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Topics To Be Discussed 

 Fundamentals about Machine Learning

– What is Deep Learning?

• What is a (deep) neural network 

• How to train it

 Build a neural network model using Keras/TensorFlow

– MNIST example

• Softmax classification

• Cross-entropy cost function

• A 5 layer deep neural network

• Dropout

• Convolutional networks

 Deep Learning Frameworks

– Tensorflow/Keras

– PyTorch

– Caffe
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AI, Machine Learning and Deep Learning
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Machine Learning

 Machine Learning is the science of getting computers to learn, without 

being explicitly programmed.

 Examples are used to train computers to perform tasks that would be 

difficult to program
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Applications of Machine Learning

 Computer Vision (CV)

– Image Classification
• label images with appropriate categories (e.g. Google Photos)

– Handwriting Recognition
• convert written letters into digital letters

 Natural Language Processing (NLP)

– Language Translation
• translate spoken and or written languages (e.g. Google Translate)

– Speech Recognition
• convert voice snippets to text (e.g. Siri, Cortana, and Alexa)

 Autonomous Driving

– enable cars to drive
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Types of Machine Learning

 Supervised Learning

– Training data is labeled

– Goal is correctly label new data

 Unsupervised Learning

– Training data is unlabeled

– Goal is to categorize the observations

 Reinforcement Learning

– Training data is unlabeled

– System receives feedback for its actions

– Goal is to perform better actions
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Data-driven Approach

 Instead of trying to specify what every one of the categories of interest 

look like directly in code, the approach that we will take is not unlike 

one you would take with a child: 

– Provide the computer with many examples of each class 

– Develop learning algorithms that look at these examples and learn 

about the visual appearance of each class. 

 This approach is referred to as a data-driven approach.
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An example training set for four visual categories. In practice we may have thousands of 

categories and hundreds of thousands of images for each category. *(From Stanford CS231n)



Training and Test Data
 Training Data

– data used to learn a model

 Test Data

– data used to assess the accuracy of model

 Overfitting

– Model performs well on training data but poorly on test data
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Supervised Learning Algorithms

 Linear Regression

 Decision Trees

 Support Vector Machines

 K-Nearest Neighbor

 Neural Networks

– Deep Learning is the branch of Machine Learning based on Deep 

Neural Networks (DNNs, i.e., neural networks composed of more than 1 

hidden layer).

– Convolutional Neural Networks (CNNs) are one of the most popular 

DNN architectures (so CNNs are part of Deep Learning), but by no 

means the only one.
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Machine Learning Frameworks
Tool Uses Language

Scikit-Learn
Classification, 

Regression, Clustering
Python

Spark MLlib
Classification, 

Regression, Clustering
Scala, R, Java

MXNet
Deep learning 

framework

Python, R, Julia, 

Scala, Go, Javascript

and more

Caffe Neural Networks C++, Python

TensorFlow Neural Networks Python

PyTorch Neural Networks Python
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Machine Learning and Deep 

Learning

What is Deep Learning
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Recall From The Least Square Method

 Start from least square method...

 Trying to find 

– Parameters (w, b): minimizes the sum of the squares of the errors 

– Errors: distance between known data points and predictions
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To The Machine Learning Language

 Error

– Cost Function (Loss): J(w), C, L

 Parameters

– Weights and Biases: (w, b)

 Define the cost function of your problem

 Find the set of weights that minimizes the cost function (loss)
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Theory: Gradient Descent

 Gradient descent is a first-order iterative optimization algorithm. To 

find a local minimum of a function using gradient descent, one takes 

steps proportional to the negative of the gradient (or of the 

approximate gradient) of the function at the current point.
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Mini-batch Gradient Descent

 Batch gradient descent:

– Use all examples in each iteration

 Stochastic gradient descent:

– Use one example in each iteration

 Mini-batch gradient descent

– Splits the training dataset into small batches (size b) that are used to 

calculate model error and update model coefficients.

 In the neural network terminology:

– one epoch consists of one full training cycle on the training set.

– Using all your batches once is 1 epoch. If you have 10 epochs it mean 

that you will use all your data 10 times (split in batches).
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What is a Neural Network?

 Start from a perceptron
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Perceptron To Neuron

 Replace the sign to sigmoid
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Sigmoid Neurons

 Sigmoid activation Function

– In the field of Artificial Neural Networks, the sigmoid function is a type of 

activation function for artificial neurons.

