
Introduction to Deep

Learning and Software
Feng Chen

HPC User Services

LSU HPC & LONI

sys-help@loni.org

Louisiana State University

Baton Rouge

April 18, 2018

Part of slides referenced from

Nvidia, Deep Learning Institute (DLI) Teaching Kit

Stanford, CS231n: Convolutional Neural Networks for Visual Recognition

Martin Görner, Learn TensorFlow and deep learning, without a Ph.D

Topics To Be Discussed

 Fundamentals about Machine Learning

– What is Deep Learning?

• What is a (deep) neural network

• How to train it

 Build a neural network model using Keras/TensorFlow

– MNIST example

• Softmax classification

• Cross-entropy cost function

• A 5 layer deep neural network

• Dropout

• Convolutional networks

 Deep Learning Frameworks

– Tensorflow/Keras

– PyTorch

– Caffe

04/18/2018 Introduction to Deep Learning and Software Spring 2018 2

AI, Machine Learning and Deep Learning

04/18/2018 Introduction to Deep Learning and Software Spring 2018 3

Machine Learning

 Machine Learning is the science of getting computers to learn, without

being explicitly programmed.

 Examples are used to train computers to perform tasks that would be

difficult to program

04/18/2018 Introduction to Deep Learning and Software Spring 2018 4

Applications of Machine Learning

 Computer Vision (CV)

– Image Classification
• label images with appropriate categories (e.g. Google Photos)

– Handwriting Recognition
• convert written letters into digital letters

 Natural Language Processing (NLP)

– Language Translation
• translate spoken and or written languages (e.g. Google Translate)

– Speech Recognition
• convert voice snippets to text (e.g. Siri, Cortana, and Alexa)

 Autonomous Driving

– enable cars to drive

04/18/2018 Introduction to Deep Learning and Software Spring 2018 5

Types of Machine Learning

 Supervised Learning

– Training data is labeled

– Goal is correctly label new data

 Unsupervised Learning

– Training data is unlabeled

– Goal is to categorize the observations

 Reinforcement Learning

– Training data is unlabeled

– System receives feedback for its actions

– Goal is to perform better actions

04/18/2018 Introduction to Deep Learning and Software Spring 2018 6

Data-driven Approach

 Instead of trying to specify what every one of the categories of interest

look like directly in code, the approach that we will take is not unlike

one you would take with a child:

– Provide the computer with many examples of each class

– Develop learning algorithms that look at these examples and learn

about the visual appearance of each class.

 This approach is referred to as a data-driven approach.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 7

An example training set for four visual categories. In practice we may have thousands of

categories and hundreds of thousands of images for each category. *(From Stanford CS231n)

Training and Test Data
 Training Data

– data used to learn a model

 Test Data

– data used to assess the accuracy of model

 Overfitting

– Model performs well on training data but poorly on test data

04/18/2018 Introduction to Deep Learning and Software Spring 2018 8

train

test

Supervised Learning Algorithms

 Linear Regression

 Decision Trees

 Support Vector Machines

 K-Nearest Neighbor

 Neural Networks

– Deep Learning is the branch of Machine Learning based on Deep

Neural Networks (DNNs, i.e., neural networks composed of more than 1

hidden layer).

– Convolutional Neural Networks (CNNs) are one of the most popular

DNN architectures (so CNNs are part of Deep Learning), but by no

means the only one.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 9

Machine Learning Frameworks
Tool Uses Language

Scikit-Learn
Classification,

Regression, Clustering
Python

Spark MLlib
Classification,

Regression, Clustering
Scala, R, Java

MXNet
Deep learning

framework

Python, R, Julia,

Scala, Go, Javascript

and more

Caffe Neural Networks C++, Python

TensorFlow Neural Networks Python

PyTorch Neural Networks Python

04/18/2018 Introduction to Deep Learning and Software Spring 2018 10

Machine Learning and Deep

Learning

What is Deep Learning

04/18/2018 11

Recall From The Least Square Method

 Start from least square method...

