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1 tic;
2 nsize = 10000;
3 for k = 1:nsize
4 B(k) = sum( A(:,k) );
5 end
6 toc;
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Overview

• Why should we optimize the Matlab code?

• When should we optimize Matlab code?

• What can we do with the optimization of the Matlab

code?

• Profiling and benchmark Matlab applications

• General techniques for performance tuning

• Some Matlab-specific optimization techniques

• Remarks on using Matlab on LSU HPC and LONI

clusters

• Further reading
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Why should we optimize the Matlab code?

• Matlab has broad applications in a variety of disciplines:

engineering, science, applied maths, and economics;

• Matlab makes programming easier compared to others;

• It supports plenty of builtin functions (math functions, matrix

operations, FFT, etc);

• Matlab is both a scripting and programming language;

• Newer version focuses on Just-In-Time (JIT) engine for

compilation;

• Interfacing with other languages: Fortran, C, Perl, Java, etc;

• In some case, Matlab code may suffer more performance

penalties than other languages;

• Optimization means (1) increase FLOPs per second.

(2) make those that are impossible possible;
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When should we optimize Matlab code?

• The first thing is to make your code work to some extent;

• Debug and test your code to produce correct results, even it

runs slowly;

• While the correct results are maintained, if necessary, try to

optimize it and improve the performance;

• Optimization includes (1) adopting a better algorithm, (2) to

implement the algorithm, data and loop structures, array

operations, function calls, etc, (3) how to parallelize it;

• Write the code in an optimized way at the beginning;

• Optimization may or may not be a post-processing

procedure;

• In some cases, we won’t be able to get anywhere if we don’t

do it right: make impossible possible;
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What to do with optimization of Matlab code?

• Most general optimization techniques applied;

• In addition, there are some techniques that are unique to

Matlab code;

• Identify where the bottlenecks are (hot spots);

◦ Data structure;

◦ CPU usage;

◦ Memory and cache efficiency;

◦ Input/Output (I/O);

◦ Builtin functions;

• Though we cannot directly control the performance of
builtin functions, we have different options to choose a
better one;

• Let Matlab use JIT engine as much as possible;
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Profiling and benchmark Matlab applications

• Overall wall-clock time can be obtained from the job log, but

this might not be what we want;

• Matlab 5.2 (R10) or higher versions provide a builtin profiler:

$ matlab

$ matlab -nosplash % don’t display logo
$ matlab -nodesktop -nosplash % turn desktop off
$ matlab -nodesktop -nosplash -nojvm % java engine off

• On a matlab terminal, let’s run

>> profile on # turn the profiler on
>> nsize = 10000;

>> myfunction(nsize); # call a function
>> profile off # turn the profiler off
>> profile viewer # A GUI report
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Profiling and benchmark Matlab applications

• The profiler sorts time elapsed for all functions, and reports

the number of calls, the time-consuming lines and block;

• Time is reported in both percentage and absolute value;

• It is not required to modify your code;

• A simple and efficient way to use the builtin functions:

tic and toc (elapsed time in seconds);

. . . . . . ; % initialize the array
tic; % start timer at 0
nsize = . . . . . .;
for k = 1:nsize

vectora(k,1) = matrix_b(k,5) + matrix_c(k,3);

end

toc; % stop timer
Elapsed time is 18.309452 seconds.
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Profiling and benchmark Matlab applications

• tic/toc can be used to measure elapsed time in a more
complicated way;

• Let’s consider two nested loops: how to measure the outer

and inner loops separately:

nsize = 3235;

A=rand(nsize); b=rand(nsize,1); c=zeros(nsize,1);

tic;

for i = 1:nsize % outer loop
A(i,i) = A(i,i) - sum(sum(A));

for j = 1:nsize % inner loop
c(i,1) = c(i,1) + A(i,j)*b(j,1);

end

end

toc; tictoc_loops_v0.m
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Profiling and benchmark Matlab applications

• tic/toc can be used to measure elapsed time in a more
complicated way:

timer_inner = 0; timer_outer = 0;

for i = 1:nsize % outer loop
tic;