 There are many other activation functions. (We will touch later.)
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Network Of Neurons 

 A complex network of neurons could make quite subtle decisions

 Deep Neuron Network: Number of hidden layers >1
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Types of Neural Networks
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How to Train DNN?

 Backward Propagation

– The backward propagation of errors or backpropagation, is a common 

method of training artificial neural networks and used in conjunction with 

an optimization method such as gradient descent.

 Deep Neural Networks are hard to train

– learning machines with lots of (typically in range of million) parameters

– Unstable gradients issue 

• Vanishing gradient problem

• Exploding gradient problem

– Choice of network architecture and other hyper-parameters is also 

important. 

– Many factors can play a role in making deep networks hard to train

– Understanding all those factors is still a subject of ongoing research
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Hello World of Deep Learning: 

Recognition of MNIST

Deep Learning Example
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Introducing the MNIST problem

 MNIST (Mixed National Institute of Standards and Technology 

database) is a large database of handwritten digits that is commonly 

used for training various image processing systems.

 It consists of images of handwritten digits like these:

 The MNIST database contains 60,000 training images and 10,000

testing images.
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Example Problem - MNIST

 Recognizes handwritten digits.

 We uses the MNIST dataset, a collection of 60,000 labeled digits that 

has kept generations of PhDs busy for almost two decades. You will 

solve the problem with less than 100 lines of 

Python/Keras/TensorFlow code.

 We will gradually enhance the neural network to achieve above 99% 

accuracy by using the mentioned techniques.
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Steps for MNIST

 Understand the MNIST data

 Softmax regression layer

 The cost function
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The MNIST Data

 Every MNIST data point has two parts: an image of a handwritten digit 

and a corresponding label. We'll call the images "x" and the labels "y". 

Both the training set and test set contain images and their 

corresponding labels;

 Each image is 28 pixels by 28 pixels. We can interpret this as a big 

array of numbers:
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One Layer NN for MNIST Recognition

 We will start with a very simple model, called Softmax Regression.

 We can flatten this array into a vector of 28x28 = 784 numbers. It 

doesn't matter how we flatten the array, as long as we're consistent 

between images. 

 From this perspective, the MNIST images are just a bunch of points in 

a 784-dimensional vector space.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 27

...

28x28 

pixels



Result of the Flatten Operation

 The result is that the training images is a matrix (tensor) with a shape 

of [60000, 784]. 

 The first dimension is an index into the list of images and the second 

dimension is the index for each pixel in each image. 

 Each entry in the tensor is a pixel intensity between 0 and 1, for a 

particular pixel in a particular image.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 28

60000

60,000

784



One-hot Vector (One vs All)

 For the purposes of this tutorial, we label the y’s as "one-hot vectors“.

 A one-hot vector is a vector which is 0 in most dimensions, and 1 in a 

single dimension.

 How to label an “8”?

– [0,0,0,0,0,0,0,0,1,0]

 What is the dimension of our y matrix (tensor)?
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Softmax Regressions

 Every image in MNIST is of a handwritten digit between 0 and 9. 

 So there are only ten possible things that a given image can be. We 

want to be able to look at an image and give the probabilities for it 

being each digit.

 For example, our model might look at a picture of an eight and be 80% 

sure it's an 8, but give a 6% chance to it being a 4 (because of the top 

loop) and a bit of probability to all the others because it isn't 100% 

sure.
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2 steps in softmax regression - Step 1

 Step 1: Add up the evidence of our input being in certain classes.

– Do a weighted sum of the pixel intensities. The weight is negative if that 

pixel having a high intensity is evidence against the image being in that 

class, and positive if it is evidence in favor.
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Matrix Representation of softmax layer
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2 steps in softmax regression - Step 2

 Step 2: Convert the evidence tallies into our predicted probabilities y 

using the "softmax" function:

 Here softmax is serving as an "activation" function, shaping the 

output of our linear function a probability distribution over 10 cases, 

defined as:
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The softmax layer

 The output from the softmax layer is a set of probability distribution, 

positive numbers which sum up to 1. 
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Softmax on a batch of images

 More compact representation for “softmaxing” on all the images
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0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.01 0.02 0.01

The Cross-Entropy Cost Function

 For classification problems, the Cross-Entropy cost function works 

better than quadratic cost function.

