
Wei Feinstein

HPC User Services
 LSU HPC & LON
sys-help@loni.org

 February 2018

Basic Shell Scripting

Outline

Basic Shell Scripting 2

•  Introduction to Linux Shell
•  Shell Scripting Basics

•  Variables
•  Quotations

•  Beyond Basic Shell Scripting
–  Arithmetic Operations
–  Arrays
–  Flow Control
–  Functions

•  Advanced Text Processing Commands
(grep, sed, awk)

Linux System Architecture

Basic Shell Scripting 3

		

		
										

What	is	a	Shell	

§  An application running on top of the kernel and provides a
powerful interface to the system

§  Process user’s commands, gather input from user and
execute programs

§  Types of shell with varied features
§  sh
§  csh
§  ksh
§  bash
§  tcsh

Linux Shell

Basic Shell Scripting 4

Shell Comparison

*: not by default

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Software sh csh ksh bash tcsh

Programming language y y y y y

Shell variables y y y y y

Command alias n y y y y

Command history n y y y y

Filename autocompletion n y* y* y y

Command line editing n n y* y y

Job control n y y y y

Basic Shell Scripting 5

§  Check the current shell

§  echo $SHELL
§  List available shells on the system

§  cat /etc/shells
§  Change to another shell

§  exec sh
§  Date and time

§  date
§  wget: get online files

§  wget https://ftp.gnu.org/gnu/gcc/gcc-7.1.0/gcc-7.1.0.tar.gz
§  Compile and run applications

§  gcc hello.c –o hello
§  ./hello

What can you do with a shell?

Basic Shell Scripting 6

Outline

•  Introduction to Linux Shell
•  Shell Scripting Basics

•  Variables
•  Quotations

•  Beyond Basic Shell Scripting
•  Advanced Text Processing Commands

(grep, sed, awk)

Basic Shell Scripting 7

Shell Scripting

§  Script: a program written for a software environment to automate
execution of tasks
§  A series of shell commands put together in a file
§  When the script is executed, those commands will be executed

one line at a time automatically

§  The majority of script programs are “quick and dirty”, where the main
goal is to get the program written quickly
§  May not be as efficient as programs written in C and Fortran

Basic Shell Scripting 8

Script Example (~/.bashrc)

#	.bashrc	

#	Source	global	definitions	
if	[-f	/etc/bashrc];	then	

.	/etc/bashrc	
fi	

#	User	specific	aliases	and	functions	
export	PATH=$HOME/packages/eFindsite/bin:$PATH	
export	LD_LIBRARY_PATH=$HOME/packages/eFindsite/lib:$LD_LIBRARY_PATH	
alias	qsubI="qsub	-I	-X	-l	nodes=1:ppn=20	-l	walltime=01:00:00	–A	
my_allocation“	
alias	lh="ls	-altrh"	

Basic Shell Scripting 9

Hello World

1.  #!: "Shebang” line to instruct which interpreter
to use. In the current example, bash. For tcsh,
it would be: #!/bin/tcsh

2.  All comments begin with "#".
3.  Print "Hello World!" to the screen.

#!/bin/bash
A script example
echo “Hello World”

Basic Shell Scripting 10

Variables
§  Variable names

§  Must start with a letter or underscore
§  Number can be used anywhere else
§  Do not use special characters such as @,#,%,$
§  Case sensitive
§  Allowed: VARIABLE, VAR1234able, var_name, _VAR
§  Not allowed: 1var, %name, $myvar, var@NAME

§  Two types of variables:
§  Global variables (ENVIRONMENT variables)
§  Local variables (user defined variables)

Basic Shell Scripting 11

Global Variables

§  Environment variables provide a simple way to share

configuration settings between multiple applications and
processes in Linux
§  Using all uppercase letters
§  Example: PATH, LD_LIBRARY_PATH, DISPLAY etc.

§  To reference a variable, prepend $ to the name of the variable

§  Example: $PATH, $LD_LIBRARY_PATH, $DISPLAY etc.

§  printenv/env list the current environmental variables in your
system.

Basic Shell Scripting 12

List of Some Environment Variables
PATH A list of directory paths which will be searched when a command is issued

LD_LIBRARY_PATH colon-separated set of directories where libraries should be searched for first

HOME indicate where a user's home directory is located in the file system.

PWD contains path to current working directory.

OLDPWD contains path to previous working directory.

