
Information Technology Services
LSU HPC Training Series, Spring 2018

p. 1/45

Performance Analysis of
Matlab Code and PCT

Xiaoxu Guan

High Performance Computing, LSU

March 21, 2018
1 tic;
2 nsize = 10000;
3 for k = 1:nsize
4 B(k) = sum(A(:,k));
5 end
6 toc;

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 2/45

Overview

• Why should we optimize the Matlab code?

• When should we optimize Matlab code?

• What can we do with the optimization of the Matlab

code?

• Profiling and benchmark Matlab applications

• General techniques for performance tuning

• Some Matlab-specific optimization techniques

• Remarks on using Matlab on LSU HPC and LONI

clusters

• Further reading

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 3/45

Why should we optimize the Matlab code?

• Matlab has broad applications in a variety of disciplines:

engineering, science, applied maths, and economics;

• Matlab makes programming easier compared to others;

• It supports plenty of builtin functions (math functions, matrix

operations, FFT, etc);

• Matlab is both a scripting and programming language;

• Newer version focuses on Just-In-Time (JIT) engine for

compilation;

• Interfacing with other languages: Fortran, C, Perl, Java, etc;

• In some case, Matlab code may suffer more performance

penalties than other languages;

• Optimization means (1) increase FLOPs per second.

(2) make those that are impossible possible;

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 4/45

When should we optimize Matlab code?

• The first thing is to make your code work to some extent;

• Debug and test your code to produce correct results, even it

runs slowly;

• While the correct results are maintained, if necessary, try to

optimize it and improve the performance;

• Optimization includes (1) adopting a better algorithm, (2) to

implement the algorithm, data and loop structures, array

operations, function calls, etc, (3) how to parallelize it;

• Write the code in an optimized way at the beginning;

• Optimization may or may not be a post-processing

procedure;

• In some cases, we won’t be able to get anywhere if we don’t

do it right: make impossible possible;

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 5/45

What to do with optimization of Matlab code?

• Most general optimization techniques applied;

• In addition, there are some techniques that are unique to

Matlab code;

• Identify where the bottlenecks are (hot spots);

◦ Data structure;

◦ CPU usage;

◦ Memory and cache efficiency;

◦ Input/Output (I/O);

◦ Builtin functions;

• Though we cannot directly control the performance of
builtin functions, we have different options to choose a
better one;

• Let Matlab use JIT engine as much as possible;

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 6/45

Profiling and benchmark Matlab applications

• Overall wall-clock time can be obtained from the job log, but

this might not be what we want;

• Matlab 5.2 (R10) or higher versions provide a builtin profiler:

$ matlab

$ matlab -nosplash % don’t display logo
$ matlab -nodesktop -nosplash % turn desktop off
$ matlab -nodesktop -nosplash -nojvm % java engine off

• On a matlab terminal, let’s run

>> profile on # turn the profiler on
>> nsize = 10000;

>> myfunction(nsize); # call a function
>> profile off # turn the profiler off
>> profile viewer # A GUI report

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 7/45

Profiling and benchmark Matlab applications

• The profiler sorts time elapsed for all functions, and reports

the number of calls, the time-consuming lines and block;

• Time is reported in both percentage and absolute value;

• It is not required to modify your code;

• A simple and efficient way to use the builtin functions:

tic and toc (elapsed time in seconds);

. ; % initialize the array
tic; % start timer at 0
nsize =;
for k = 1:nsize

vectora(k,1) = matrix_b(k,5) + matrix_c(k,3);

end

toc; % stop timer
Elapsed time is 18.309452 seconds.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 8/45

Profiling and benchmark Matlab applications

• tic/toc can be used to measure elapsed time in a more
complicated way;

• Let’s consider two nested loops: how to measure the outer

and inner loops separately:

nsize = 3235;

A=rand(nsize); b=rand(nsize,1); c=zeros(nsize,1);

tic;

for i = 1:nsize % outer loop
A(i,i) = A(i,i) - sum(sum(A));

for j = 1:nsize % inner loop
c(i,1) = c(i,1) + A(i,j)*b(j,1);

end

end

toc; tictoc_loops_v0.m

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 9/45

Profiling and benchmark Matlab applications

• tic/toc can be used to measure elapsed time in a more
complicated way:

timer_inner = 0; timer_outer = 0;

for i = 1:nsize % outer loop
tic;

A(i,i) = A(i,i) - sum(sum(A));

timer_outer = timer_outer + toc;

tic; tictoc_loops_v1.m
for j = 1:nsize % inner loop

c(i,1) = c(i,1) + A(i,j)*b(j,1);

end

timer_inner = timer_inner + toc;

end

fprintf(’Inner loop % f seconds\n’, timer_inner);

fprintf(’Outer loop % f seconds\n’, timer_outer);

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 10/45

General techniques for performance tuning

• We discuss some general aspects of optimization techniques

that are applied to Matlab and other codes;

• It is mostly about loop-level optimization:

◦ Hoist index-invariant code segments outside
of loops.