 We define the cross-entropy cost function for the neural network by:
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Short Summary

 How MNIST data is organized

– X:

• Flattened image pixels matrix

– Y:

• One-hot vector

 Softmax regression layer

– Linear regression

– Output probability for each category

 Cost function

– Cross-entropy
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Implementation in 

Keras/Tensorflow

Deep Learning Example
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Few Words about

Keras, Tensorflow and Theano
 Keras is a high-level neural networks library, written in Python and 

capable of running on top of either TensorFlow or Theano. 

 TensorFlow is an open source software library for numerical 

computation using data flow graphs.

 Theano is a Python library that allows you to define, optimize, and 

evaluate mathematical expressions involving multi-dimensional arrays 

efficiently.
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Introducing Keras

 Keras is a high-level neural networks library, 

 Written in Python and capable of running on top of either TensorFlow

or Theano. 

 It was developed with a focus on enabling fast experimentation. Being 

able to go from idea to result with the least possible delay is key to 

doing good research.

 See more at: https://github.com/fchollet/keras
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Typical Code Structure

 Load the dataset (MNIST) 

 Build the Neural Network/Machine Learning Model

 Train the model
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Software Environment

 What you'll need

– Python 2 or 3 (Python 2 recommended)

– TensorFlow and Keras

– Matplotlib (Python visualization library)

 On LONI QB2 the above modules are already setup for you, simply 

use:

$ module purge # clean up the environment

$ module load gcc/4.8.2 cuda/7.5

$ module load python/2.7.12-anaconda-tensorflow # python 2

OR

$ module purge # clean up the environment

$ module load gcc/4.8.2 cuda/7.5

$ module load python/3.5.2-anaconda-tensorflow # python 3
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Keras - Initialization

# import necessary modules

# The Sequential model is a linear stack of layers.

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten

from keras.layers import Convolution2D, MaxPooling2D

from keras.utils import np_utils

from keras import backend as K
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Load The MNIST Dataset

# load the mnist dataset

import cPickle

import gzip

f = gzip.open('mnist.pkl.gz', 'rb')

# load the training and test dataset

# download https://s3.amazonaws.com/img-datasets/mnist.pkl.gz

# to use in this tutorial

X_train, y_train, X_test, y_test = cPickle.load(f)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

Output of the print line:

(60000, 28, 28) (60000,) (10000, 28, 28) (10000,)
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Preprocessing the MNIST Dataset

# Flatten the image to 1D

X_train = X_train.reshape(X_train.shape[0], img_rows*img_cols)

X_test = X_test.reshape(X_test.shape[0], img_rows*img_cols)

input_shape = (img_rows*img_cols,)

# convert all data to 0.0-1.0 float values

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

X_train /= 255

X_test /= 255

# convert class vectors to binary class matrices

Y_train = np_utils.to_categorical(y_train, nb_classes)

Y_test = np_utils.to_categorical(y_test, nb_classes)
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Build The First softmax Layer

# The Sequential model is a linear stack of layers in Keras

model = Sequential()

#build the softmax regression layer

model.add(Dense(nb_classes,input_shape=input_shape))

model.add(Activation('softmax'))

# Before training a model,

# configure the learning process via the compile method.

# using the cross-entropy loss function (objective)

model.compile(loss='categorical_crossentropy',

#using the stochastic gradient descent (SGD)

optimizer='sgd',

# using accuracy to judge the performance of your model

metrics=['accuracy'])

# fit the model, the training process

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))
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Results Of The First softmax Regression

 Training accuracy vs Test accuracy, loss function

 We reach a test accuracy at 91.7%
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Review The Classified Results
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Adding More Layers?

 Using a 5 fully connected layer model:
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5 Layer Model In Keras

model = Sequential()

# try also tanh, sigmoid

act_func=‘relu’

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dense(100,activation=act_func))

model.add(Dense( 60,activation=act_func))

model.add(Dense( 30,activation=act_func))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss=‘categorical_crossentropy’,optimizer=‘sgd',

metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))
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5 Layer Regression – Different Activation

 Training accuracy vs Test accuracy, loss function

 We reach a Test accuracy at 97.35% (sigmoid), 98.06% (tanh)
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Rectified Linear Unit (ReLU) 

activation function
 ReLU - The Rectified Linear Unit has become very popular in the last 

few years:

 We get a test accuracy of 98.07% with ReLU
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Overfitting

 Overfitting occurs when a model is excessively complex, such as 

having too many parameters relative to the number of observations. A 

model that has been overfit has poor predictive performance, as it 

overreacts to minor fluctuations in the training data.
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Regularization - Dropout

 Dropout is an extremely effective, simple and recently introduced 

regularization technique by Srivastava et al (2014).