 Trying to find

– Parameters (w, b): minimizes the sum of the squares of the errors

– Errors: distance between known data points and predictions

04/18/2018 Introduction to Deep Learning and Software Spring 2018 12

 from Yaser Abu-Mustafa “Learning From Data” Lecture 3

1 1 2 2y w x w x b  

To The Machine Learning Language

 Error

– Cost Function (Loss): J(w), C, L

 Parameters

– Weights and Biases: (w, b)

 Define the cost function of your problem

 Find the set of weights that minimizes the cost function (loss)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 13

Theory: Gradient Descent

 Gradient descent is a first-order iterative optimization algorithm. To

find a local minimum of a function using gradient descent, one takes

steps proportional to the negative of the gradient (or of the

approximate gradient) of the function at the current point.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 14

Mini-batch Gradient Descent

 Batch gradient descent:

– Use all examples in each iteration

 Stochastic gradient descent:

– Use one example in each iteration

 Mini-batch gradient descent

– Splits the training dataset into small batches (size b) that are used to

calculate model error and update model coefficients.

 In the neural network terminology:

– one epoch consists of one full training cycle on the training set.

– Using all your batches once is 1 epoch. If you have 10 epochs it mean

that you will use all your data 10 times (split in batches).

04/18/2018 Introduction to Deep Learning and Software Spring 2018 15

What is a Neural Network?

 Start from a perceptron

04/18/2018 Introduction to Deep Learning and Software Spring 2018 16

 

 

 

1 1 2 2 3 3() sign

sign

sign

i ii

T

h x w x w x w x b

w x b

b

   

 

 



w x

w1

w2

w3

b
x1

x2

x3

h(x)

+1

1

2

3

x

x

x

 
 


 
  

x

1

2

3

w

w

w

 
 


 
  

w

x1 age 23

x2 gender male

x3 annual salary $30,000

b threshold some value

h(x) Approve credit if: h(x)>0

Feature vector: x

Denote as: z

Hypothesis

(Prediction: y)

Weight vector: w

Activation function:

σ(z)=sign(z)

Perceptron To Neuron

 Replace the sign to sigmoid

04/18/2018 Introduction to Deep Learning and Software Spring 2018 17

 

 

 

1 1 2 2 3 3() sigmoid

sigmoid

sigmoid

i ii

T

h x w x w x w x b

w x b

b

   

 

 



w x

b

h(x)

Activation function:

σ(z)=sigmoid(z)

   y h x z 

Tz b w x
1

2

3

x

x

x

 
 


 
  

x

1

2

3

w

w

w

 
 


 
  

w

Feature vector: x Weight vector: w

w1

w2

w3

x1

x2

x3

+1

Sigmoid Neurons

 Sigmoid activation Function

– In the field of Artificial Neural Networks, the sigmoid function is a type of

activation function for artificial neurons.

 There are many other activation functions. (We will touch later.)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 18

 
1

1 z
z

e






   z sign z 

Network Of Neurons

 A complex network of neurons could make quite subtle decisions

 Deep Neuron Network: Number of hidden layers >1

04/18/2018 Introduction to Deep Learning and Software Spring 2018 19

Types of Neural Networks

04/18/2018 Introduction to Deep Learning and Software Spring 2018 20

Ref: http://www.asimovinstitute.org/neural-network-zoo/

How to Train DNN?

 Backward Propagation

– The backward propagation of errors or backpropagation, is a common

method of training artificial neural networks and used in conjunction with

an optimization method such as gradient descent.

 Deep Neural Networks are hard to train

– learning machines with lots of (typically in range of million) parameters

– Unstable gradients issue

• Vanishing gradient problem

• Exploding gradient problem

– Choice of network architecture and other hyper-parameters is also

important.

– Many factors can play a role in making deep networks hard to train

– Understanding all those factors is still a subject of ongoing research

04/18/2018 Introduction to Deep Learning and Software Spring 2018 21

Hello World of Deep Learning:

Recognition of MNIST

Deep Learning Example

04/18/2018 22

Introducing the MNIST problem

 MNIST (Mixed National Institute of Standards and Technology

database) is a large database of handwritten digits that is commonly

used for training various image processing systems.

 It consists of images of handwritten digits like these:

 The MNIST database contains 60,000 training images and 10,000

testing images.

04/18/2018 23Introduction to Deep Learning and Software Spring 2018

Example Problem - MNIST

 Recognizes handwritten digits.

 We uses the MNIST dataset, a collection of 60,000 labeled digits that

has kept generations of PhDs busy for almost two decades. You will

solve the problem with less than 100 lines of

Python/Keras/TensorFlow code.