◦ Avoid unnecessary computation.

◦ Nested loops and change loop orders.

◦ Optimize the data structure if necessary.

◦ Loop merging/split (unrolling).

◦ Optimize branches in loops.

◦ Use inline functions.

◦ Spatial and temporal data locality.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 11/45

General techniques for performance tuning

• Hoist index-invariant code segments outside of loops;

• Consider the same code tictoc_loops_v1.m and then _v2.m:

timer_inner = 0; timer_outer = 0;

for i = 1:nsize % outer loop
tic;

A(i,i) = A(i,i) - sum(sum(A));

timer_outer = timer_outer + toc;

tic; tictoc_loops_v1.m
for j = 1:nsize % inner loop

c(i,1) = c(i,1) + A(i,j)*b(j,1);

end

timer_inner = timer_inner + toc;

end

fprintf(’Inner loop % f seconds\n’, timer_inner);

fprintf(’Outer loop % f seconds\n’, timer_outer);

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 12/45

General techniques for performance tuning

• Hoist index-invariant code segments outside of loops;

• Consider the same code tictoc_loops_v1.m and then _v2.m:

timer_inner = 0; timer_outer = 0;

for i = 1:nsize % outer loop
tic;

A(i,i) = A(i,i) - sum(sum(A)) ; % out of the loop
timer_outer = timer_outer + toc;

tic; tictoc_loops_v2.m
for j = 1:nsize % inner loop

c(i,1) = c(i,1) + A(i,j)*b(j,1);

end

timer_inner = timer_inner + toc;

end

fprintf(’Inner loop % f seconds\n’, timer_inner);

fprintf(’Outer loop % f seconds\n’, timer_outer);

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 13/45

General techniques for performance tuning

• Hoist index-invariant code segments outside of loops;

• Consider the same code tictoc_loops_v1.m and then _v2.m:

• tictoc_loops_v1.m:

>> The time elapsed for inner loop is 0.926248 s.

>> The time elapsed for outer loop is 5.810867 s.

>> The total time is 6.769521 s.

• tictoc_loops_v2.m:

>> The time elapsed for inner loop is 0.488543 s.

>> The time elapsed for outer loop is 0.002263 s.

>> The total time is 0.521508 s.

• The overall speedup is 13×: we only touched the outer loop;

• Why does it affect the inner loop in a positive way?

• How can we optimize the inner loop?

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 14/45

Avoid unnecessary computation

• This might be attributed to reengineering your algorithms:

• Let’s consider a vector operation: vout = exp (iz1)exp (iz2)

nsize = 8e+6;

.;
cvector_inp_1 = complex(vector_zero,vector_inp_1);

cvector_inp_2 = complex(vector_zero,vector_inp_2);

for i = 1:nsize

cvector_out_1(i,1) = exp(cvector_inp_1(i,1)) ;

end

for i = 1:nsize

cvector_out_2(i,1) = exp(cvector_inp_2(i,1)) ;

end avoid_unness_v0.m
cvectort_out_3 = cvector_out_1 .* cvector_out_2 ;

>> Elapsed time is 2.303156 s.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 15/45

Avoid unnecessary computation

• This might be attributed to reengineering your algorithms:

• Let’s consider a vector operation: vout = exp (iz1)exp (iz2)

nsize = 8e+6; avoid_unness_v1.m
. . .;
vector_out_real = zeros(nsize,1);

vector_out_imag = zeros(nsize,1);

vector_inp_3 = zeros(nsize,1);

vector_inp_3 = vector_inp_1 + vector_inp_2;

for i = 1:nsize

vector_out_real(i,1) = cos(vector_inp_3(i,1));

vector_out_imag(i,1) = sin(vector_inp_3(i,1));

end

>> Elapsed time is 0.835313 s. 2.8×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 16/45