A(i,i) = A(i,i) - sum(sum(A));

timer_outer = timer_outer + toc;

tic; tictoc_loops_v1.m
for j = 1:nsize % inner loop

c(i,1) = c(i,1) + A(i,j)*b(j,1);

end

timer_inner = timer_inner + toc;

end

fprintf(’Inner loop % f seconds\n’, timer_inner);

fprintf(’Outer loop % f seconds\n’, timer_outer);
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General techniques for performance tuning

• We discuss some general aspects of optimization techniques

that are applied to Matlab and other codes;

• It is mostly about loop-level optimization:

◦ Hoist index-invariant code segments outside
of loops.

◦ Avoid unnecessary computation.

◦ Nested loops and change loop orders.

◦ Optimize the data structure if necessary.

◦ Loop merging/split (unrolling).

◦ Optimize branches in loops.

◦ Use inline functions.

◦ Spatial and temporal data locality.
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General techniques for performance tuning

• Hoist index-invariant code segments outside of loops;

• Consider the same code tictoc_loops_v1.m and then _v2.m:

timer_inner = 0; timer_outer = 0;

for i = 1:nsize % outer loop
tic;

A(i,i) = A(i,i) - sum(sum(A));

timer_outer = timer_outer + toc;

tic; tictoc_loops_v1.m
for j = 1:nsize % inner loop

c(i,1) = c(i,1) + A(i,j)*b(j,1);

end

timer_inner = timer_inner + toc;

end

fprintf(’Inner loop % f seconds\n’, timer_inner);

fprintf(’Outer loop % f seconds\n’, timer_outer);
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General techniques for performance tuning

• Hoist index-invariant code segments outside of loops;

• Consider the same code tictoc_loops_v1.m and then _v2.m:

timer_inner = 0; timer_outer = 0;

for i = 1:nsize % outer loop
tic;

A(i,i) = A(i,i) - sum(sum(A)) ; % out of the loop
timer_outer = timer_outer + toc;

tic; tictoc_loops_v2.m
for j = 1:nsize % inner loop

c(i,1) = c(i,1) + A(i,j)*b(j,1);

end

timer_inner = timer_inner + toc;

end

fprintf(’Inner loop % f seconds\n’, timer_inner);

fprintf(’Outer loop % f seconds\n’, timer_outer);
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General techniques for performance tuning

• Hoist index-invariant code segments outside of loops;

• Consider the same code tictoc_loops_v1.m and then _v2.m:

• tictoc_loops_v1.m:

>> The time elapsed for inner loop is 0.926248 s.

>> The time elapsed for outer loop is 5.810867 s.

>> The total time is 6.769521 s.

• tictoc_loops_v2.m:

>> The time elapsed for inner loop is 0.488543 s.

>> The time elapsed for outer loop is 0.002263 s.

>> The total time is 0.521508 s.

• The overall speedup is 13×: we only touched the outer loop;

• Why does it affect the inner loop in a positive way?

• How can we optimize the inner loop?
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Avoid unnecessary computation

• This might be attributed to reengineering your algorithms:

• Let’s consider a vector operation: vout = exp (iz1)exp (iz2)

nsize = 8e+6;

. . . . . .;
cvector_inp_1 = complex(vector_zero,vector_inp_1);

cvector_inp_2 = complex(vector_zero,vector_inp_2);

for i = 1:nsize

cvector_out_1(i,1) = exp( cvector_inp_1(i,1) ) ;

end

for i = 1:nsize

cvector_out_2(i,1) = exp( cvector_inp_2(i,1) ) ;

end avoid_unness_v0.m
cvectort_out_3 = cvector_out_1 .* cvector_out_2 ;

>> Elapsed time is 2.303156 s.
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Avoid unnecessary computation

• This might be attributed to reengineering your algorithms:

• Let’s consider a vector operation: vout = exp (iz1)exp (iz2)

nsize = 8e+6; avoid_unness_v1.m
. . .;
vector_out_real = zeros(nsize,1);

vector_out_imag = zeros(nsize,1);

vector_inp_3 = zeros(nsize,1);

vector_inp_3 = vector_inp_1 + vector_inp_2;

for i = 1:nsize

vector_out_real(i,1) = cos( vector_inp_3(i,1) );

vector_out_imag(i,1) = sin( vector_inp_3(i,1) );

end

>> Elapsed time is 0.835313 s. 2.8×
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Nested loops and change loop orders

• Consider a very simple case: sum over all matrix elements:

a = rand(4000,6000); loop_order_v0.m
n = size(a,1);

m = size(a,2);

tic;

total = 0.0;

for inrow = 1:n

for incol = 1:m

total = total + a(inrow,incol); % row-wise sum
end

end

>> Elapsed time is 0.700789 s.
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Nested loops and change loop orders

• Consider a very simple case: sum over all matrix elements:

a = rand(4000,6000); loop_order_v1.m
n = size(a,1);

m = size(a,2);

tic;

total = 0.0;

for incol = 1:m

for inrow = 1:n % two loops were swapped
total = total + a(inrow,incol); % column-wise sum

end

end

>> Elapsed time is 0.317501 s. 2.2×

• In matlab, multi-dimensional arrays are stored in column

wise (same as Fortran); What happens to sum(sum(a))?
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Nested loops and change loop orders

• Let’s consider the problem of string vibration with the fixed

ends: ∂2u/∂t2 = c2 ∂2u/∂x2, x ∈ [0, a] and t ∈ [0, T ];

• Initial conditions: u(x, 0) = sin(πx), ∂u(x, 0)/∂t = 0;

• Boundary conditions: u(0, t) = u(a, t) = 0.

• Finite differences in both spatial and temporal coordinates;

• xi = i∆x and tk = k∆t lead to u(xi, tk) = uik;

∂2u(xi, tk)

∂x2
≃

1

∆x2
[ui+1,k − 2ui,k + ui−1,k], (1)

∂2u(xi, tk)

∂t2
≃

1

∆t2
[ui,k+1 − 2ui,k + ui,k−1], (2)

ui,k+1 = fui+1,k + 2(1 − f)ui,k + fui−1,k − ui,k−1, (3)

and f = (c∆t/∆x)2.
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Nested loops and change loop orders

• Let’s consider the problem of string vibration with the fixed

ends: ∂2u/∂t2 = c2 ∂2u/∂x2, x ∈ [0, a] and t ∈ [0, T ];

• Initial conditions: u(x, 0) = sin(πx), ∂u(x, 0)/∂t = 0;

• Boundary conditions: u(0, t) = u(a, t) = 0.

• Finite differences in both spatial and temporal coordinates;

• xi = i∆x and tk = k∆t lead to u(xi, tk) = uik;

x

t

u(xi, tk)

x

t

u(xi, tk)

u(xi+1, tk−1)

u(xi, tk−1)

u(xi, tk−2)

u(xi−1, tk−1)



Information Technology Services
LSU HPC Training Series, Spring 2018

p. 20/45

Nested loops and change loop orders

for jt = 1:Ntime; string_vib_v0.m
u(jt,1) = 0.0; u(jt,Nx) = 0.0;

end

for ix = 2:Nx-1

u(1,ix) = sin(pi*x_step);

u(2,ix) = 0.5*const*( u(1,ix+1) + u(1,ix-1) ) . . .
+ (1.0-const)*u(1,ix);

end

for jt = 2:Ntime-1

for ix = 2:Nx-1

u(jt+1,ix) = 2.0*(1.0-const)*u(jt,ix) . . .
+ const*(u(jt,ix+1) + u(jt,ix-1)) - u(jt-1,ix);

end

end How can we optimize it?