TERM specifies the type of computer terminal or terminal emulator being used

SHELL contains name of the running, interactive shell.

PS1 default command prompt

PS2 Secondary command prompt

HOSTNAME The systems host name

USER Current logged in user's name

DISPLAY Network name of the X11 display to connect to, if available.

Basic Shell Scripting 13

Editing Variables
§  Assign values to variables

§  Shell variables is only valid within the current shell, while
environment variables are valid for all subsequently opened shells.

§  Example: useful when running a script, where exported variables
(global) at the terminal can be inherited within the script.

Basic Shell Scripting 14

Type sh/ksh/bash csh/tcsh
Shell (local) name=value set name=value

Environment (global) export
name=value

setenv name
value

With export Without export
$ export	v1=one	
$	bash	
$	echo	$v1	
àone

$ v1=one	
$	bash	
$	echo	$v1	
à	

Quotations

•  Single quotation
–  Enclosed string is read literally

•  Double quotation
–  Enclosed string is expanded

•  Back quotation
–  Enclose string is executed as a command

Basic Shell Scripting 15

Quotation - Examples

[wfeinste@mike1
[wfeinste@mike1

str1='echo
echo $str1

$USER'

-> echo $USER
[wfeinste@mike1 str2="echo $USER"
[wfeinste@mike1 echo $str2

 ->echo wfeinste

[wfeinste@mike1 str3=`echo $USER`
[wfeinste@mike1 echo $str3

-> wfeinste

Basic Shell Scripting 16

Start a comment line.
$ Indicate the name of a variable.
\ Escape character to display next character literally
{} Enclose name of variable
; Command separator. Permits putting two or more commands on the

same line.
;; Terminator in a case option
. “dot” command, equivalent to source (for bash only)

Special Characters (1)

Basic Shell Scripting 17

Special Characters (2)

$? Exit status variable.
$$ Process ID variable.
[] Test expression, eg. if condition
[[]] Test expression, more flexible than []
$[], $(()) Integer expansion
||, &&, ! Logical OR, AND and NOT

Basic Shell Scripting 18

Outline

•  Introduction to Linux Shell
•  Shell Scripting Basics
•  Beyond Basic Shell Scripting

–  Arithmetic Operations
–  Arrays
–  Flow Control
–  Functions

•  Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 19

Integer Arithmetic Operations

Operation Operator
Addition +

Subtraction -

Multiplication *

Division /

Exponentiation ** (bash only)

Modulo %

Basic Shell Scripting 20

Integer Arithmetic Operations

§  $((…)) or $[…] commands
§  Addition: x = $((1+2))
§  Multiplication: echo $[$x*$x]

§  let command: let c=$x + $x
§  expr command: expr 10 / 2 (space required)
§  C-style increment operators:

§  let c+=1 or let c--

Basic Shell Scripting 21

Floating-Point
Arithmetic Operations

GNU basic calculator (bc) external calculator
§  Add two numbers

echo "3.8 + 4.2" | bc
§  Divide two numbers and print result with a precision of 5

digits:
echo "scale=5; 2/5" | bc

§  Convert btw decimal and binary numbers
echo “ibase=10; obase=2; 10” |bc

§  Call bc directly:
bc <<< “scale=5; 2/5”

Basic Shell Scripting 22

Outline

•  Introduction to Linux Shell
•  Shell Scripting Basics
•  Beyond Basic Shell Scripting

–  Arithmetic Operations
–  Arrays
–  Flow Control
–  Command Line Arguments
–  Functions

•  Advanced Text Processing Commands (grep,
sed, awk)

Basic Shell Scripting 23

•  Initialization
 declare -a my_array
 my_array=("Alice" "Bill" "Cox” "David")
 my_array[0]="Alice";
 my_array[1]="Bill”

•  Bash supports one-dimensional arrays
•  Index starts at 0
•  No space around “=“

•  Reference an element
 ${my_array[i]}

•  Print the whole array
 ${my_array[@]}

•  Length of array
 ${#my_array[@]}

Arrays Operations (1)

Basic Shell Scripting 24

Array Operations (2)

•  Add an element to an existing array
•  my_array=(first ${my_array[@]})
•  my_array=("${my_array[@]}" last)
•  my_array[4]=(“Nason”)

•  Copy an array name to an array user
•  new_array=(${my_array[@]})

•  Concatenate two arrays
•  two_arrays=(${my_array[@]} ${new_array[@]})