 We will gradually enhance the neural network to achieve above 99%

accuracy by using the mentioned techniques.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 24

Steps for MNIST

 Understand the MNIST data

 Softmax regression layer

 The cost function

04/18/2018 Introduction to Deep Learning and Software Spring 2018 25

The MNIST Data

 Every MNIST data point has two parts: an image of a handwritten digit

and a corresponding label. We'll call the images "x" and the labels "y".

Both the training set and test set contain images and their

corresponding labels;

 Each image is 28 pixels by 28 pixels. We can interpret this as a big

array of numbers:

04/18/2018 Introduction to Deep Learning and Software Spring 2018 26

One Layer NN for MNIST Recognition

 We will start with a very simple model, called Softmax Regression.

 We can flatten this array into a vector of 28x28 = 784 numbers. It

doesn't matter how we flatten the array, as long as we're consistent

between images.

 From this perspective, the MNIST images are just a bunch of points in

a 784-dimensional vector space.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 27

...

28x28

pixels

Result of the Flatten Operation

 The result is that the training images is a matrix (tensor) with a shape

of [60000, 784].

 The first dimension is an index into the list of images and the second

dimension is the index for each pixel in each image.

 Each entry in the tensor is a pixel intensity between 0 and 1, for a

particular pixel in a particular image.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 28

60000

60,000

784

One-hot Vector (One vs All)

 For the purposes of this tutorial, we label the y’s as "one-hot vectors“.

 A one-hot vector is a vector which is 0 in most dimensions, and 1 in a

single dimension.

 How to label an “8”?

– [0,0,0,0,0,0,0,0,1,0]

 What is the dimension of our y matrix (tensor)?

04/18/2018 Introduction to Deep Learning and Software Spring 2018 29

60,000

10

0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

...

0 0 0 0 1 0 0 0 0 0

6

3

2

4

5

4

...

4

60,000 labels:

0 1 2 3 4 5 6 7 8 9

Softmax Regressions

 Every image in MNIST is of a handwritten digit between 0 and 9.

 So there are only ten possible things that a given image can be. We

want to be able to look at an image and give the probabilities for it

being each digit.

 For example, our model might look at a picture of an eight and be 80%

sure it's an 8, but give a 6% chance to it being a 4 (because of the top

loop) and a bit of probability to all the others because it isn't 100%

sure.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 30

0 1 2 3 4 5 6 7 8 9

0.04 0.02 0.01 0.01 0.06 0.03 0.01 0.01 0.80 0.01

Softmax Regression
this is a “8”

2 steps in softmax regression - Step 1

 Step 1: Add up the evidence of our input being in certain classes.

– Do a weighted sum of the pixel intensities. The weight is negative if that

pixel having a high intensity is evidence against the image being in that

class, and positive if it is evidence in favor.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 31

,i i j j ij
z W x b 

Matrix Representation of softmax layer

04/18/2018 Introduction to Deep Learning and Software Spring 2018 32

784 pixels

X : 60,000 images,

one per line,

flattened

w0,0 w0,1 w0,2 w0,3 … w0,9
w1,0 w1,1 w1,2 w1,3 … w1,9
w2,0 w2,1 w2,2 w2,3 … w2,9
w3,0 w3,1 w3,2 w3,3 … w3,9
w4,0 w4,1 w4,2 w4,3 … w4,9
w5,0 w5,1 w5,2 w5,3 … w5,9
w6,0 w6,1 w6,2 w6,3 … w6,9
w7,0 w7,1 w7,2 w7,3 … w7,9
w8,0 w8,1 w8,2 w8,3 … w8,9

…
w783,0 w783,1 w783,2 … w783,9

7
8

4
 lin

es

broadcast

10 columns

x
x
x
x
x
x
x

softmax()Y X W b  

What is the final dimension for X*W?

2 steps in softmax regression - Step 2

 Step 2: Convert the evidence tallies into our predicted probabilities y

using the "softmax" function:

 Here softmax is serving as an "activation" function, shaping the

output of our linear function a probability distribution over 10 cases,

defined as:

04/18/2018 Introduction to Deep Learning and Software Spring 2018 33

     ,softmax softmaxi i i j j ij
h z W x b  x

    
 

 
exp

softmax normalize exp
exp

i

i

jj

z
z z

z
 



The softmax layer

 The output from the softmax layer is a set of probability distribution,

positive numbers which sum up to 1.

04/18/2018 Introduction to Deep Learning and Software Spring 2018

28x28

pixels

softmax

...

...

