

Data Analysis in R

Yuwu Chen HPC @ LSU

Some materials are borrowed from the EXST 7142/7152 data mining courses by Dr. Bin Li at Statistics Dept.

10/17/2018

HPC training series Fall 2018

This is not a Statistics Class...

- If you need to learn more about the data mining and data analysis:
 - EXST3999 Introduction to Statistical Learning
 - EXST7142 Statistical Data Mining http://statweb.lsu.edu/faculty/li/teach/exst7142/
 - EXST7152 Advanced Topics in Statistical Modeling http://statweb.lsu.edu/faculty/li/teach/exst7152/

10/10/2018

Outline

- Data acquisition and inspection
- Preprocess the dataset
- Data analysis

Steps for Data Analysis in R

- Get the data
- Read and inspect the data
- Preprocess the data (missing values, discard rows, columns not needed etc.)
- Analyze the data
- Generate the report

10/10/2018

How does R work

• R works best if you have a dedicated folder for each separate project - the working folder. Put all data files in the working folder (or in subfolders).

```
> getwd() #Show current working folder
[1] "/home/ychen64"
> dir.create("data") #Create a new folder
> getwd()
[1] "/home/ychen64"
> setwd("data")
> getwd()
[1] "/home/ychen64/data"
> list.files() # List files in current folder
```

- Work on the project your objects can be automatically saved in the .RData file
- To quit use q() or CTRL + D or just kill the window. R will ask "Save workspace image?". You can choose:
 - No: leave R without saving your results in R;
- Yes: save your results in .RData in your working directory; CENTER FOR COMPUTATION R.

& TECHNOLOGY

Case Study: Forbes Fortune List

 The forbes dataset consists of 2000 rows (observations) describing companies' rank, name, country, category, sales, profits, assets and market value.

http://www.hpc.lsu.edu/training/weekly-materials/Downloads/Forbes2000.csv.zip

Getting Data

- Downloading files from internet
 - Manually download the file to the working directory
 - or with R function download.file()

> download.file("http://www.hpc.lsu.edu/training/weeklymaterials/Downloads/Forbes2000.csv.zip", "Forbes2000.csv.zip") > unzip("Forbes2000.csv.zip", "Forbes2000.csv")

Steps for Data Analysis in R

• Get the data

- Read and inspect the data
- Preprocess the data (missing values, discard columns not needed etc.)
- Analyze the data
- Generate the report

10/10/2018

Reading and Writing Data

 R understands many different data formats and has lots of ways of reading/writing them (csv, xml, excel, sql, json etc.)

read.table read.csv	write.table write.csv	for reading/writing tabular data
readLines	writeLines	for reading/writing lines of a text file
source	dump	for reading/writing in R code files
dget	dput	for reading/writing in R code files
load	save	for reading in/saving workspaces

Reading Data with read.table (1)

```
# List of arguments of the read.table() function
> str(read.table)
function (file, header = FALSE, sep = "", quote = "\"", dec = ".", row.names,
col.names, as.is = !stringsAsFactors, na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip, strip.white = FALSE,
blank.lines.skip = TRUE, comment.char = "#", allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(), fileEncoding = "", encoding = "unknown",
text, skipNul = FALSE)
```


Reading Data with read.table (2)

- file the name of a file, or a connection
- header logical indicating if the file has a header line
- sep a string indicating how the columns are separated
- na.strings a character vector of strings which are to be interpreted as NA values
- nrows the number of rows in the dataset
- comment.char a character string indicating the comment character
- skip the number of lines to skip from the beginning
- stringsAsFactors should character variables be coded as factors?

Reading Data with read.table (3)

- The function will
 - Skip lines that begin with #
 - Figure out how many rows there are (and how much memory needs to be allocated)
 - Figure out what type of variable is in each column of the table
- Telling R all these things directly makes R run faster and more efficiently.
- read.csv() is identical to read.table() except that the default separator is a comma.

```
> forbes <- read.csv("Forbes2000.csv",header=T,stringsAsFactors =
FALSE,na.strings ="NA",sep=",")</pre>
```