Nested loops and change loop orders

• Consider a very simple case: sum over all matrix elements:

a = rand(4000,6000); loop_order_v0.m
n = size(a,1);

m = size(a,2);

tic;

total = 0.0;

for inrow = 1:n

for incol = 1:m

total = total + a(inrow,incol); % row-wise sum
end

end

>> Elapsed time is 0.700789 s.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 17/45

Nested loops and change loop orders

• Consider a very simple case: sum over all matrix elements:

a = rand(4000,6000); loop_order_v1.m
n = size(a,1);

m = size(a,2);

tic;

total = 0.0;

for incol = 1:m

for inrow = 1:n % two loops were swapped
total = total + a(inrow,incol); % column-wise sum

end

end

>> Elapsed time is 0.317501 s. 2.2×

• In matlab, multi-dimensional arrays are stored in column

wise (same as Fortran); What happens to sum(sum(a))?

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 18/45

Nested loops and change loop orders

• Let’s consider the problem of string vibration with the fixed

ends: ∂2u/∂t2 = c2 ∂2u/∂x2, x ∈ [0, a] and t ∈ [0, T];

• Initial conditions: u(x, 0) = sin(πx), ∂u(x, 0)/∂t = 0;

• Boundary conditions: u(0, t) = u(a, t) = 0.

• Finite differences in both spatial and temporal coordinates;

• xi = i∆x and tk = k∆t lead to u(xi, tk) = uik;

∂2u(xi, tk)

∂x2
≃

1

∆x2
[ui+1,k − 2ui,k + ui−1,k], (1)

∂2u(xi, tk)

∂t2
≃

1

∆t2
[ui,k+1 − 2ui,k + ui,k−1], (2)

ui,k+1 = fui+1,k + 2(1 − f)ui,k + fui−1,k − ui,k−1, (3)

and f = (c∆t/∆x)2.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 19/45

Nested loops and change loop orders

• Let’s consider the problem of string vibration with the fixed

ends: ∂2u/∂t2 = c2 ∂2u/∂x2, x ∈ [0, a] and t ∈ [0, T];

• Initial conditions: u(x, 0) = sin(πx), ∂u(x, 0)/∂t = 0;

• Boundary conditions: u(0, t) = u(a, t) = 0.

• Finite differences in both spatial and temporal coordinates;

• xi = i∆x and tk = k∆t lead to u(xi, tk) = uik;

x

t

u(xi, tk)

x

t

u(xi, tk)

u(xi+1, tk−1)

u(xi, tk−1)

u(xi, tk−2)

u(xi−1, tk−1)

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 20/45

Nested loops and change loop orders

for jt = 1:Ntime; string_vib_v0.m
u(jt,1) = 0.0; u(jt,Nx) = 0.0;

end

for ix = 2:Nx-1

u(1,ix) = sin(pi*x_step);

u(2,ix) = 0.5*const*(u(1,ix+1) + u(1,ix-1)) . . .
+ (1.0-const)*u(1,ix);

end

for jt = 2:Ntime-1

for ix = 2:Nx-1

u(jt+1,ix) = 2.0*(1.0-const)*u(jt,ix) . . .
+ const*(u(jt,ix+1) + u(jt,ix-1)) - u(jt-1,ix);

end

end How can we optimize it?

>> Elapsed time is 19.222726 s.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 21/45

Nested loops and change loop orders

for jt = 1:Ntime; string_vib_v1.m
u(1,jt) = 0.0; u(Nx,jt) = 0.0;

end

for ix = 2:Nx-1

u(ix,1) = sin(pi*x_step);

u(ix,2) = 0.5*const*(u(ix+1,1) + u(ix-1,1)) . . .
+ (1.0-const)*u(ix,1);

end

for jt = 2:Ntime-1

for ix = 2:Nx-1

u(ix,jt+1) = 2.0*(1.0-const)*u(ix,jt) . . .
+ const*(u(ix+1,jt) + u(ix-1,jt)) - u(ix,jt-1);

end

end

>> Elapsed time is 0.291292 s. 66×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 22/45

Optimize branches in loops

• Loop merging/split (unrolling). Optimize branches in loops;

• Consider a summation: π = 4(1 − 1

3
+ 1

5
− 1

7
+ 1

9
−. . .).

