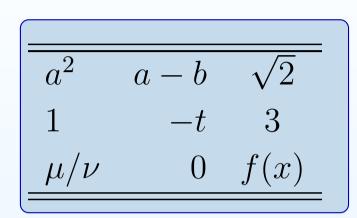
Information Technology Services LSU HPC Training Series, Summer 2017

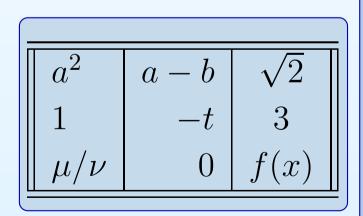
TECHNOLOGY

• Use the tabular environment:

\begin{tabular}[position]{column alignments}
 ...
\end{tabular}

- [position] is optional (vertical position): [t] (top), [c] (center, this is default), [b] (bottom);
- {column alignments}: 1 (left-justified), c (center justified), and r (right-justified); for instance, { lcr }
- Row and column controls:
- & % separate columns,
- \\ % separate rows,
- \hline % draw a horizontal line,
- $\ \new math{line from column } n$ to m.

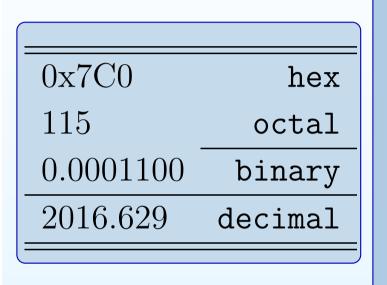



TECHNOLO

Tables

• Use the tabular environment:

\begin{tabular}{ lrc }
\hline \hline
\$a^2\$ & \$a-b\$ & \$\sqrt{2}\$ \\
\$1\$ & \$-t\$ & \$3\$ \\
\$\mu/\nu\$ & \$0\$ & \$f(x)\$ \\
hline \hline
\end{tabular}


\begin{tabular}{ ||l|r|c|| }
\hline \hline
\$a^2\$ & \$a-b\$ & \$\sqrt{2}\$ \\
\$1\$ & \$-t\$ & \$3\$ \\
\$\mu/\nu\$ & \$0\$ & \$f(x)\$ \\
hline \hline
\end{tabular}

• Use the tabular environment:

\begin{tabular}{ lr }
\hline \hline
\${\rm 0x7C0}\$ & \tt hex \\
\$115\$ & \tt octal \\
\cline{2-2}
\$0.0001100\$ & \tt binary \\
hline
\$2016.629\$ & \tt decimal \\
hline \hline
\end{tabular}

- Here \cline{2-2} draws a shorter line from column 2 to column 2 underneath the second row;
- Note & behaves like a "delimiter" to indicate the end of cell;
- What happens to the last cell?

- Use the tabular environment:
- \multicolumn{n}{alignment}{item}

Numbers			Descriptions
0x7C0	0x11A2B	hex	reset on 01/12/2014
115	1024	octal	reset on 03/10/2015
0.1100		binary	disabled by John
2016.629	1/10	decimal	reset on 06/04/1990

- Here n is the number of columns to be spanned and alignment is one of 1, r, c, while item is the content;
- Add more empty cells (&), if you need more spaces;
- In the above table, lrccc is used in \begin{tabular};

- Use the tabular environment:
- How can we make data align on the **decimal point**?
- Use @{...} construct as the column separator;

users@gmail.com 2.14159 balice@example.edu 10.12 jobco@power.com 987.654

- How many **columns** do we have here?
- We use \begin{tabular}{ r0{0}1 r0{.}1 };
- This construct removes the spaces between columns and add the symbol we specified without adding extra spaces;
- Or you might try the package siunitx;

- Load the package graphicx: \usepackage{graphicx}
- Use the \begin{figure} ... \end{figure} environment

Figure 1: LSU Tiger vs. $\operatorname{I\!AT}_E\!\mathrm{X}$ Lion

 Note latex only supports figures in PS and EPS formats, and pdflatex supports PDF, PNG, or JPG figures;

- Load the package graphicx: \usepackage{graphicx}
- Use the \begin{figure} ... \end{figure} environment

```
\begin{figure}[!htb]
```

\centering

```
\includegraphics[width=0.4\textwidth]{Lsu_logo-6.ps}
\hspace*{9mm}
```