Reading EXCEL spreadsheets

- The simplest method is to save each worksheet separately as a csv file and use read.csv() on each.
- The XLConnect library can open both .xls and .xlsx files. It is Java-based, so it is cross platform. But it may be very slow for loading large datasets.

```
>library(XLConnect)
wb <- loadWorkbook("Forbes2000.xls")
setMissingValue(wb, value = c("NA"))
forbes <- readWorksheet(wb, sheet=1, header=TRUE)</pre>
```

• There are at least two other ways: read.xlsx from library(xlsx) (slow for large datasets) and read.xls from library(gdata) (require PERL installed).

```
>library(xlsx)
>forbes <- read xlsx("Forbes200</pre>
```

- >forbes <- read.xlsx("Forbes2000.xls", 1)</pre>
- Note: the libraries above requires both Java Dev Kit and rJava library. The later is not available for R version installed on QB2 and SuperMic.

Inspecting Data (1)

- class(): it is a data frame ۲
- dim(): dimension of the data ٠
- head (): print on screen the first few lines of data, may use n as argurement ٠
- tail (): print the last few lines of data •
- > head(forbes)

1	0/17/20	18	HPC training series Fall 2018					
CENTER FOR & TEC	R COMPUTA THNOLOGY	TION						
	5Ľ	117.55						
5	177.57							
4	166.99	277.02						
3	647.66	194.87						
2	626.93	328.54						
1	1264.03	255.30						
	assets	marketvalue			Ũ			
6	6	Bank of America	United States		Banking	49.01	10.81	
5	5	BP	United Kingdom	0il &	gas operations	232.57	10.27	
4	4	ExxonMobil	United States	0il &	gas operations	222.88	20.96	
3	3 Am	erican Intl Group	United States		Insurance	76.66	6.46	
2	2	General Electric	United States		Conglomerates	134.19	15.59	
1	1	Citigroup	United States		Banking	94.71	17.85	
	rank	name	country		category	sales	profits	
	incut (10	10037						

Inspecting Data (2)

• Displays the structure of the "forbes" dataframe.

> str(forbes)			
'data.frame':		2000	obs. of 8 variables:
\$ rank	:	num	1 2 3 4 5 6 7 8 9 10
<pre>\$ name</pre>	:	chr	"Citigroup" "General Electric" "American Intl Group" "ExxonMobil"
<pre>\$ country</pre>	:	chr	"United States" "United States" "United States" "United States"
<pre>\$ category</pre>	:	chr	"Banking" "Conglomerates" "Insurance" "Oil & gas operations"
<pre>\$ sales</pre>	:	num	94.7 134.2 76.7 222.9 232.6
<pre>\$ profits</pre>	:	num	17.85 15.59 6.46 20.96 10.27
<pre>\$ assets</pre>	:	num	1264 627 648 167 178
<pre>\$ marketvalue</pre>	e:	num	255 329 195 277 174

Inspecting Data (3)

• Statistical summary of the "Forbes" dataframe.

<pre>> summary(forbes)</pre>			
rank	name	country	category
Min. : 1.0	Length:2000	Length:2000	Length:2000
1st Qu.: 500.8	Class :character	Class :character	Class :character
Median :1000.5	Mode :character	Mode :character	Mode :character
Mean :1000.5			
3rd Qu.:1500.2			
Max. :2000.0			
sales	profits	assets	marketvalue
Min. : 0.010	Min. :-25.8300	Min. : 0.270	Min. : 0.02
1st Qu.: 2.018	1st Qu.: 0.0800	1st Qu.: 4.025	1st Qu.: 2.72
Median : 4.365	Median : 0.2000	Median : 9.345	Median : 5.15
Mean : 9.697	Mean : 0.3811	Mean : 34.042	Mean : 11.88
3rd Qu.: 9.547	3rd Qu.: 0.4400	3rd Qu.: 22.793	3rd Qu.: 10.60
Max. :256.330	Max. : 20.9600	Max. :1264.030	Max. :328.54
	NA's :5		

• Note: there are missing values in the profits.