n = 500000; pi_v0.m
total = 0.0; k= 0;

for id =1:2:n

k = k + 1;

if mod(k,2)==0 tmp = -1.0/double(id);

else tmp = 1.0/double(id);

end

total = total + tmp;

end

total = 4.0 * total;

fprintf(’%15.12f’, total);

>> Elapsed time is 0.043757 s.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 23/45

Optimize branches in loops

• Loop merging/split (unrolling). Optimize branches in loops;

• Consider a summation: π = 4(1 − 1

3
+ 1

5
− 1

7
+ 1

9
−. . .).

n = 500000; pi_v1.m
total = 0.0;

for id =1:4:n

tmp = 1.0/double(id);

total = total + tmp;

end

for id =3:4:n

tmp = -1.0/double(id);

total = total + tmp;

end

total = 4.0 * total;

fprintf(’%15.12f’, total); loop split

>> Elapsed time is 0.023158 s. 1.9×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 24/45

Optimize branches in loops

• Loop merging/split (unrolling). Optimize branches in loops;

• Consider a summation: π = 4(1 − 1

3
+ 1

5
− 1

7
+ 1

9
−. . .).

n = 500000; pi_v2.m
total = 0.0;

fac = 1.0;

for id =1:2:n

tmp = fac/double(id);

total = total + tmp;

fac = -fac;

end

total = 4.0 * total;

fprintf(’%15.12f’, total);

>> Elapsed time is 0.020947 s. 2.0×

• In the last two versions, the branches were removed from the

loops.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 25/45

Use inline functions

• Consider the computation of distances between any two

points a(3, ncol) and b(3, ncol) in 3D space:

ncol = 2000; norm_v0.m
a = rand(3,ncol);

b = rand(3,ncol);

tic;

for i = 1:ncol

for j = 1:ncol

c(i,j) = norm(a(:,j)-b(:,i));

end

end

toc;

>> Elapsed time is 15.803001 s.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 26/45

Use inline functions

• Consider the computation of distances between any two

points a(3, ncol) and b(3, ncol) in 3D space:

ncol = 2000; norm_v1.m
a = rand(3,ncol);

b = rand(3,ncol);

tic;

c = zeros(ncol,ncol); % allocate c array first
for i = 1:ncol

for j = 1:ncol

c(i,j) = norm(a(:,j)-b(:,i));

end

end

toc;

>> Elapsed time is 13.185580 s. 1.2×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 27/45

Use inline functions

• Consider the computation of distances between any two

points a(3, ncol) and b(3, ncol) in 3D space:

ncol = 2000; norm_v2.m
a = rand(3,ncol);

b = rand(3,ncol);

tic;

c = zeros(ncol,ncol); % allocate c array first
for j = 1:ncol

for i = 1:ncol

c(i,j) = norm(a(:,j)-b(:,i));

end

end

toc;

>> Elapsed time is 13.153847 s. 1.2×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 28/45

Use inline functions

• Consider the computation of distances between any two

points a(3, ncol) and b(3, ncol) in 3D space:

tic; norm_v3.m
c = zeros(ncol,ncol); % allocate c array first
for j = 1:ncol

for i = 1:ncol

x = a(1,j) - b(1,i);

y = a(2,j) - b(2,i);

z = a(3,j) - b(3,i);

c(i,j) = sqrt(x*x + y*y + z*z); % replace norm
end

end

toc;

>> Elapsed time is 0.472565 s. 33×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 29/45

Exercise: solving a set of linear equations

• Let’s consider using the iterative Gauss-Seidel method to

solve a linear system Ax =b (assume that aii 6= 0,

i = 1, 2,. . . ,n);

x
(k+1)
i =

1

aii

(

bi −
∑

j<i

aijx
(k+1)
j −

∑

j>i

aijx
(k)
j

)

. (4)

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 30/45

Exercise: solving a set of linear equations

• Let’s consider using iterative Gauss-Seidel method to solve

a linear system Ax =b (assume that aii 6= 0, i = 1, 2,. . . ,n);

function x = GaussSeidel(A,b,es,maxit)

.
while (1) GaussSeidel_v0.m
xold = x; adapted from Chapra’s Appliced Numerical

for i = 1:n; Methods with MATLAB (2nd ed. p.269)
x(i) = d(i) - C(i,:)*x;

if x(i) ∼= 0;

ea(i) = abs((x(i) -xold(i))/x(i)) * 100;

end

end

iter = iter + 1; How can we optimize it?
if max(ea) <= es | iter >= maxit, break, end

end

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 31/45

Exercise: solving a set of linear equations

• Let’s consider using iterative Gauss-Seidel method to solve

a linear system Ax =b (assume that aii 6= 0, i = 1, 2,. . . ,n);

nsize = 6000;