Basic Shell Scripting 25

Array Operations (3)

•  Delete the entire array
•  unset my_array

•  Delete an element to an existing array
•  unset my_array[0]

Basic Shell Scripting 26

Outline

•  Introduction to Linux Shell
•  Shell Scripting Basics
•  Beyond Basic Shell Scripting

–  Arithmetic Operations
–  Arrays
–  Flow Control
–  Functions

•  Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 27

Flow Control

•  Shell scripting languages execute commands in sequence
similar to programming languages such as C and Fortran
–  Control constructs can change the order of command

execution
•  Control constructs in bash

–  Conditionals: if-then-else
–  Loops: for, while, until
–  Switches: case

Basic Shell Scripting 28

if statement
•  if/then construct test whether the exit status of a list of

commands is 0, and if so, execute one or more
commands

if	[condition];	then	
Do	something	

elif	[condition	2]	;	then	
Do	something	

else	
Do	something	

fi	

•  Strict spaces between condition and the brackets (bash)

Basic Shell Scripting 29

File Operations

Operation bash

File exists if [-e test]

File is a regular file if [-f test]

File is a directory if [-d /home]

File is not zero size if [-s test]

File has read permission if [-r test]

File has write permission if [-w test]

File has execute permission if [-x test]

Basic Shell Scripting 30

Integer Comparisons

Operation bash

Equal to if [1 –eq 2]

Not equal to if [$a –ne $b]

Greater than if [$a –gt $b]

Greater than or equal to if [1 –ge $b]

Less than if [$a –lt 2]

Less than or equal to if [$a –le $b]

Basic Shell Scripting 31

String Comparisons

Operation bash

Equal to if [$a == $b]

Not equal to if [$a != $b]

Zero length or null if [-z $a]

Non zero length if [-n $a]

Basic Shell Scripting 32

Logical Operators

Operation Example

! (NOT) if [! –e test]

&& (AND) if [-f test] && [-s test]
if [[-f test && -s test]]
if (-e test && ! –z test)

| (OR) if [-f test1] || [-f test2]
if [[-f test1 || -f test2]]

Basic Shell Scripting 33

if condition examples
Example 1:
read input
if [$input == "hello"]; then

echo hello;
else echo wrong ;
fi

Example 2
touch test.txt
if [-e test.txt]; then

echo “file exist”
elif [! -s test.txt]; then

echo “file empty”;
fi
What happens after
echo “hello world” >> test.txt

Basic Shell Scripting 34

Loop Constructs

•  A loop is a block of code that iterates a list of
commands as long as the loop control condition
stays true

•  Loop constructs
for, while and until

Basic Shell Scripting 35

for loop examples
Exmaple1:
for arg in `seq 1 4`
do

echo $arg;
 touch test.$arg
done

How to delete test files using a loop?
rm test.[1-4]

Example 2:
for file in `ls /home/$USER`
do

cat $file
done

Basic Shell Scripting 36

While Loop

•  The while construct test for a condition at the top of a loop
and keeps going as long as that condition is true.

•  In contrast to a for loop, a while is used when loop
repetitions is not known beforehand.

read counter
while [$counter -ge 0]
do let counter--
 echo $counter
done

Basic Shell Scripting 37

Until Loop

•  The until construct test a condition at the top of a
loop, and stops looping when the condition is met
(opposite of while loop)

read counter
until [$counter -lt 0]
do let counter--
 echo $counter
done

Basic Shell Scripting 38

Switching Constructs - bash
•  The case constructs are technically not loops since they do not iterate the

execution of a code block
#!/bin/sh
echo "Please talk to me ..."
while :
do
 read INPUT_STRING
 case $INPUT_STRING in

hello)
echo "Hello yourself!"
;;

bye)
echo "See you again!"
break
;;

*)
echo "Sorry, I don't understand"
;;

 esac
Done
echo "That's all folks!"