Steps for Data Analysis in R

- Get the data
- Read and inspect the data
- Preprocess the data (missing and dubious values, discard columns not needed etc.)
- Analyze the data
- Generate the report

10/10/2018

Preprocessing - Missing Values

- Missing values are denoted in R by NA or NaN for undefined mathematical operations.
 - is.na() is used to test objects if they are NA
 - Which one is NA? which (is.na(x))
 - > which(is.na(forbes\$profits))
 - How many NAs? table (is.na(x))
 - > table(is.na(forbes\$profits))
 - list of observations with missing values on profits x (is.na(x),)
 - > forbes[is.na(forbes\$profits),]
- Make sure when reading data R can recognize the missing values. E.g. setMissingValue(wb, value = c("NA")) when using XLConnect
- Many R functions also have a logical "na.rm" option
 - na.rm=TRUE means the NA values should be discarded
 - > mean(forbes\$profits,na.rm=T)
- Note: Not all missing values are marked with "NA" in raw data!

Preprocessing - Missing Values

- The simplest way to deal with the missing values is to remove them.
 - If a row (observation) has a missing value, remove the row with na.omit(). e.g.
 - > forbes <- na.omit(forbes)</pre>
 - > dim(forbes)
 - If a column (variable) has a high percentage of the missing value, remove the whole column or just don't use it for the analysis

Preprocessing - Missing Values

• Alternatively, the missing values can be replaced by basic statistics e.g.

```
- replace by mean
for(i in 1:nrow(forbes)){
    if(is.na(forbes$profits[i])==TRUE){
    forbes$profits[i] <- mean(forbes$profits, na.rm = TRUE)
    }
}</pre>
```

or use advanced statistical techniques. List of popular R Packages:
 MICE

Amelia (named after Amelia Earhart) missForest (non parametric imputation method)

Hmisc

- At most occasions we do not need all of the raw data
- There are a number of methods of extracting a subset of R objects
- Subsetting data can be done either by row or by column

- Subsetting by row: use conditions
- # Find all companies with negative profit

<pre>>forbes[forbes\$profits < 0,c("name","sales","profits","assets")]</pre>								
	name	sales	profits	assets				
350	Allianz Worldwide	96.88	-1.23	851.24				
354	Vodafone	47.99	-15.51	256.28				
364	Deutsche Telekom	56.40	-25.83	132.01				

• Subsetting by row: use conditions

Find three companies with largest sale vol.

```
> companies <- forbes$name
> companies <- forbes[,"name"] #same as above
> order_sales <- order(forbes$sales, decreasing=T)
> companies[order_sales[1:3]]
[1] "Wal-Mart Stores" "BP" "ExxonMobil"
```

```
> head(sort(forbes$sales,decreasing=T),n=3)
[1] 256.33 232.57 222.88
```


• Subsetting by row: use the subset () function

Find the business category to which most of the Bermuda island companies belong.

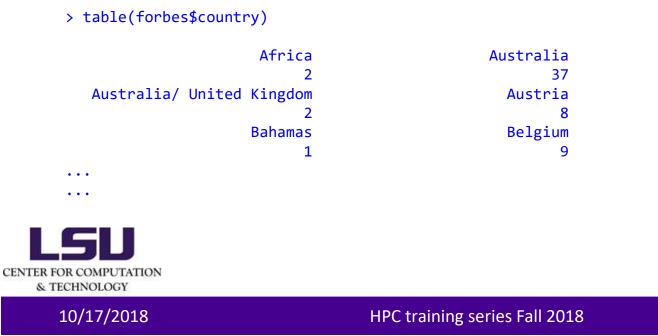
>Bermudacomp <- subset(forbes, country == "Bermuda")</pre> >table(Bermudacomp[,"category"]) #frequency table of categories Banking Capital goods Conglomerates 2 1 1 Food drink & tobacco Food markets Insurance 10 Media Oil & gas operations Software & services 1 2 1 CENTER FOR COMPUTATION & TECHNOLOGY 10/17/2018 HPC training series Fall 2018

Subsetting by column

Create another data frame with only numeric
variables

```
# Or simply use indexing
> forbes3 <- forbes[,c(5:8)]
> str(forbes3)
```


- factors are variables in R which take on a limited number of different values; such variables are often referred to as categorical variables
- # Convert characters to (unordered) factors



- Small classes could be merged into a larger class. Why?
 - For better model performance. E.g. Classification and Regression Trees tend to split using the variables with many categories.
 - Actual needs
- Some categories have just a few subjects