0 1 2 9

784 pixels

weighted sum of all

pixels + biases
neuron outputs

34

 
 

 
exp

softmax
exp

i

i

jj

z
z

z



Softmax on a batch of images

 More compact representation for “softmaxing” on all the images

04/18/2018 Introduction to Deep Learning and Software Spring 2018 35

softmax()Y X W b  

Predictions Images Weights Biases

Y[60000, 10] [60000, 784] W[784,10] b[10]

matrix multiply broadcast

on all lines

applied on

each line

0.01 0.01 0.01 0.01 0.01 0.01 0.90 0.01 0.02 0.01

The Cross-Entropy Cost Function

 For classification problems, the Cross-Entropy cost function works

better than quadratic cost function.

 We define the cross-entropy cost function for the neural network by:

04/18/2018 Introduction to Deep Learning and Software Spring 2018

 ' log |i i ii
C y P Y y X x    

computed probabilities

this is a “6”

“one-hot” encoded ground truth

0 1 2 3 4 5 6 7 8 9

36

0 0 0 0 0 0 1 0 0 0

Cross entropy

Short Summary

 How MNIST data is organized

– X:

• Flattened image pixels matrix

– Y:

• One-hot vector

 Softmax regression layer

– Linear regression

– Output probability for each category

 Cost function

– Cross-entropy

04/18/2018 Introduction to Deep Learning and Software Spring 2018 37

Implementation in

Keras/Tensorflow

Deep Learning Example

04/18/2018 38Introduction to Deep Learning and Software Spring 2018

Few Words about

Keras, Tensorflow and Theano
 Keras is a high-level neural networks library, written in Python and

capable of running on top of either TensorFlow or Theano.

 TensorFlow is an open source software library for numerical

computation using data flow graphs.

 Theano is a Python library that allows you to define, optimize, and

evaluate mathematical expressions involving multi-dimensional arrays

efficiently.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 39

Introducing Keras

 Keras is a high-level neural networks library,

 Written in Python and capable of running on top of either TensorFlow

or Theano.

 It was developed with a focus on enabling fast experimentation. Being

able to go from idea to result with the least possible delay is key to

doing good research.

 See more at: https://github.com/fchollet/keras

04/18/2018 Introduction to Deep Learning and Software Spring 2018 40

https://github.com/fchollet/keras

Typical Code Structure

 Load the dataset (MNIST)

 Build the Neural Network/Machine Learning Model

 Train the model

04/18/2018 Introduction to Deep Learning and Software Spring 2018 41

Software Environment

 What you'll need

– Python 2 or 3 (Python 2 recommended)

– TensorFlow and Keras

– Matplotlib (Python visualization library)

 On LONI QB2 the above modules are already setup for you, simply

use:

$ module purge # clean up the environment

$ module load gcc/4.8.2 cuda/7.5

$ module load python/2.7.12-anaconda-tensorflow # python 2

OR

$ module purge # clean up the environment

$ module load gcc/4.8.2 cuda/7.5

$ module load python/3.5.2-anaconda-tensorflow # python 3

04/18/2018 Introduction to Deep Learning and Software Spring 2018 42

Keras - Initialization

import necessary modules

The Sequential model is a linear stack of layers.

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation, Flatten

from keras.layers import Convolution2D, MaxPooling2D

from keras.utils import np_utils

from keras import backend as K

04/18/2018 Introduction to Deep Learning and Software Spring 2018 43

Load The MNIST Dataset

load the mnist dataset

import cPickle

import gzip

f = gzip.open('mnist.pkl.gz', 'rb')

load the training and test dataset

download https://s3.amazonaws.com/img-datasets/mnist.pkl.gz

to use in this tutorial

X_train, y_train, X_test, y_test = cPickle.load(f)

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)

Output of the print line:

(60000, 28, 28) (60000,) (10000, 28, 28) (10000,)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 44

Preprocessing the MNIST Dataset

Flatten the image to 1D

X_train = X_train.reshape(X_train.shape[0], img_rows*img_cols)

X_test = X_test.reshape(X_test.shape[0], img_rows*img_cols)

input_shape = (img_rows*img_cols,)

convert all data to 0.0-1.0 float values

X_train = X_train.astype('float32')

X_test = X_test.astype('float32')

X_train /= 255

X_test /= 255

convert class vectors to binary class matrices

Y_train = np_utils.to_categorical(y_train, nb_classes)

Y_test = np_utils.to_categorical(y_test, nb_classes)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 45