Basic Shell Scripting 39

Outline

•  Introduction to Linux Shell
•  Shell Scripting Basics
•  Beyond Basic Shell Scripting

–  Arithmetic Operations
–  Arrays
–  Flow Control
–  Functions

•  Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 40

Functions

•  A function is a code block that implements a set of
operations. Code reuse by passing parameters

•  By default all variables are global.
•  Modifying a variable in a function changes it in the

whole script.
•  Create a local variables using the local command,

which is invisible outside the function
local var=value
local varName

Basic Shell Scripting 41

Functions example
#!/bin/bash	
fun1(){	

	local	x_local=10	
	x_global=100	

}	
x_global=10	
echo	"\nglobal	iniDal	x_global	=	$x_global"	
fun1	
echo	"\nlocal	x_local	=	$x_local"	
echo	"\nglobal	final	x_global	=	$x_global\n”	

$sh fun1.sh
global	iniDal	x_global	=	10	
local	x_local	=		
global	final	x_global	=	100

Basic Shell Scripting 42

Pass Arguments to Bash Scripts
•  All parameters can be passed at runtime and accessed via

$1, $2, $3…
•  $0: the shell script name
•  $* or $@: all parameters passed to a function
•  $#: number of positional parameters passed to the

function
•  $?: exist code of last cmd
•  $$: PID of current process
•  Array variable called FUNCNAME contains the

names of all shell functions currently in the
execution call stack.

Basic Shell Scripting 43

Parameter example
#!/bin/bash	
a=$1
b=$2
fun_mul(){
 fun_mul=$(($a*$b))
 echo ${FUNCNAME[0]}
}
echo "There are $# params $1 $2 passed in”
fun_mul
echo "\nProduct of $1 and $2 is $fun_mul\n”
echo "exit code=$? processID=$$ param=$*”

$ sh fun_param.sh 3 5
There	are	2	params	3	5	passed	in	
fun_mul	
Product	of	3	and	5	is	15	
exit	code=0	processID=21459		param=3	5

Basic Shell Scripting 44

Outline

•  Introduction to Linux Shell
•  Shell Scripting Basics
•  Beyond Basic Shell Scripting

–  Arithmetic Operations
–  Arrays
–  Flow Control
–  Functions

•  Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting 45

Advanced Text Processing Commands

•  grep
•  sed
•  awk

Basic Shell Scripting 46

grep & egrep
•  grep: Unix utility that searches through either information piped to it

or files.
•  egrep: extended grep, same as grep –E
•  zgrep: compressed files.

•  Usage: grep <options> <search pattern> <files>
•  Options:
 -i ignore case during search

-r,-R search recursively
-v invert match i.e. match everything except pattern
-l list files that match pattern
-L list files that do not match pattern
-n prefix each line of output with the line number within its input file.
-A num print num lines of trailing context after matching lines.
-B num print num lines of leading context before matching lines.

Basic Shell Scripting 47

grep Examples
•  Search files containing the word bash in current directory

•  Repeat above search using a case insensitive pattern match and
print line number that matches the search pattern

grep bash *

grep -in bash *

•  Search files NOT containing the word bash in current directory
grep -v bash *

•  Search files not matching certain name pattern
ls | grep –vi fun

Basic Shell Scripting 48

grep Examples

•  grep OR

100		Thomas		Manager				Sales												$5,000	
200		Jason						Developer		Technology		$5,500	
300		Raj										Sysadmin			Technology		$7,000	
500		Randy					Manager				Sales													$6,000		

grep ‘Man\|Sales’ employee.txt
-> 100		Thomas		Manager				Sales							$5,000	
								300		Raj					Sysadmin			Technology		$7,000	

	500		Randy			Manager				Sales							$6,000

•  grep AND

grep –i ‘sys.*Tech’ employee.txt
-> 100300		Raj					Sysadmin			Technology		$7,000

Basic Shell Scripting 49

sed

•  "stream editor" to parse and transform information
– information piped to it or from files

•  line-oriented, operate one line at a time and allow
regular expression matching and substitution.

•  S substitution command

Basic Shell Scripting 50

sed commands and flags
Flags Operation Command Operation
-e combine multiple

commands
s substitution

-f read commands from file g global replacement
-h print help info p print
-n disable print i ignore case
-V print version info d delete
-r use extended regex G add newline

w write to file
x exchange pattern with hold

buffer
h copy pattern to hold buffer
; separate commands

Basic Shell Scripting 51

sed Examples

#!/bin/bash

My First Script

echo "Hello World!”
	

Basic Shell Scripting 52

sed Examples (1)

•  Add flag -e to carry out multiple matches.

•  Alternate form

•  The default delimiter is slash (/), can be changed

cat hello.sh | sed -e ’s/bash/tcsh/g’ -e ’s/First/Second/g’
#!/bin/tcsh
My Second Script
echo "Hello World!"

sed ’s/bash/tcsh/g; s/First/Second/g’ hello.sh

#!/bin/tcsh
My Second Script
echo "Hello World!"

sed ’s:/bin/bash:/bin/tcsh:g’ hello.sh

#!/bin/tcsh
My First Script
echo "Hello World!"