• Merge small classes into a larger classes

>forbes\$country[(forbes\$country=="Bahamas")|(forbes\$country=="Bermuda")|(forbes\$country=="C ayman Islands")|(forbes\$country=="Chile")|(forbes\$country=="Panama/ United Kingdom")|(forbes\$country=="Peru")]<-"Venezuela"

> forbes\$country[(forbes\$country=="Austria")|(forbes\$country=="Belgium")|(forbes\$country=="Czech

Republic")|(forbes\$country=="Denmark")|(forbes\$country=="Finland")|(forbes\$country=="France")|(forbes\$country=="German
y")|(forbes\$country=="Greece")|(forbes\$country=="Hungary")|(forbes\$country=="Ireland")|(forbes\$country=="Italy")|(forb
es\$country=="Luxembourg")|(forbes\$country=="Netherlands")|(forbes\$country=="Norway")|(forbes\$country=="Poland")|(forbes
s\$country=="Portugal")|(forbes\$country=="Russia")|(forbes\$country=="Spain")|(forbes\$country=="Switzerland")|(forbes\$country=="Turkey")|(forbes\$country=="Switzerland")|(forbes\$country=="Luxembourg")|(forbes\$country=="Switzerland")|(forbes\$country=="Switzerland")|(forbes\$country=="Luxembourg")|(forbes\$country=="Switzerland")|(forbes\$country=="Switzerland")|(forbes\$country=="Luxembourg")|(forbes\$country=="Switzerland")|(forbes\$country=="Switzerland")|(forbes\$country=="Luxembourg")|(forbes\$country=="Switzerland")|(forbes\$country=="Switzerland")|(forbes\$country=="Luxembourg")|(forbes\$country=="Switzerland")|(forbes\$country=="Switzerland")|(forbes\$country=="Luxembourg")|(forbes\$country=="Luxembourg")|(forbes\$country=="Switzerland")|(forbes\$country=="Switzerland")|(forbes\$country=="Luxembourg")|(forbes\$country=

> forbes\$country[(forbes\$country=="China")|(forbes\$country=="Hong

Kong/China")|(forbes\$country=="Indonesia")|(forbes\$country=="Japan")|(forbes\$country=="Kong/China")|(forbes\$country=="Korea")|(forbes\$country=="Malaysia")|(forbes\$country=="Philippines")|(forbes\$country=="Singapore")|(forbes\$country=="Singap

>forbes\$country[(forbes\$country=="Africa")|(forbes\$country=="Australia")|(forbes\$country=="India")|(forbes\$country=="A
ustralia/ United
Kingdom")|(forbes\$country=="Islands")|(forbes\$country=="Israel")|(forbes\$country=="Jordan")|(forbes\$country=="Liberia"
)|(forbes\$country=="Mexico")|(forbes\$country=="New Zealand")|(forbes\$country=="Pakistan")|(forbes\$country=="South
Africa")|(forbes\$country=="United Kingdom/ Australia")]<-"United Kingdom/ South Africa"</pre>

- Drop those levels with zero counts
- > forbes\$country<-droplevels(forbes\$country)</pre>
- > table(forbes\$country)

Canada Thailand 56 499 United Kingdom United Kingdom/ South Africa 531 115 United States Venezuela 751 48

Rename each class

```
> levels(forbes$country)<-c("Canada","East/Southeast Asia","Europe","Other","United
States","Latin America")
> levels(forbes$country)
[1] "Canada" "East/Southeast Asia" "Europe"
[4] "Other" "United States" "Latin America"
```


Export the Dataset (Optional)

• Save forbes to Forbes2000_clean.csv

> write.csv(forbes,"Forbes2000_clean.csv",row.names=FALSE)

Homework 1

- 1. Import dataset forbes, save it as forbes
- 2. Run the following commands:

head(forbes)

str(forbes)

summary(forbes)

- 3. Remove the observations with missing values
- 4. Find all German companies with negative profit
- 5. Find the 50 companies in the Forbes dataset with the highest profit
- 6. Find the average value of sales for the companies in each country (Hint: use tapply function)
- 7. Find the number of companies in each country with profits above 5 billion US dollars
- 8. Arbitrarily merge the classes of category to three classes: industry, services _____and finance