A = zeros(nsize); b = zeros(nsize,1);

es = 0.00001; maxit = 100; driver_GaussSeidel.m
for i = 1:nsize

b(i) = 3.0 - 2.0*sin(double(i)*15.0);

for j = 1:nsize

A(j,i) = cos(double(i-j)*123.0);

end

end

tic;

xsolution = GaussSeidel_v0(A,b,es,maxit);

toc;

>> Elapsed time is 18.823522 s (. . . _v0.m).

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 32/45

Optimization techniques specific to Matlab

• In addition to understanding general tuning techniques, there

are techniques unique to Matlab programming;

• There are always multiple ways to solve the same problem;

◦ Fast Fourier transform (FFT).

◦ Convert numbers to strings.

◦ Dynamic allocation of arrays.

◦ Construct a sparse matrix.

◦ . . .

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 33/45

FFT

• Let’s consider the FFT of a series signal:

tic; fft_v0.m
nsize = 3e6; nsizet = nsize + 202;

a = rand(1,nsize);

b = fft(a,nsizet);

toc;

>> Elapsed time is 0.650933 s.

tic; fft_v1.m
nsize = 3e6;

n = nextpow2(nsize); nsizet = 2ˆn;

a = rand(1,nsize);

b = fft(a,nsizet);

toc;

>> Elapsed time is 0.293406 s. 2.2×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 34/45

Preallocation of arrays

• Matlab supports dynamical allocation of arrays;

• It is both good and bad in terms of easy coding and

performance:

My_data=importdata(’input.dat’); array_alloc_v0.m
tic;

Sortx=zeros(1,1);

k=0; s=1;

while k<=My_data(1,1)

Sortx(s,1)=My_data(s,4);

s=s+1;

k=My_data(s,1);

end

toc;

>> Elapsed time is 0.056778 s.

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 35/45

Preallocation of arrays

• It is always a good idea to preallocate arrays:

tic; array_alloc_v1.m
k=0; s=1;

while k<=My_data(1,1)

s=s+1; k=My_data(s,1);

end

Sortx=zeros(s-1,1);

k=0; s=1;

while k<=My_data(1,1)

Sortx(s,1)=My_data(s,4);

s=s+1;

k=My_data(s,1);

end

toc;

>> Elapsed time is 0.027005 s. 2.1×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 36/45

Convert numbers to strings

• Matlab provides a builtin function num2str:

tic; num2str_v0.m
i = 12345.6;

A = num2str(sin(i+i),’%f’);

toc;

>> Elapsed time is 0.019238 s.

tic; num2str_v1.m
i = 12345.6;

A = sprintf(’%f’,sin(i+i));

toc;

>> Elapsed time is 0.005372 s. 3.6×

• In this case, sprintf is much better than num2str;

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 37/45

What we haven’t covered

• There are other Matlab techniques that are not covered here:

◦ Matlab vectorization.

◦ File I/O.

◦ Matlab indexing techniques.

◦ Object oriented programming in Matlab.

◦ Binary MEX code.

◦ Matlab programming on GPUs.

◦ Graphics.

◦ . . .

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 38/45

MATLAB Parallel Computing Toolbox
(PCT)

collin
Text Box

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 39/45

Parallel computing

• Why do we need parallel computing?

• Solves large problems and save wall-clock time.

◦ Splits large problems into smaller ones and
distribute data across multiple cores and multiple
nodes (strong scaling).

◦ Uses the same number of cores or nodes, but
increases the size of problem (weak scaling).

◦ Communication overhead.