Basic Shell Scripting 53

sed Examples (2)
•  Delete blank lines from a file

•  Delete line n through m in a file

sed ’/^$/d’ hello.sh

#!/bin/bash
My First Script
echo "Hello World!"

sed ’2,4d’ hello.sh

#!/bin/bash
echo "Hello World!"

Basic Shell Scripting 54

sed Examples (3)

•  Insert a blank line below every line matches pattern

•  Insert a blank line above and below every line matches pattern

sed ’/First/G’ hello.sh

#!/bin/bash

My First Script

echo "Hello World!"

sed ’/First/{x;p;x;G}’ hello.sh

#!/bin/bash

My First Script

echo "Hello World!"

Basic Shell Scripting 55

sed Examples (4)

•  Replace-in-place with a backup file

•  echo with sed

sed –i.bak ’/First/Second/i’ hello.sh

$ echo "shell scripting" | sed "s/[si]/?/g”
$?hell	?cr?pt?ng	

$ echo "shell scripting 101" | sed "s/[0-9]/#/g”
$		shell	scripDng	###	

Basic Shell Scripting 56

awk
•  The awk text-processing language is useful for tasks such as:

–  Tallying information from text files and creating reports from the
results.

–  Adding additional functions to text editors like "vi".
–  Translating files from one format to another.
–  Creating small databases.
–  Performing mathematical operations on files of numeric data.

•  awk has two faces:
–  It is a utility for performing simple text-processing tasks, and
–  It is a programming language for performing complex text-

processing tasks.

Basic Shell Scripting 57

How Does awk Work

•  awk reads the file being processed line by line.
•  The entire content of each line is split into columns with

space or tab as the delimiter.
•  $0 Print the entire line, use.
•  NR #records (lines)
•  NF #fields or columns in the current line.
•  By default the field delimiter is space or tab. To change the

field delimiter use the -F<delimiter> command.

Basic Shell Scripting 58

awk Syntax

awk pattern {action}
pattern decides when action is performed
Actions:
•  Most common action: print
•  Print file dosum.sh:

awk ’{print $0}’ dosum.sh

•  Print line matching files in all .sh files in current directory:
 awk ’/bash/{print $0}’ *.sh

Basic Shell Scripting 59

uptime
11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11,
0.17

uptime | awk ’{print $0}’
11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11,
0.17

uptime | awk ’{print $1,NF}’
11:18am 12

uptime | awk ’{print NR}’
1

uptime | awk –F, ’{print $1}’
11:18am up 14 days 0:40

for i in $(seq 1 3); do touch file${i}.dat ; done
for i in file* ; do
> prefix=$(echo $i | awk -F. ’{print $1}’)
> suffix=$(echo $i | awk -F. ’{print $NF}’)
> echo $prefix $suffix $i; done

file1 dat file1.dat
file2 dat file2.dat
file3 dat file3.dat

Basic Shell Scripting 60

Awk Examples

•  Print list of files that are bash script files

•  Print extra lines below patterns

awk '/^#\!\/bin\/bash/{print $0, FILENAME}’ *
à 		#!/bin/bash	Fun1.sh	

#!/bin/bash	fun_pam.sh	
#!/bin/bash	hello.sh	
#!/bin/bash	parm.sh

awk '/sh/{print;getline;print}' <hello.sh
#!/bin/bash

Basic Shell Scripting 61

Getting Help
§  User Guides

§  LSU HPC: http://www.hpc.lsu.edu/docs/guides.php#hpc
§  LONI: http://www.hpc.lsu.edu/docs/guides.php#loni

§  Documentation: http://www.hpc.lsu.edu/docs
§  Archived tutorials:

http://www.hpc.lsu.edu/training/archive/tutorials.php
§  Contact us

§  Email ticket system: sys-help@loni.org
§  Telephone Help Desk: 225-578-0900

Basic Shell Scripting 62

Upcoming trainings

March 07, 2018: Hands-On Practice Session
March 14, 2018: Introduction to R
March 21, 2018: Parallel Computing with Matlab
April 04, 2018: Data Visualization in R
April 11, 2018: Introduction to Python
April 18, 2018: Deep Learning Software

Basic Shell Scripting 63