10/10/2018

CENTER FOR COMPUTATION & TECHNOLOGY

Steps for Data Analysis in R

- Get the data
- Read and inspect the data
- Preprocess the data (missing values, discard columns not needed etc.)
- Analyze the data
- Generate the report

10/10/2018

Import the Clean Dataset (Optional)

- Subsetting by column
- # Create a data frame with the clean data
- > forbes <- read.csv("Forbes2000_clean.csv",header=T,stringsAsFactors = T,na.strings ="NA",sep=",")

Extract Variables

Subsetting by column

Create another data frame with only numeric
variables + country

> forbes2 <- forbes[,c(3, 5:8)]
> str(forbes2)

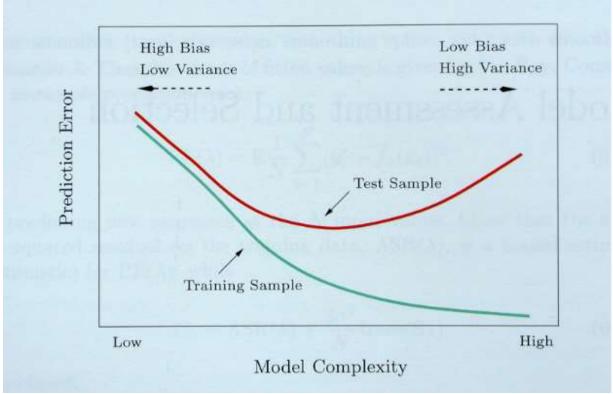
Training Set and Test Set

- Dataset could be randomly split into two parts: training set and test set.
- The model is fitted on the training set and predicted on the test set. Why?

10/10/2018

Bias Variance Tradeoff

- Two competing forces govern the choice of learning method, i.e. **bias** and **variance**.
- Bias refers to the error that is introduced by modeling a real life problem (which is usually extremely complicated) by a much simpler problem.
 - For example, linear regression assumes that there is a linear relationship between Y and X, which is unlikely in real life.
 - In general, the more flexible/complex a method is, the less bias it will have
- Variance refers to how much your estimate for f would change by if you had a different (test) dataset.
 - Generally, the more flexible/complex a method, the more variance it will have.


10/10/2018

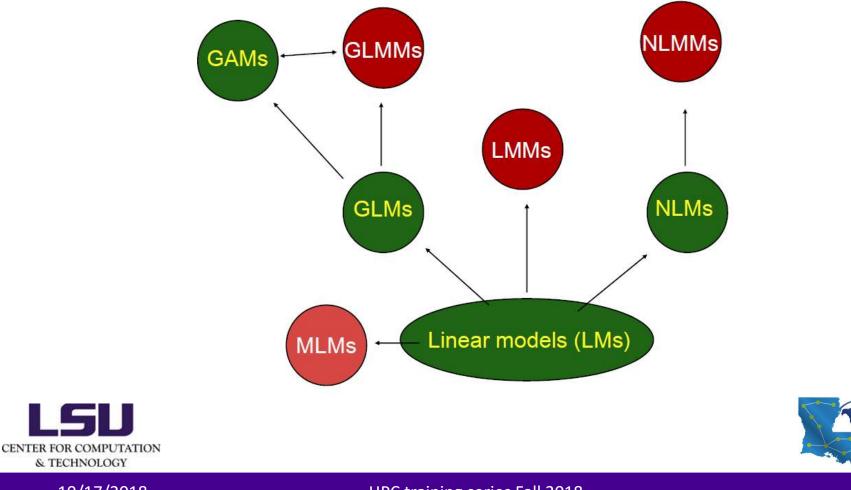
Bias Variance Tradeoff

Figure from EOSL 2001

10/10/2018

Training Set and Test Set

- Dataset could be randomly split into two parts: training set and test set.
- > set.seed(1) #set random seed reproducible
- > indx <- sample(1:1995,size=1995,replace=F)</pre>
- > forbes.train <- forbes2[indx[1:1600],]</pre>
- > forbes.test <- forbes2[indx[1601:1995],]</pre>


10/10/2018

Roadmap of Generalizations of Linear Models

HPC training series Fall 2018

Explanation of Acronyms

Models	Acronym	R function
Linear Models	LM	lm, aov
MultivariateLMs	MLM	manova
Generalized LMs	GLM	glm
Linear Mixed Models	LMM	lme, aov
Non-linear Models	NLM	nls
Non-linear Mixed Models	NLMM	nlme
Generalized LMMs	GLMM	glmmPQL
Generalized Additive Models	GAM	gam