 While training, dropout is implemented by only keeping a neuron 

active with some probability p (a hyperparameter), or setting it to zero 

otherwise.

 It is quite simple to apply dropout in Keras.

# apply a dropout rate 0.25 (drop 25% of the neurons)

model.add(Dropout(0.25))
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Apply Dropout To The 5 Layer NN

model = Sequential()

act_func='relu'

p_dropout=0.25 # apply a dropout rate 25 %

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dropout(p_dropout))

model.add(Dense(100,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense( 60,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense( 30,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=‘sgd',

metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))
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Results Using p_dropout=0.25

 Resolve the overfitting issue

 Sustained 98.26% accuracy
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Why Using Fully Connected Layers?

 Such a network architecture does not take into account the spatial 

structure of the images. 

– For instance, it treats input pixels which are far apart and close together 

on exactly the same weight.

 Spatial structure must instead be inferred from the training data. 

 Is there an architecture which tries to take advantage of the spatial 

structure?
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Convolution Neuron Network 

(CNN) 

 Deep convolutional network is one of the most widely used types of 

deep network.

 In a layer of a convolutional network, one "neuron" does a weighted 

sum of the pixels just above it, across a small region of the image 

only. It then acts normally by adding a bias and feeding the result 

through its activation function. 

 The big difference is that each neuron reuses the same weights 

whereas in the fully-connected networks seen previously, each neuron 

had its own set of weights.
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How Does CNN Work?

 By sliding the patch of weights (filter) across the image in both 

directions (a convolution) you obtain as many output values as there 

were pixels in the image (some padding is necessary at the edges).
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Three basic ideas about CNN

 Local receptive fields

 Shared weights and biases: 

 Pooling
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Pooling Layer

 Convolutional neural networks also contain pooling layers. Pooling 

layers are usually used immediately after convolutional layers. 

 What the pooling layers do is simplify the information in the output 

from the convolutional layer.

 We can think of max-pooling as a way for the network to ask whether a 

given feature is found anywhere in a region of the image. It then 

throws away the exact positional information.
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Convolutional Network With 

Fully Connected Layers
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Stacking And Chaining 

Convolutional Layers in Keras
model = Sequential()

# Adding the convulation layers

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],

border_mode='valid',

input_shape=input_shape))

model.add(Activation('relu'))

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=pool_size))

model.add(Dropout(0.25))

# Fully connected layers

model.add(Flatten())

model.add(Dense(256,activation='relu'))

model.add(Dropout(0.25))

model.add(Dense(nb_classes,activation('softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adadelta',
metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1,callbacks=[history], validation_data=(X_test, Y_test))
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Challenging The 99% Testing Accuracy

 By using the convolution layer and the fully connected layers, we 

reach a test accuracy of 99.23%
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Review The Classified Results of CNN
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Feed More Data:

Using Expanded Dataset
 We can further increase the test accuracy by expanding the 

mnist.pkl.gz dataset, reaching a nearly 99.6% test accuracy
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Examples of Convolution NN

 LeNet (1998)

 AlexNet (2012)

 GoogleLeNet (2014)
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Machine Learning Courses List

 Machine Learning in Coursera

https://www.coursera.org/learn/machine-learning

 Learning from Data (Caltech)

https://work.caltech.edu/telecourse.html

 Convolutional Neural Networks for Visual Recognition

http://cs231n.github.io/

 Deep Learning for Natural Language Processing

https://cs224d.stanford.edu/
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Overview of LONI QB2 

Deep Learning Examples on LONI QB2
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QB2 Hardware Specs

 QB2 came on-line 5 Nov 2014. 

– It is a 1.5 Petaflop peak performance cluster containing 504 compute 

nodes with 

• 960 NVIDIA Tesla K20x GPU's, and 

• Over 10,000 Intel Xeon processing cores. It achieved 1.052 PF during 

testing. 

 Ranked 46th on the November 2014 Top500 list. 

 480 Compute Nodes, each with:

– Two 10-core 2.8 GHz E5-2680v2 Xeon processors.