One-hot encoding

All grayscale values to 0.0-1.0

Flatten 28x28 image to 1D

Build The First softmax Layer

The Sequential model is a linear stack of layers in Keras

model = Sequential()

#build the softmax regression layer

model.add(Dense(nb_classes,input_shape=input_shape))

model.add(Activation('softmax'))

Before training a model,

configure the learning process via the compile method.

using the cross-entropy loss function (objective)

model.compile(loss='categorical_crossentropy',

#using the stochastic gradient descent (SGD)

optimizer='sgd',

using accuracy to judge the performance of your model

metrics=['accuracy'])

fit the model, the training process

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))

04/18/2018 Introduction to Deep Learning and Software Spring 2018 46

nb_classes=10 input_shape=(784,)

Results Of The First softmax Regression

 Training accuracy vs Test accuracy, loss function

 We reach a test accuracy at 91.7%

04/18/2018 Introduction to Deep Learning and Software Spring 2018 47

91.70%

test accuracy

Review The Classified Results

04/18/2018 Introduction to Deep Learning and Software Spring 2018 48

Correctly classified Incorrectly classified

Adding More Layers?

 Using a 5 fully connected layer model:

04/18/2018 Introduction to Deep Learning and Software Spring 2018 49

sigmoid

tanh

relu

0 1 2 ... 9

200

100

60

30

10
softmax

5 Layer Model In Keras

model = Sequential()

try also tanh, sigmoid

act_func=‘relu’

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dense(100,activation=act_func))

model.add(Dense(60,activation=act_func))

model.add(Dense(30,activation=act_func))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss=‘categorical_crossentropy’,optimizer=‘sgd',

metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))

04/18/2018 Introduction to Deep Learning and Software Spring 2018 50

5 Layer Regression – Different Activation

 Training accuracy vs Test accuracy, loss function

 We reach a Test accuracy at 97.35% (sigmoid), 98.06% (tanh)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 51

sigmoid

tanh

Rectified Linear Unit (ReLU)

activation function
 ReLU - The Rectified Linear Unit has become very popular in the last

few years:

 We get a test accuracy of 98.07% with ReLU

04/18/2018 Introduction to Deep Learning and Software Spring 2018 52

relu

   max 0,f z z

Overfitting

Overfitting

 Overfitting occurs when a model is excessively complex, such as

having too many parameters relative to the number of observations. A

model that has been overfit has poor predictive performance, as it

overreacts to minor fluctuations in the training data.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 53

Regression:

Classification:

Regularization - Dropout

 Dropout is an extremely effective, simple and recently introduced

regularization technique by Srivastava et al (2014).

 While training, dropout is implemented by only keeping a neuron

active with some probability p (a hyperparameter), or setting it to zero

otherwise.

 It is quite simple to apply dropout in Keras.

apply a dropout rate 0.25 (drop 25% of the neurons)

model.add(Dropout(0.25))

04/18/2018 Introduction to Deep Learning and Software Spring 2018 54

Apply Dropout To The 5 Layer NN

model = Sequential()

act_func='relu'

p_dropout=0.25 # apply a dropout rate 25 %

model.add(Dense(200,activation=act_func,input_shape=input_shape))

model.add(Dropout(p_dropout))

model.add(Dense(100,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(60,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(30,activation=act_func))

model.add(Dropout(p_dropout))

model.add(Dense(nb_classes,activation='softmax'))

model.compile(loss='categorical_crossentropy',optimizer=‘sgd',

metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size,nb_epoch=nb_epoch,

verbose=1, validation_data=(X_test, Y_test))

04/18/2018 Introduction to Deep Learning and Software Spring 2018 55

Results Using p_dropout=0.25

 Resolve the overfitting issue

 Sustained 98.26% accuracy

04/18/2018 Introduction to Deep Learning and Software Spring 2018 56

98.26%

test accuracy

Why Using Fully Connected Layers?

 Such a network architecture does not take into account the spatial

structure of the images.

– For instance, it treats input pixels which are far apart and close together

on exactly the same weight.

 Spatial structure must instead be inferred from the training data.

 Is there an architecture which tries to take advantage of the spatial

structure?

04/18/2018 Introduction to Deep Learning and Software Spring 2018 57

Convolution Neuron Network

(CNN)

 Deep convolutional network is one of the most widely used types of

deep network.

 In a layer of a convolutional network, one "neuron" does a weighted

sum of the pixels just above it, across a small region of the image

only. It then acts normally by adding a bias and feeding the result

through its activation function.