Symbol Meanings in Model Formulae

Symbol	Example	Meaning
+	+X	Include this variable in the model
-	-X	Exclude this variable in the model
:	X:Z	Include the interaction between X and Z
*	X*Z	Include X and Z and the interactions
	X Z	Conditioning: include X given Z
۸	(A+B+C)^3	Include A, B and C and all the interactions up to three way
/	/(X*Z)	As is: include a new variable consisting of these variables multiplied

Model Formulae

General form: response ~ term₁ + term₂

Example	Meaning		
y ~ x	Simple regression		
y~-1+ x	LM through the origin		
y ~ x + x^2	Quadratic regression		
y ~ x1 + x2 + x3	Multiple regression		
y ~ .	All variables included		
y ~ x1	All variables except X1		
y ~ A + B + A : B	Add interaction		
у~А*В	Same above		
y ~ (A+B)^2	Same above		

CENTER FOR COMPUTATION & TECHNOLOGY

A Multiple Linear Regression Example

<pre>marketvalue ~ profits + sales + assets + country > lm <- lm(marketvalue ~ ., data = forbes.train) > summary(lm) Call: lm(formula = marketvalue ~ ., data = forbes.train) Residuals: Min 10 Median 30 Max -82.532 -4.842 -1.719 1.516 225.259</pre>					
Coefficients:					
		Std. Error			
(Intercept)	1.941600	2.568998	0.756	0.450	
<pre>countryEast/Southeast Asia</pre>	-2.191134	2.700858	-0.811	0.417	
countryEurope	0.617738	2.699779	0.229	0.819	
countryLatin America	0.175543	3.913749	0.045	0.964	
countryOther	0.612666	3.089536	0.198	0.843	
countryUnited States	3.639061	2.654924	1.371	0.171	
sales	0.626963				***
profits	3.726989	0.257696		<2e-16 *	
assets	0.050135			<2e-16 *	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					
Residual standard error: 16.99 on 1591 degrees of freedom Multiple R-squared: 0.4899, Adjusted R-squared: 0.4873 F-statistic: 191 on 8 and 1591 DF, p-value: < 2.2e-16					

SNI

```
10/17/2018
```

CENTER FOR COMPUTATION & TECHNOLOGY

A Multiple Linear Regression Example

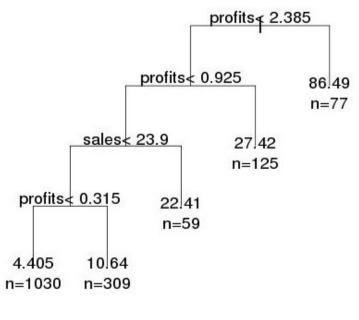
- R has created a n-1 variables each with two levels. These n-1 new variables contain the same information as the single variable. This recoding creates a table called contrast matrix.
- > contrasts(forbes.train\$country) East/Southeast Asia Europe Latin America Other United States Canada East/Southeast Asia Europe Latin America **Other** United States
- The decision to code dummy variables is arbitrary, and has no effect on the regression computation, but does alter the interpretation of the coefficients.

A Stepwise Regression Example

• The function regsubsets () in the leaps library allow us to do the stepwise regression

```
> library(leaps)
> bwd <- regsubsets(marketvalue ~ ., data = forbes.train,nvmax =3,method ="backward")</pre>
> summary(bwd)
Subset selection object
Call: regsubsets.formula(marketvalue ~ ., data = forbes.train, nvmax = 3,
    method = "backward")
8 Variables (and intercept)
                            Forced in Forced out
countryEast/Southeast Asia
                                FALSE
                                           FALSE
. . .
1 subsets of each size up to 3
Selection Algorithm: backward
         countryEast/Southeast Asia countryEurope countryLatin America
         0.0
                                     0.0
                                                   0.0
   (1)
1
         0.0
                                     0.0
                                                   0.0
2
  (1)
                                     0.0
                                                   0.0
3
  (1)
         countryOther countryUnited States sales profits assets
                                                  n n
         0.0
                      0.0
                                            "*"
1
   (1)
         0.0
                      0.0
                                            "*"
                                                  "*"
                                                           0.0
  (1)
2
         0.0
                      0.0
                                            "*"
                                                  "*"
                                                          "*"
     1)
            An asterisk indicates that a given variable is included in the
```


An asterisk indicates that a given variable is included in the corresponding model.