◦ Acceleration Matlab apps on Nvidia GPU cards;

• Matlab supports the PCT (on a single node) and Matlab

distributed computing server (MDCS on multiple nodes);

• Matlab supports implicit and explicit multi-processing

(since R2011a);

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 40/45

Parallel computing

• Note that Matlab has achieved explicit parallelism through a

very different mechanism;

• Matlab supports MDCS on multiple nodes and servers;

• Third-party attempts: PMatlab (MatlabMPI from MIT) to

address the issue on multiple nodes;

• However, LSU HPC only supports PCT (on Xeon and GPU);

• The PCT is available in R2017a and R2015b on Mike-II,

SuperMIC, and Philip;

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 41/45

PCT: parfor

• Reserve a pool of workers: parpool(poolsize)

• Delete the current pool: delete(gcp)

• Loop-level parallelism: parfor

parpool(16); parfor_loop.m
tic; % . . . skip the array initialization.

nsize = 10000000;

parfor k = 1:nsize

a(k) = k - cos(k);

b(k) = k + sin(k);

end

toc;

delete(gcp)

Elapsed time (for) is 2.8075 s.

Elapsed time (parfor, 2 workers) is 1.8576 s.

Elapsed time (parfor, 16 workers) is 0.8224 s. 3.4×

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 42/45

PCT: parfor

• parfor cannot parallelize all kinds of loops;

• Loop iterations need to independent;

• Don’t try access the nonindexed variables outside parfor;

parpool(2); parfor_loop_vars.m
nsize = 20;

a = zeros(1,nsize);

ktmp = 0;

parfor k = 1:nsize

ktmp = k+k+k;

a(k) = ktmp;

end

a

ktmp

delete(gcp)

The array a is good, but ktmp (=0) is not;

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 43/45

Performance comparison

MatlabMPI

MPI

Message size as a fraction to total memory

F
ra
ct
io
n
o
f
p
ea
k
b
a
n
d
w
id
th

10010−210−410−610−810−10

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

Bandwidth

Reproduced from
J. Kepner,
Parallel MATLAB
for Multicore and
Multinode
Computers
(SIAM, 2009)

• Matlab program.: relatively quick and easy;

MPI program.: hard and longer development cycle;

• Matlab program.: slow perf.; MPI program: best perf.;

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 44/45

Remarks on LSU HPC and LONI clusters

• On all LSU HPC clusters we do support PCT (but not MDCS);

• We can only run Matlab code on a single node;

• You can run Matlab jobs on multiple cores but without

multi-threading programming. Choose queue properly;

• However, it is possible that Matlab automatically spawns

several threads;

• If you use single queue on SuperMIC, Mike-II, or QB-2, and

if you don’t use PCT, please always add -singleCompThread

in your matlab command line;

• For LONI’s non-LSU and non-ULL users on QB-2, you have

to provide your own license file;

• A lot of performance improvement is potential from r2013 to

r2017;

• Matlab on LSU HPC website;

http://www.hpc.lsu.edu/docs/guides/software.php?software=matlab

Information Technology Services
LSU HPC Training Series, Spring 2018

p. 45/45

Further reading

• Matlab bloggers: http://blogs.mathworks.com

• Accelerating MATLAB Performance

(Y. Altman, CRC Press, 2015)

• Matlab Central (File Exchange)

Questions?
sys-help@loni.org

http://blogs.mathworks.com
https://www.mathworks.com/matlabcentral/fileexchange/?s_tid=gn_mlc_fx

	Overview
	Overview

	Overview
	blueWhy should we optimize the Matlab code?
	blueWhen should we optimize Matlab code?
	 blueWhat to do with optimization of Matlab code?
	 Profiling and benchmark Matlab applications
	 Profiling and benchmark Matlab applications
	 Profiling and benchmark Matlab applications
	 Profiling and benchmark Matlab applications
	 General techniques for performance tuning
	 General techniques for performance tuning
	 General techniques for performance tuning
	 General techniques for performance tuning
	 Avoid unnecessary computation
	 Avoid unnecessary computation
	 Nested loops and change loop orders
	 Nested loops and change loop orders
	 Nested loops and change loop orders
	 Nested loops and change loop orders
	 Nested loops and change loop orders
	 Nested loops and change loop orders
	 Optimize branches in loops
	 Optimize branches in loops
	 Optimize branches in loops
	 Use inline functions
	 Use inline functions
	 Use inline functions
	 Use inline functions
	 Exercise: solving a set of linear equations
	 Exercise: solving a set of linear equations
	 Exercise: solving a set of linear equations
	 Optimization techniques specific to Matlab
	 FFT
	 Preallocation of arrays
	 Preallocation of arrays
	 Convert numbers to strings
	 What we haven't covered
	
	Parallel computing
	Parallel computing
	 PCT: parfor
	 PCT: parfor
	 Performance comparison
	 Remarks on LSU HPC and LONI clusters
	 Further reading