 The big difference is that each neuron reuses the same weights

whereas in the fully-connected networks seen previously, each neuron

had its own set of weights.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 58

convolutional

subsampling

convolutional

subsampling

convolutional

subsampling

from Martin Görner Learn TensorFlow and deep learning, without a Ph.D

https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd.html

How Does CNN Work?

 By sliding the patch of weights (filter) across the image in both

directions (a convolution) you obtain as many output values as there

were pixels in the image (some padding is necessary at the edges).

04/18/2018 Introduction to Deep Learning and Software Spring 2018 59

28

28

1

28x28x1 image

3x3x1 filter

convolve (slide) over all

spatial locations

activation map

1

28

28

Three basic ideas about CNN

 Local receptive fields

 Shared weights and biases:

 Pooling

04/18/2018 Introduction to Deep Learning and Software Spring 2018 60

Pooling Layer

 Convolutional neural networks also contain pooling layers. Pooling

layers are usually used immediately after convolutional layers.

 What the pooling layers do is simplify the information in the output

from the convolutional layer.

 We can think of max-pooling as a way for the network to ask whether a

given feature is found anywhere in a region of the image. It then

throws away the exact positional information.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 61

Convolutional Network With

Fully Connected Layers

04/18/2018 Introduction to Deep Learning and Software Spring 2018 62

convolutional layer

32 output channels

convolutional layer

32 output channels

28x28x1

200

3x3x32

fully connected layer

softmax layer10

3x3x32

32

32

Stacking And Chaining

Convolutional Layers in Keras
model = Sequential()

Adding the convulation layers

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],

border_mode='valid',

input_shape=input_shape))

model.add(Activation('relu'))

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))

model.add(Activation('relu'))

model.add(MaxPooling2D(pool_size=pool_size))

model.add(Dropout(0.25))

Fully connected layers

model.add(Flatten())

model.add(Dense(256,activation='relu'))

model.add(Dropout(0.25))

model.add(Dense(nb_classes,activation('softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adadelta',
metrics=['accuracy'])

h = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

verbose=1,callbacks=[history], validation_data=(X_test, Y_test))

04/18/2018 Introduction to Deep Learning and Software Spring 2018 63

nb_filters=32 kernel_size=(3,3)

input_shape=(28,28)

Challenging The 99% Testing Accuracy

 By using the convolution layer and the fully connected layers, we

reach a test accuracy of 99.23%

04/18/2018 Introduction to Deep Learning and Software Spring 2018 64

99.23%

test accuracy

Review The Classified Results of CNN

04/18/2018 Introduction to Deep Learning and Software Spring 2018 65

Correctly classified Incorrectly classified

Feed More Data:

Using Expanded Dataset
 We can further increase the test accuracy by expanding the

mnist.pkl.gz dataset, reaching a nearly 99.6% test accuracy

04/18/2018 Introduction to Deep Learning and Software Spring 2018 66

99.57%

test accuracy

Examples of Convolution NN

 LeNet (1998)

 AlexNet (2012)

 GoogleLeNet (2014)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 67

Machine Learning Courses List

 Machine Learning in Coursera

https://www.coursera.org/learn/machine-learning

 Learning from Data (Caltech)

https://work.caltech.edu/telecourse.html

 Convolutional Neural Networks for Visual Recognition

http://cs231n.github.io/

 Deep Learning for Natural Language Processing

https://cs224d.stanford.edu/

04/18/2018 Introduction to Deep Learning and Software Spring 2018 68

https://www.coursera.org/learn/machine-learning
https://work.caltech.edu/telecourse.html
http://cs231n.github.io/
https://cs224d.stanford.edu/

Overview of LONI QB2

Deep Learning Examples on LONI QB2

04/18/2018 69

QB2 Hardware Specs

 QB2 came on-line 5 Nov 2014.

– It is a 1.5 Petaflop peak performance cluster containing 504 compute

nodes with

• 960 NVIDIA Tesla K20x GPU's, and

• Over 10,000 Intel Xeon processing cores. It achieved 1.052 PF during

testing.

 Ranked 46th on the November 2014 Top500 list.

 480 Compute Nodes, each with:

– Two 10-core 2.8 GHz E5-2680v2 Xeon processors.