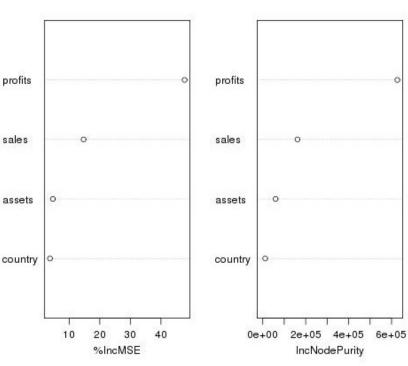


A Regression Tree Example

- The function rpart() in the rpart library allow us to grow a regression tree
- > library (rpart)

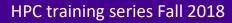
```
> rpart <- rpart(marketvalue ~ ., data = forbes.train,control = rpart.control(xval =</pre>
```

- 10, minbucket = 50))
- > jpeg('rplot1%03d.jpg')
- > par(mfrow=c(1,1),xpd=NA,cex=1.5)
- > plot(rpart,uniform=T)
- > text(rpart,use.n=T)
- > dev.off()


A Bagging Tree Example

- The function randomForest() in the randomForest library allow us to grow a regression tree
- > library (randomForest)

```
> bag <- randomForest(marketvalue ~ ., data = forbes.train, importance =TRUE)</pre>
```


- > jpeg('rf%03d.jpg')
- > importance(bag)

%IncMSE IncNodePurity
country 8.060405 33769.61
sales 17.627031 200418.63
profits 32.844743 371824.72
assets 11.890230 159419.77
> varImpPlot(bag)
> dev.off()

The Predictive Results in Terms of the MAD and RMSE Values

$$RMSE = \sqrt{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2 / N} \qquad MAD = \frac{1}{N} \times \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Model	Package	RMSE	MAD
MLR		14.41041	6.436288
Backward	leaps	14.41041	6.436288
Pruned tree	rpart	17.85625	5.899107
Bagging tree	randomForest	11.69301	4.944942

Other Common Regression Models and Packages in R

Model	Package
MLR	
Stepwise	leaps, MASS
Ridge, Lasso, Elesticnet	glmnet
Neural network	nnet, neuralnet
SVM-linear kernel	kernlab
single tree	rpart
MARS	earth
Generalized additive	gam
Boost tree	gbm
Bagging tree	randomForest

Train models with Resampling Methods

- Train method in this training session: The train() function in the caret package
 - Can train hundreds of models with resampling methods
 - Easy to manipulate, well documented.
 - Will automatically parallelize when multiple cpu cores are registered

Train models with Resampling Methods

Model	Resampling method	Tuning parameter
MLR	bootstrapping	intercept
Backward Selection	cross-validation	#Randomly Selected Predictors
Ridge	cross-validation	λ
Lasso	cross-validation	λ
Elesticnet	cross-validation	α and λ
SVM-linear kernel	cross-validation	cost
Pruned tree	bootstrapping	ср
MARS	bootstrapping	#prune and degree
Boost tree	repeat cross-validation	<pre>#.trees, shrinkage interaction.depth,</pre>
Bagging (RF)	cross-validation	#Randomly Selected Predictors

Parallel Computing in R

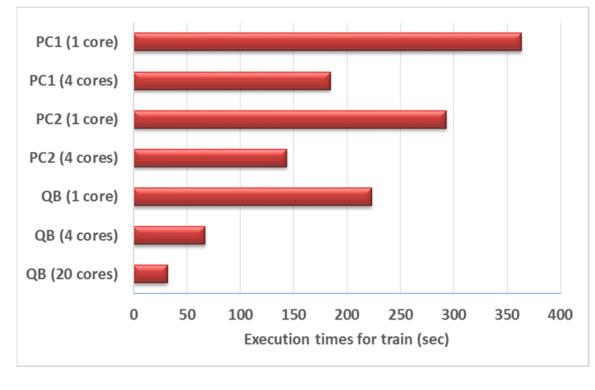
- Motivation: Save computation time.
 - A for loop can be very slow if there are a large number of computations that need to be carried out.
 - Almost all computers now have multicore processors.
 - As long as these computations do not need to communicate (resampling methods are excellent examples), they can be spread across multiple cores and executed in parallel.