– 64 GB memory

– 500 GB HDD

– 2 NVIDIA Tesla K20x GPU's
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Inside A QB Cluster Rack
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Inside A QB2 Dell C8000 Node
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GPUCPU

Add GPUs: Accelerate Science Applications
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Performance Comparison 

CPU-GPU (on QB2)
 Comparison of runtime for deep learning benchmark problem

– CIFAR10, 1 Epoch
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Performance Comparison 

CPU-GPU (from other sources)
 Comparison from Stanford cs231n (lecture 8)
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Submit and Monitor Your Jobs

Deep Learning Examples on LONI QB2
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Two Job Types

 Interactive job

– Set up an interactive environment on compute nodes for users

• Advantage: can run programs interactively

• Disadvantage: must be present when the job starts

– Purpose: testing and debugging, compiling

• Do not run on the head node!!!

• Try not to run interactive jobs with large core count, which is a waste of 

resources)

 Batch job

– Executed without user intervention using a job script

• Advantage: the system takes care of everything

• Disadvantage: can only execute one sequence of commands which cannot 

changed after submission

– Purpose: production run
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PBS Script (MNIST) 

Tensorflow Backend
#!/bin/bash

#PBS -l nodes=1:ppn=20

#PBS -l walltime=72:00:00

#PBS -q workq

#PBS -N cnn.tf.gpu

#PBS -o cnn.tf.gpu.out

#PBS -e cnn.tf.gpu.err

#PBS -A loni_loniadmin1

cd $PBS_O_WORKDIR

# use the tensorflow backend

export KERAS_BACKEND=tensorflow

# use this python module key to access tensorflow, theano and keras

module load python/2.7.12-anaconda

python mnist_cnn.py

04/18/2018 Introduction to Deep Learning and Software Spring 2018

Tells the job 

scheduler 

how much 

resource you 

need.

How will you 

use the 

resources?

78



Steps to Submit Jobs

[fchen14@qb1 ml_tut]$ cd /project/fchen14/machine_learning/ml_tut

[fchen14@qb1 ml_tut]$ qsub sbm_cifar10_cnn_tensorflow.pbs

305669.qb3

[fchen14@qb1 ml_tut]$ qstat -u fchen14

qb3:

Req'd Req'd Elap

Job ID               Username    Queue    Jobname          SessID NDS   TSK    Memory Time  S Time

-------------------- ----------- -------- ---------------- ------ ----- ------ ------ ----- - -----

305667.qb3           fchen14     workq cnn.tf.gpu 25633     1     20    -- 72:00 R   --

305669.qb3           fchen14     k40      cnn.tf.gpu -- 1     20    -- 72:00 R   --

[fchen14@qb1 ml_tut]$ qshow 305669.qb3

PBS job: 305669.qb3, nodes: 1

Hostname  Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)

qb002       24 0.32 205  4 fchen14:python:166G:1.6G:0.1 fchen14:305669:103M:1M

PBS_job=305669.qb3 user=fchen14 allocation=loni_loniadmin1 queue=k40 total_load=0.32 cpu_hours=0.11 
wall_hours=0.05 unused_nodes=0 total_nodes=1 ppn=20 avg_load=0.32 avg_cpu=205% avg_mem=1647mb 
avg_vmem=170438mb top_proc=fchen14:python:qb002:166G:1.6G:0.1hr:205% 
toppm=msun:python:qb002:169456M:1190M node_processes=4
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Job Monitoring - Linux Clusters 

 Check details on your job using qstat

$ qstat -n -u $USER  : For quick look at nodes assigned to you 

$ qstat -f jobid : For details on your job 

$ qdel jobid : To delete job 

 Check approximate start time using showstart

$ showstart jobid

 Check details of your job using checkjob

$ checkjob jobid

 Check health of your job using qshow

$ qshow jobid

 Dynamically monitor node status using top 

– See next slides

 Monitor GPU usage using nvidia-smi

– See next slides

 Please pay close attention to the load and the memory consumed by 

your job!
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Using the “top” command

 The top program provides a dynamic real-time view of a running 

system.
[fchen14@qb1 ml_tut]$ ssh qb002

Last login: Mon Oct 17 22:50:16 2016 from qb1.loni.org

[fchen14@qb002 ~]$ top

top - 15:57:04 up 24 days,  5:38,  1 user,  load average: 0.44, 0.48, 0.57

Tasks: 606 total,   1 running, 605 sleeping,   0 stopped,   0 zombie

Cpu(s):  9.0%us,  0.8%sy,  0.0%ni, 90.2%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st