>> Elapsed time is 19.222726 s.
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Nested loops and change loop orders

for jt = 1:Ntime; string_vib_v1.m
u(1,jt) = 0.0; u(Nx,jt) = 0.0;

end

for ix = 2:Nx-1

u(ix,1) = sin(pi*x_step);

u(ix,2) = 0.5*const*( u(ix+1,1) + u(ix-1,1) ) . . .
+ (1.0-const)*u(ix,1);

end

for jt = 2:Ntime-1

for ix = 2:Nx-1

u(ix,jt+1) = 2.0*(1.0-const)*u(ix,jt) . . .
+ const*(u(ix+1,jt) + u(ix-1,jt)) - u(ix,jt-1);

end

end

>> Elapsed time is 0.291292 s. 66×
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Optimize branches in loops

• Loop merging/split (unrolling). Optimize branches in loops;

• Consider a summation: π = 4(1 − 1

3
+ 1

5
− 1

7
+ 1

9
−. . . ).

n = 500000; pi_v0.m
total = 0.0; k= 0;

for id =1:2:n

k = k + 1;

if mod(k,2)==0 tmp = -1.0/double(id);

else tmp = 1.0/double(id);

end

total = total + tmp;

end

total = 4.0 * total;

fprintf(’%15.12f’, total);

>> Elapsed time is 0.043757 s.
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Optimize branches in loops

• Loop merging/split (unrolling). Optimize branches in loops;

• Consider a summation: π = 4(1 − 1

3
+ 1

5
− 1

7
+ 1

9
−. . . ).

n = 500000; pi_v1.m
total = 0.0;

for id =1:4:n

tmp = 1.0/double(id);

total = total + tmp;

end

for id =3:4:n

tmp = -1.0/double(id);

total = total + tmp;

end

total = 4.0 * total;

fprintf(’%15.12f’, total); loop split

>> Elapsed time is 0.023158 s. 1.9×
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Optimize branches in loops

• Loop merging/split (unrolling). Optimize branches in loops;

• Consider a summation: π = 4(1 − 1

3
+ 1

5
− 1

7
+ 1

9
−. . . ).

n = 500000; pi_v2.m
total = 0.0;

fac = 1.0;

for id =1:2:n

tmp = fac/double(id);

total = total + tmp;

fac = -fac;

end

total = 4.0 * total;

fprintf(’%15.12f’, total);

>> Elapsed time is 0.020947 s. 2.0×

• In the last two versions, the branches were removed from the

loops.
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Use inline functions

• Consider the computation of distances between any two

points a(3, ncol) and b(3, ncol) in 3D space:

ncol = 2000; norm_v0.m
a = rand(3,ncol);

b = rand(3,ncol);

tic;

for i = 1:ncol

for j = 1:ncol

c(i,j) = norm( a(:,j)-b(:,i) );

end

end

toc;

>> Elapsed time is 15.803001 s.
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Use inline functions

• Consider the computation of distances between any two

points a(3, ncol) and b(3, ncol) in 3D space:

ncol = 2000; norm_v1.m
a = rand(3,ncol);

b = rand(3,ncol);

tic;

c = zeros(ncol,ncol); % allocate c array first
for i = 1:ncol

for j = 1:ncol

c(i,j) = norm( a(:,j)-b(:,i) );

end

end

toc;

>> Elapsed time is 13.185580 s. 1.2×
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Use inline functions

• Consider the computation of distances between any two

points a(3, ncol) and b(3, ncol) in 3D space:

ncol = 2000; norm_v2.m
a = rand(3,ncol);

b = rand(3,ncol);

tic;

c = zeros(ncol,ncol); % allocate c array first
for j = 1:ncol

for i = 1:ncol

c(i,j) = norm( a(:,j)-b(:,i) );

end

end

toc;

>> Elapsed time is 13.153847 s. 1.2×
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Use inline functions

• Consider the computation of distances between any two

points a(3, ncol) and b(3, ncol) in 3D space:

tic; norm_v3.m
c = zeros(ncol,ncol); % allocate c array first
for j = 1:ncol

for i = 1:ncol

x = a(1,j) - b(1,i);

y = a(2,j) - b(2,i);

z = a(3,j) - b(3,i);

c(i,j) = sqrt(x*x + y*y + z*z); % replace norm
end

end

toc;