Parallel Computing in R

• The parallel package

#In the R, load library(doParallel)
> library(doParallel)
Find out how many cores are available
> detectCores()
[1] 16
Create cluster with desired number of cores
> cl <- makeCluster(16)
Register cluster
> registerDoParallel(cl)
Find out how many cores are being used
> getDoParWorkers()

[1] 16



Clusters are Better for Resourcedemanding Jobs

- Training random forest model
- Resampling method: 10-fold cross-validation

Training Bagging Trees to (Random Forest)

```
> bagtrain <- train(marketvalue ~ ., data = forbes.train,method = "rf",tuneGrid =</pre>
NULL, tuneLength = 3)
> bagtrain
Random Forest
1600 samples
   4 predictors
No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 1600, 1600, 1600, 1600, 1600, 1600, ...
Resampling results across tuning parameters:
s = abs(bag.y - bag.yhat)
bag.mad = (sum(bag.abs))/395
bag.mad
jpeg('rf2%03d.jpg')
imp mtry RMSE
                     Rsquared
                                MAE
  2
        13.55779 0.6860085 5.619290
        13.33941 0.6846835 5.157681
  5
  8
        13.92276 0.6640880 5.374219
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 5.
```


Training Improvement

	RMSE		MAD	
	untrained	trained	untrained	trained
MLR	14.41041	14.41042	6.436288	6.436288
Backward	14.41041	14.36738	6.436288	6.352504
Pruned tree	17.85625	12.91093	5.899107	5.321366
BaggingTree	11.69301	10.30676	6 4.944942	4.488556

Put Everything Together

• Run R commands in batch mode with Rscript

```
[ychen64@mike001 R]$ cat forbes.R
# Check if the data directory exists; if not, create it.
if (!file.exists("data")) {
        dir.create("data")
}
# Check if the data file has been downloaded; if not, download it.
if (!file.exists("Forbes2000.csv")) {
        download.file("http://www.hpc.lsu.edu/training/weekly-
materials/Downloads/Forbes2000.csv.zip", "Forbes2000.csv.zip")
}
...
```

```
[ychen64@make001 R]$ Rscript forbes.R
```


Not Covered

- Unsupervised models
 - Cluster analysis
 - Principal Component Analysis
- Deep learning in R

Next Tutorial – Introduction to Deep Learning

- This training will introduce existing deep learning framework tools such as Keras, Tensorflow, which are being developed to build and evaluate deep learning models.
- Fundamental machine learning concepts will also be covered during the training.
- Date: October 24th, 2018

More R Tutorials – Data Visualization in R

- This training provided an introduction to the R graphics in detail
- An overview on how to create and save graphs in R, then focus on the ggplot2 package.
- http://www.hpc.lsu.edu/training/archive/tuto rials.php

More R Tutorials – Parallel Computing with R

- This training focused on how to use the "parallel" package in R and a few related packages to parallelize and enhance the performance of R programs
- http://www.hpc.lsu.edu/training/archive/tuto rials.php

Getting Help

- User Guides
 - LSU HPC:
 - http://www.hpc.lsu.edu/docs/guides.php#hpc
 - LONI:http://www.hpc.lsu.edu/docs/guides.php#loni
- Documentation: <u>http://www.hpc.lsu.edu/docs</u>
- Contact us
 - Email ticket system: <u>sys-help@loni.org</u>
 - Telephone Help Desk: 225-578-0900

Questions?

10/17/2018

HPC training series Fall 2018

62

Homework 2

- 1. Use the lm() function to perform a multiple linear regression with profits as the response and all other numeric variables as the predictors. Use the summary() function to print the results.
- 2. Comment on the output. For instance: Is there a relationship between the predictors and the response?
- 3. Which predictors appear to have a statistically significant relationship to the response?
- 4. What does the coefficient for the sales variable suggest?
- 5. Use the * and : symbols to fit linear regression models with interaction effects.

Do any interactions appear to be statistically significant?