Mem:  132064556k total,  9759836k used, 122304720k free,   177272k buffers

Swap: 134217720k total,        0k used, 134217720k free,  5023172k cached

PID USER      PR  NI  VIRT  RES  SHR S %CPU %MEM    TIME+  COMMAND

21270 fchen14   20   0  166g 1.6g 237m S 203.6  1.3  16:42.05 python

22143 fchen14   20   0 26328 1764 1020 R  0.7  0.0   0:00.76 top

83 root      20   0     0    0    0 S  0.3  0.0  16:47.34 events/0

97 root      20   0     0    0    0 S  0.3  0.0   0:25.80 events/14

294 root      39  19     0    0    0 S  0.3  0.0  59:45.52 kipmi0

1 root      20   0 21432 1572 1256 S  0.0  0.0   0:01.50 init

2 root      20   0     0    0    0 S  0.0  0.0   0:00.02 kthreadd
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Monitor GPU Usage

 Use nvidia-smi to monitor GPU usage:
[fchen14@qb002 ~]$ nvidia-smi -l

Thu Nov  3 15:58:52 2016

+------------------------------------------------------+

| NVIDIA-SMI 352.93     Driver Version: 352.93         |

|-------------------------------+----------------------+----------------------+

| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |

| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util Compute M. |

|===============================+======================+======================|

|   0  Tesla K40m          On   | 0000:03:00.0     Off |                    0 |

| N/A   34C    P0   104W / 235W |  11011MiB / 11519MiB |     77%      Default |

+-------------------------------+----------------------+----------------------+

|   1  Tesla K40m          On   | 0000:83:00.0     Off |                    0 |

| N/A   32C    P0    61W / 235W |  10950MiB / 11519MiB |      0%      Default |

+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+

| Processes:                                                       GPU Memory |

|  GPU       PID  Type  Process name                               Usage      |

|=============================================================================|

|    0     21270    C   python                                       10954MiB |

|    1     21270    C   python                                       10893MiB |

+-----------------------------------------------------------------------------+
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An Overview of Deep Learning 

Frameworks

Deep Learning Frameworks
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Overview of Deep Learning Frameworks
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Name Percentage

TensorFlow 14.3

PyTorch 4.7

Keras 4.0

Caffe 3.8

Theano 2.3

Torch 1.5

MXNet/Chainer/CNTK <1

Introduction to Deep Learning and Software Spring 2018



Tensorflow/Keras

Deep Learning Software
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Using Anaconda Cloud
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Install latest tensorflow/keras-gpu

using conda virtual environment
1. Create conda virtual environment:
[fchen14@qb001 fchen14]$ pwd

/work/fchen14

[fchen14@qb001 fchen14]$ conda create --prefix /work/fchen14/myenv python=2.7

Fetching package metadata ...........

Solving package specifications: .

Package plan for installation in environment /work/fchen14/myenv:

The following NEW packages will be INSTALLED:

ca-certificates: 2018.03.07-0

certifi:         2018.1.18-py27_0

...

Proceed ([y]/n)? y

...

pip-9.0.3-py27 100% |##############################################| Time: 0:00:00  11.82 MB/s

#

# To activate this environment, use:

# > source activate /work/fchen14/myenv

#

# To deactivate an active environment, use:

# > source deactivate
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Install keras-gpu using anaconda channel
[fchen14@qb001 ~]$ source activate /work/fchen14/myenv/

(/work/fchen14/myenv/) [fchen14@qb001 ~]$ conda install -c anaconda keras-gpu

Fetching package metadata .............

Solving package specifications: .

Package plan for installation in environment /work/fchen14/myenv:

The following NEW packages will be INSTALLED:

...

keras-gpu:              2.1.5-py27_0         anaconda

...

scipy:                  1.0.1-py27hfc37229_0 anaconda

tensorflow-gpu:         1.4.1-0              anaconda

tensorflow-gpu-base:    1.4.1-py27h01caf0a_0 anaconda

...