– 64 GB memory

– 500 GB HDD

– 2 NVIDIA Tesla K20x GPU's

04/18/2018 Introduction to Deep Learning and Software Spring 2018 70

Inside A QB Cluster Rack

04/18/2018 Introduction to Deep Learning and Software Spring 2018

Rack

Infiniband

Switch

Compute

Node

71

Inside A QB2 Dell C8000 Node

04/18/2018 Introduction to Deep Learning and Software Spring 2018

Storage

Accelerator

(GPU)
Accelerator

(GPU)

Processor

Memory

Network

Card

Processor

72

GPUCPU

Add GPUs: Accelerate Science Applications

Introduction to Deep Learning and Software Spring 201804/18/2018 73

Performance Comparison

CPU-GPU (on QB2)
 Comparison of runtime for deep learning benchmark problem

– CIFAR10, 1 Epoch

04/18/2018 Introduction to Deep Learning and Software Spring 2018

Speedups:
537/47=11.4
537/23=23.3

74

Performance Comparison

CPU-GPU (from other sources)
 Comparison from Stanford cs231n (lecture 8)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 75

Submit and Monitor Your Jobs

Deep Learning Examples on LONI QB2

04/18/2018 76

Two Job Types

 Interactive job

– Set up an interactive environment on compute nodes for users

• Advantage: can run programs interactively

• Disadvantage: must be present when the job starts

– Purpose: testing and debugging, compiling

• Do not run on the head node!!!

• Try not to run interactive jobs with large core count, which is a waste of

resources)

 Batch job

– Executed without user intervention using a job script

• Advantage: the system takes care of everything

• Disadvantage: can only execute one sequence of commands which cannot

changed after submission

– Purpose: production run

04/18/2018 Introduction to Deep Learning and Software Spring 2018 77

PBS Script (MNIST)

Tensorflow Backend
#!/bin/bash

#PBS -l nodes=1:ppn=20

#PBS -l walltime=72:00:00

#PBS -q workq

#PBS -N cnn.tf.gpu

#PBS -o cnn.tf.gpu.out

#PBS -e cnn.tf.gpu.err

#PBS -A loni_loniadmin1

cd $PBS_O_WORKDIR

use the tensorflow backend

export KERAS_BACKEND=tensorflow

use this python module key to access tensorflow, theano and keras

module load python/2.7.12-anaconda

python mnist_cnn.py

04/18/2018 Introduction to Deep Learning and Software Spring 2018

Tells the job

scheduler

how much

resource you

need.

How will you

use the

resources?

78

Steps to Submit Jobs

[fchen14@qb1 ml_tut]$ cd /project/fchen14/machine_learning/ml_tut

[fchen14@qb1 ml_tut]$ qsub sbm_cifar10_cnn_tensorflow.pbs

305669.qb3

[fchen14@qb1 ml_tut]$ qstat -u fchen14

qb3:

Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

-------------------- ----------- -------- ---------------- ------ ----- ------ ------ ----- - -----

305667.qb3 fchen14 workq cnn.tf.gpu 25633 1 20 -- 72:00 R --

305669.qb3 fchen14 k40 cnn.tf.gpu -- 1 20 -- 72:00 R --

[fchen14@qb1 ml_tut]$ qshow 305669.qb3

PBS job: 305669.qb3, nodes: 1

Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)

qb002 24 0.32 205 4 fchen14:python:166G:1.6G:0.1 fchen14:305669:103M:1M

PBS_job=305669.qb3 user=fchen14 allocation=loni_loniadmin1 queue=k40 total_load=0.32 cpu_hours=0.11
wall_hours=0.05 unused_nodes=0 total_nodes=1 ppn=20 avg_load=0.32 avg_cpu=205% avg_mem=1647mb
avg_vmem=170438mb top_proc=fchen14:python:qb002:166G:1.6G:0.1hr:205%
toppm=msun:python:qb002:169456M:1190M node_processes=4

04/18/2018 Introduction to Deep Learning and Software Spring 2018 79

Job Monitoring - Linux Clusters

 Check details on your job using qstat

$ qstat -n -u $USER : For quick look at nodes assigned to you

$ qstat -f jobid : For details on your job

$ qdel jobid : To delete job

 Check approximate start time using showstart

$ showstart jobid

 Check details of your job using checkjob

$ checkjob jobid

 Check health of your job using qshow

$ qshow jobid

 Dynamically monitor node status using top

– See next slides

 Monitor GPU usage using nvidia-smi

– See next slides

 Please pay close attention to the load and the memory consumed by

your job!