>> Elapsed time is 0.472565 s. 33×
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Exercise: solving a set of linear equations

• Let’s consider using the iterative Gauss-Seidel method to

solve a linear system Ax =b (assume that aii 6= 0,

i = 1, 2,. . . ,n);

x
(k+1)
i =

1

aii

(

bi −
∑

j<i

aijx
(k+1)
j −

∑

j>i

aijx
(k)
j

)

. (4)
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Exercise: solving a set of linear equations

• Let’s consider using iterative Gauss-Seidel method to solve

a linear system Ax =b (assume that aii 6= 0, i = 1, 2,. . . ,n);

function x = GaussSeidel(A,b,es,maxit)

. . . . . .
while (1) GaussSeidel_v0.m
xold = x; adapted from Chapra’s Appliced Numerical

for i = 1:n; Methods with MATLAB (2nd ed. p.269)
x(i) = d(i) - C(i,:)*x;

if x(i) ∼= 0;

ea(i) = abs((x(i) -xold(i))/x(i)) * 100;

end

end

iter = iter + 1; How can we optimize it?
if max(ea) <= es | iter >= maxit, break, end

end
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Exercise: solving a set of linear equations

• Let’s consider using iterative Gauss-Seidel method to solve

a linear system Ax =b (assume that aii 6= 0, i = 1, 2,. . . ,n);

nsize = 6000;

A = zeros(nsize); b = zeros(nsize,1);

es = 0.00001; maxit = 100; driver_GaussSeidel.m
for i = 1:nsize

b(i) = 3.0 - 2.0*sin(double(i)*15.0);

for j = 1:nsize

A(j,i) = cos(double(i-j)*123.0);

end

end

tic;

xsolution = GaussSeidel_v0(A,b,es,maxit);

toc;

>> Elapsed time is 18.823522 s (. . . _v0.m).
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Optimization techniques specific to Matlab

• In addition to understanding general tuning techniques, there

are techniques unique to Matlab programming;

• There are always multiple ways to solve the same problem;

◦ Fast Fourier transform (FFT).

◦ Convert numbers to strings.

◦ Dynamic allocation of arrays.

◦ Construct a sparse matrix.

◦ . . .
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FFT

• Let’s consider the FFT of a series signal:

tic; fft_v0.m
nsize = 3e6; nsizet = nsize + 202;

a = rand(1,nsize);

b = fft(a,nsizet);

toc;

>> Elapsed time is 0.650933 s.

tic; fft_v1.m
nsize = 3e6;

n = nextpow2(nsize); nsizet = 2ˆn;

a = rand(1,nsize);

b = fft(a,nsizet);

toc;

>> Elapsed time is 0.293406 s. 2.2×
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Preallocation of arrays

• Matlab supports dynamical allocation of arrays;

• It is both good and bad in terms of easy coding and

performance:

My_data=importdata(’input.dat’); array_alloc_v0.m
tic;

Sortx=zeros(1,1);

k=0; s=1;

while k<=My_data(1,1)

Sortx(s,1)=My_data(s,4);

s=s+1;

k=My_data(s,1);

end

toc;

>> Elapsed time is 0.056778 s.
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Preallocation of arrays

• It is always a good idea to preallocate arrays:

tic; array_alloc_v1.m
k=0; s=1;

while k<=My_data(1,1)

s=s+1; k=My_data(s,1);

end

Sortx=zeros(s-1,1);

k=0; s=1;

while k<=My_data(1,1)

Sortx(s,1)=My_data(s,4);

s=s+1;

k=My_data(s,1);

end

toc;

>> Elapsed time is 0.027005 s. 2.1×
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Convert numbers to strings

• Matlab provides a builtin function num2str:

tic; num2str_v0.m
i = 12345.6;

A = num2str(sin(i+i),’%f’);

toc;

>> Elapsed time is 0.019238 s.

tic; num2str_v1.m
i = 12345.6;

A = sprintf(’%f’,sin(i+i));

toc;

>> Elapsed time is 0.005372 s. 3.6×

• In this case, sprintf is much better than num2str;
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What we haven’t covered

• There are other Matlab techniques that are not covered here:

◦ Matlab vectorization.