Proceed ([y]/n)? y

...

tensorflow-gpu 100% |##########################| Time: 0:00:10  11.45 MB/s

...

keras-gpu-2.1. 100% |##########################| Time: 0:00:00  11.59 MB/s

(/work/fchen14/myenv/) [fchen14@qb001 ~]$ python

Python 2.7.14 |Anaconda, Inc.| (default, Mar 27 2018, 17:29:31)

[GCC 7.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import tensorflow as tf

>>> tf.__version__

'1.4.1'
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Torch/PyTorch

Deep Learning Software

04/18/2018 89Introduction to Deep Learning and Software Spring 2018



About PyTorch

(from http://pytorch.org/about/)
 PyTorch is a python package that provides two high-level features:

– Tensor computation (like numpy) with strong GPU acceleration

– Deep Neural Networks built on a tape-based autodiff system

 Usually one uses PyTorch either as:

– A replacement for numpy to use the power of GPUs.

– a deep learning research platform that provides maximum flexibility and 

speed

 A GPU-ready Tensor library

– If you use numpy, then you have used Tensors (a.k.a ndarray).

– PyTorch provides Tensors that can live either on the CPU or the GPU, 

and accelerate compute by a huge amount.
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Installation of PyTorch on QB2
 Create conda virtual environment:
[fchen14@qb001 fchen14]$ pwd

/work/fchen14

[fchen14@qb001 fchen14]$ conda create --prefix /work/fchen14/myenv python=2.7

Fetching package metadata ...........

Solving package specifications: .

Package plan for installation in environment /work/fchen14/myenv:

The following NEW packages will be INSTALLED:

ca-certificates: 2018.03.07-0

certifi:         2018.1.18-py27_0

...

Proceed ([y]/n)? y

...

pip-9.0.3-py27 100% |##############################################| Time: 0:00:00  11.82 MB/s

#

# To activate this environment, use:

# > source activate /work/fchen14/myenv

#

# To deactivate an active environment, use:

# > source deactivate

#
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Installation of PyTorch on QB2

 Activate the virtual environment and install PyTorch, torchvision
[fchen14@qb001 fchen14]$ source activate /work/fchen14/myenv

(/work/fchen14/myenv) [fchen14@qb001 fchen14]$ echo $PYTHONPATH

/usr/local/packages/python/2.7.12-anaconda/lib/python2.7/site-packages/

(/work/fchen14/myenv) [fchen14@qb001 fchen14]$ unset PYTHONPATH # remove previous PYTHONPATH

# do *not* use the “–c pytorch” which has the GLIBC2.17 issue on QB2

(/work/fchen14/myenv) [fchen14@qb001 fchen14]$ conda install -c soumith pytorch torchvision

Fetching package metadata .............

...

The following NEW packages will be INSTALLED:

cudnn:   7.0.5-cuda8.0_0

pytorch: 0.3.1-py27_cuda8.0.61_cudnn7.0.5_2 soumith

torchvision: 0.1.9-py27hdb88a65_1 soumith

Proceed ([y]/n)? y

cudnn-7.0.5-cu 100% |#############################| Time: 0:00:22  11.72 MB/s

pytorch-0.3.1- 100% |#############################| Time: 0:00:18  11.47 MB/s

torchvision-0. 100% |#############################| Time: 0:00:00 868.61 kB/s

(/work/fchen14/myenv) [fchen14@qb001 fchen14]$ python

Python 2.7.14 |Anaconda, Inc.| (default, Mar 27 2018, 17:29:31)

[GCC 7.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import torch # test we are able to use the pytorch module

>>>
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Run PyTorch Example
# scripts from the repository: 

# https://github.com/pytorch/examples/tree/master/mnist

(/work/fchen14/myenv) [fchen14@qb001 pytorch]$ cd 
/project/fchen14/dlsoftware/mnist/pytorch

(/work/fchen14/myenv) [fchen14@qb001 pytorch]$ ls

mnist_pytorch.ipynb mnist_pytorch.py  README.md  requirements.txt

# first time run will need to download mnist dataset, be patient

(/work/fchen14/myenv) [fchen14@qb001 pytorch]$ python mnist_pytorch.py

Train Epoch: 1 [0/60000 (0%)]   Loss: 2.373651

Test set: Average loss: 0.2042, Accuracy: 9409/10000 (94%)

Train Epoch: 2 [0/60000 (0%)]   Loss: 0.482378

Test set: Average loss: 0.1279, Accuracy: 9581/10000 (96%)

Train Epoch: 3 [0/60000 (0%)]   Loss: 0.524040

Test set: Average loss: 0.1000, Accuracy: 9689/10000 (97%)

...