- \includegraphics[width=0.4\textwidth]{ctanlion.eps}
 \caption{LSU Tiger vs.~{\rm \LaTeX\ }Lion}
 \end{figure}
- Use \caption{...} for the caption;
- Position control: [!htb]: h means put it here, t top, b bottom, while ! overrides the default setting. However, nothing can be guaranteed, as all figures and tables are floating objects;

- Load the package graphicx: \usepackage{graphicx}
- Use the \begin{figure} ... \end{figure} environment
- Sometimes, creating a side caption will be a necessity:

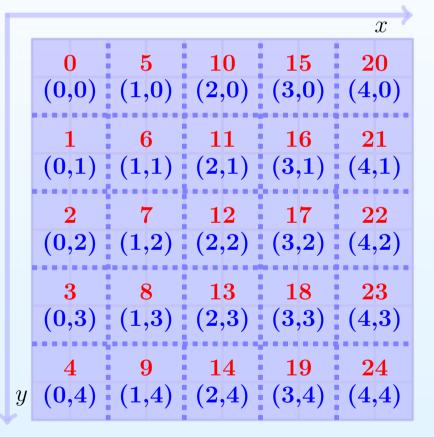


Fig. 2: MPI rank IDs in 2D domain decomposition. Each MPI task is assigned a unique Cartesian coordinate (x, y) starting from 0. This makes possible for further split of the entire communicator in a rowor column-way according to either x or y coordinate.

• The above figure was created by using minipage env;

- Load the package graphicx: \usepackage{graphicx}
- Use the \begin{figure} ... \end{figure} environment
- Sometimes, creating a side caption would be a necessary:
- The above figure was created by using minipage env;
- A better way to do it is to use the package sidecap:

```
\usepackage{sidecap}
```

```
\begin{SCfigure}
\centering
\caption{... caption here ...}
\includegraphics[width=0.3\textwidth]{mpi-matvec-8.ps}
\end{SCfigure}
```

• Note the \textwidth parameter;

- More options on \includegraphics:
- General syntax:

\includegraphics[attr_1=val_1,attr_n=val_n]{fname}

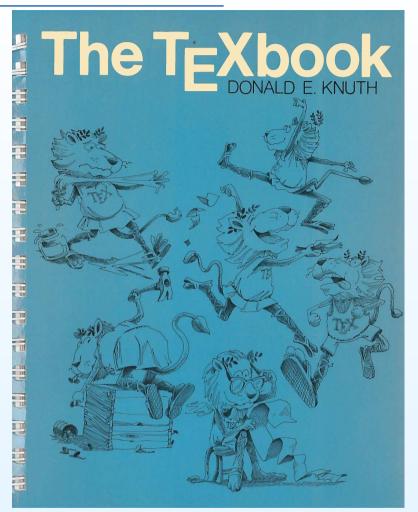
 Supports multiple attributes: width=xy, height=xy, angle=xy (in degrees), scale=x (this is for scale factor), clip=true, bb=llx lly urx ury (set up bounding box), ...

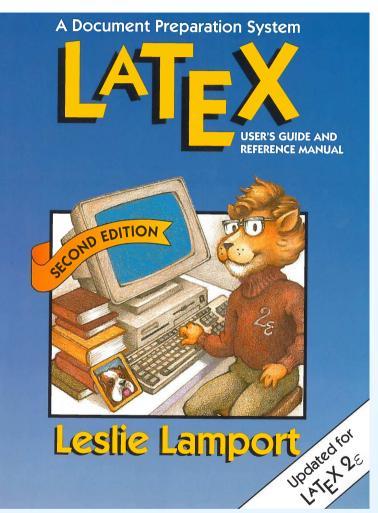
More words on spaces and boxes

- The horizontal space can be controlled with \hspace{width}, while the \vspace{height} controls the vertical space;
- A box is a whole chunk of space that $\mathrm{T}_{E\!X}\,$ will never split;
- \mbox{text} controls a horizontal box. The text in \mbox{}
 never be split across lines or pages;
- \makebox[...][1]{...} is useful: \makebox[3cm]{liberty}

Free software is a matter of
liberty , not price.

Free software is a matter of liberty , not price.


 \framebox[][]{...} is the same as \makebox[][]{...}, but adds a frame;



Further reading

Questions?

sys-help@loni.org