◦ File I/O.

◦ Matlab indexing techniques.

◦ Object oriented programming in Matlab.

◦ Binary MEX code.

◦ Matlab programming on GPUs.

◦ Graphics.

◦ . . .
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MATLAB Parallel Computing Toolbox
(PCT)

collin
Text Box
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Parallel computing

• Why do we need parallel computing?

• Solves large problems and save wall-clock time.

◦ Splits large problems into smaller ones and
distribute data across multiple cores and multiple
nodes (strong scaling).

◦ Uses the same number of cores or nodes, but
increases the size of problem (weak scaling).

◦ Communication overhead.

◦ Acceleration Matlab apps on Nvidia GPU cards;

• Matlab supports the PCT (on a single node) and Matlab

distributed computing server (MDCS on multiple nodes);

• Matlab supports implicit and explicit multi-processing

(since R2011a);
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Parallel computing

• Note that Matlab has achieved explicit parallelism through a

very different mechanism;

• Matlab supports MDCS on multiple nodes and servers;

• Third-party attempts: PMatlab (MatlabMPI from MIT) to

address the issue on multiple nodes;

• However, LSU HPC only supports PCT (on Xeon and GPU);

• The PCT is available in R2017a and R2015b on Mike-II,

SuperMIC, and Philip;



Information Technology Services
LSU HPC Training Series, Spring 2018

p. 41/45

PCT: parfor

• Reserve a pool of workers: parpool(poolsize)

• Delete the current pool: delete(gcp)

• Loop-level parallelism: parfor

parpool(16); parfor_loop.m
tic; % . . . skip the array initialization.

nsize = 10000000;

parfor k = 1:nsize

a(k) = k - cos(k);

b(k) = k + sin(k);

end

toc;

delete(gcp)

Elapsed time (for) is 2.8075 s.

Elapsed time (parfor, 2 workers) is 1.8576 s.

Elapsed time (parfor, 16 workers) is 0.8224 s. 3.4×
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PCT: parfor

• parfor cannot parallelize all kinds of loops;

• Loop iterations need to independent;

• Don’t try access the nonindexed variables outside parfor;

parpool(2); parfor_loop_vars.m
nsize = 20;

a = zeros(1,nsize);

ktmp = 0;

parfor k = 1:nsize

ktmp = k+k+k;

a(k) = ktmp;

end

a

ktmp

delete(gcp)

The array a is good, but ktmp (=0) is not;
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Performance comparison

MatlabMPI

MPI

Message size as a fraction to total memory

F
ra
ct
io
n
o
f
p
ea
k
b
a
n
d
w
id
th

10010−210−410−610−810−10

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Bandwidth

Reproduced from
J. Kepner,
Parallel MATLAB
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Computers
(SIAM, 2009)

• Matlab program.: relatively quick and easy;

MPI program.: hard and longer development cycle;

• Matlab program.: slow perf.; MPI program: best perf.;
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Remarks on LSU HPC and LONI clusters

• On all LSU HPC clusters we do support PCT (but not MDCS);

• We can only run Matlab code on a single node;

• You can run Matlab jobs on multiple cores but without

multi-threading programming. Choose queue properly;

• However, it is possible that Matlab automatically spawns

several threads;

• If you use single queue on SuperMIC, Mike-II, or QB-2, and

if you don’t use PCT, please always add -singleCompThread

in your matlab command line;

• For LONI’s non-LSU and non-ULL users on QB-2, you have

to provide your own license file;

• A lot of performance improvement is potential from r2013 to

r2017;

• Matlab on LSU HPC website;

http://www.hpc.lsu.edu/docs/guides/software.php?software=matlab
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Further reading

• Matlab bloggers: http://blogs.mathworks.com

• Accelerating MATLAB Performance

(Y. Altman, CRC Press, 2015)

• Matlab Central (File Exchange)

Questions?
sys-help@loni.org

http://blogs.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/?s_tid=gn_mlc_fx
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