Train Epoch: 8 [0/60000 (0%)]   Loss: 0.277341

Test set: Average loss: 0.0578, Accuracy: 9819/10000 (98%)

Train Epoch: 9 [0/60000 (0%)]   Loss: 0.072081

Test set: Average loss: 0.0535, Accuracy: 9839/10000 (98%)

Train Epoch: 10 [0/60000 (0%)]  Loss: 0.103900

Test set: Average loss: 0.0487, Accuracy: 9845/10000 (98%)
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PyTorch MNIST Code Segments (1)

class Net(nn.Module): # define NN structure

def __init__(self):

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

self.conv2_drop = nn.Dropout2d()

self.fc1 = nn.Linear(320, 50)

self.fc2 = nn.Linear(50, 10)

def forward(self, x):

x = F.relu(F.max_pool2d(self.conv1(x), 2))

x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

x = x.view(-1, 320)

x = F.relu(self.fc1(x))

x = F.dropout(x, training=self.training)

x = self.fc2(x)

return F.log_softmax(x, dim=1)
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PyTorch MNIST Code Segments (2)

def train(epoch): # define the train function

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

if args.cuda:

data, target = data.cuda(), target.cuda()

data, target = Variable(data), Variable(target)

optimizer.zero_grad()

output = model(data)

loss = F.nll_loss(output, target)

loss.backward()

optimizer.step()

if batch_idx % args.log_interval == 0:

print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx * len(data), len(train_loader.dataset),

100. * batch_idx / len(train_loader), loss.data[0]))
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Caffe

Deep Learning Software

04/18/2018 96Introduction to Deep Learning and Software Spring 2018



Caffe Introduction

 Caffe (http://caffe.berkeleyvision.org/ ) is a deep learning framework 

made with expression, speed, and modularity in mind. It is developed 

by Berkeley AI Research (BAIR) and by community contributors.

 Yangqing Jia created the project during his PhD at UC Berkeley. Caffe 

is released under the BSD 2-Clause license.

 Switch between CPU and GPU by setting a single flag to train on a 

GPU machine then deploy to commodity clusters or mobile devices.

 Extensible code fosters active development. 

 Speed makes Caffe perfect for research experiments and industry 

deployment. Caffe can process over 60M images per day with a single 

NVIDIA K40 GPU*. 

04/18/2018 97Introduction to Deep Learning and Software Spring 2018

http://caffe.berkeleyvision.org/


Steps to run MNIST on QB2 with Caffe
[fchen14@qb001 caffe]$ pwd

/project/fchen14/dlsoftware/mnist/caffe

[fchen14@qb001 caffe]$ module purge

[fchen14@qb001 caffe]$ module load caffe/1.0 # load the caffe module on QB2

[fchen14@qb001 caffe]$ ls

create_mnist.sh  get_mnist.sh  lenet_solver.prototxt lenet_train_test.prototxt
train_lenet.sh

[fchen14@qb001 caffe]$ ./get_mnist.sh # download mnist dataset

Downloading...

[fchen14@qb001 caffe]$ ./create_mnist.sh # create lmdb format using original data

Creating lmdb...

Done.

[fchen14@qb001 caffe]$ ./train_lenet.sh # train the LeNet using Caffe

I0411 19:23:08.499141 41865 caffe.cpp:218] Using GPUs 0

I0411 19:23:08.579864 41865 caffe.cpp:223] GPU 0: Tesla K40m

I0411 19:23:08.892921 41865 solver.cpp:44] Initializing solver from parameters:

test_iter: 100

...

I0411 19:23:45.728441 41865 solver.cpp:397]     Test net output #1: loss = 
0.0271103 (* 1 = 0.0271103 loss)

I0411 19:23:45.728446 41865 solver.cpp:315] Optimization Done.

I0411 19:23:45.728451 41865 caffe.cpp:259] Optimization Done.
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Future Trainings

 This is the last training for this semester

– Keep an eye on future HPC trainings at:

• http://www.hpc.lsu.edu/training/tutorials.php#upcoming

 Programming/Parallel Programming workshops in Summer

– See http://www.hpc.lsu.edu/training/workshop.php#upcoming

 Visit our webpage: www.hpc.lsu.edu 
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