04/18/2018 Introduction to Deep Learning and Software Spring 2018 80

Using the “top” command

 The top program provides a dynamic real-time view of a running

system.
[fchen14@qb1 ml_tut]$ ssh qb002

Last login: Mon Oct 17 22:50:16 2016 from qb1.loni.org

[fchen14@qb002 ~]$ top

top - 15:57:04 up 24 days, 5:38, 1 user, load average: 0.44, 0.48, 0.57

Tasks: 606 total, 1 running, 605 sleeping, 0 stopped, 0 zombie

Cpu(s): 9.0%us, 0.8%sy, 0.0%ni, 90.2%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 132064556k total, 9759836k used, 122304720k free, 177272k buffers

Swap: 134217720k total, 0k used, 134217720k free, 5023172k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

21270 fchen14 20 0 166g 1.6g 237m S 203.6 1.3 16:42.05 python

22143 fchen14 20 0 26328 1764 1020 R 0.7 0.0 0:00.76 top

83 root 20 0 0 0 0 S 0.3 0.0 16:47.34 events/0

97 root 20 0 0 0 0 S 0.3 0.0 0:25.80 events/14

294 root 39 19 0 0 0 S 0.3 0.0 59:45.52 kipmi0

1 root 20 0 21432 1572 1256 S 0.0 0.0 0:01.50 init

2 root 20 0 0 0 0 S 0.0 0.0 0:00.02 kthreadd

04/18/2018 Introduction to Deep Learning and Software Spring 2018 81

Monitor GPU Usage

 Use nvidia-smi to monitor GPU usage:
[fchen14@qb002 ~]$ nvidia-smi -l

Thu Nov 3 15:58:52 2016

+--+

| NVIDIA-SMI 352.93 Driver Version: 352.93 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

|===============================+======================+======================|

| 0 Tesla K40m On | 0000:03:00.0 Off | 0 |

| N/A 34C P0 104W / 235W | 11011MiB / 11519MiB | 77% Default |

+-------------------------------+----------------------+----------------------+

| 1 Tesla K40m On | 0000:83:00.0 Off | 0 |

| N/A 32C P0 61W / 235W | 10950MiB / 11519MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

+---+

| Processes: GPU Memory |

| GPU PID Type Process name Usage |

|===|

| 0 21270 C python 10954MiB |

| 1 21270 C python 10893MiB |

+---+

04/18/2018 Introduction to Deep Learning and Software Spring 2018 82

An Overview of Deep Learning

Frameworks

Deep Learning Frameworks

04/18/2018 83Introduction to Deep Learning and Software Spring 2018

Overview of Deep Learning Frameworks

04/18/2018 84

Name Percentage

TensorFlow 14.3

PyTorch 4.7

Keras 4.0

Caffe 3.8

Theano 2.3

Torch 1.5

MXNet/Chainer/CNTK <1

Introduction to Deep Learning and Software Spring 2018

Tensorflow/Keras

Deep Learning Software

04/18/2018 85Introduction to Deep Learning and Software Spring 2018

Using Anaconda Cloud

04/18/2018 86Introduction to Deep Learning and Software Spring 2018

Install latest tensorflow/keras-gpu

using conda virtual environment
1. Create conda virtual environment:
[fchen14@qb001 fchen14]$ pwd

/work/fchen14

[fchen14@qb001 fchen14]$ conda create --prefix /work/fchen14/myenv python=2.7

Fetching package metadata

Solving package specifications: .

Package plan for installation in environment /work/fchen14/myenv:

The following NEW packages will be INSTALLED:

ca-certificates: 2018.03.07-0

certifi: 2018.1.18-py27_0

...

Proceed ([y]/n)? y

...

pip-9.0.3-py27 100% |##| Time: 0:00:00 11.82 MB/s

#

To activate this environment, use:

> source activate /work/fchen14/myenv

#

To deactivate an active environment, use:

> source deactivate

04/18/2018 Introduction to Deep Learning and Software Spring 2018 87

Install keras-gpu using anaconda channel
[fchen14@qb001 ~]$ source activate /work/fchen14/myenv/

(/work/fchen14/myenv/) [fchen14@qb001 ~]$ conda install -c anaconda keras-gpu

Fetching package metadata

Solving package specifications: .

Package plan for installation in environment /work/fchen14/myenv:

The following NEW packages will be INSTALLED:

...

keras-gpu: 2.1.5-py27_0 anaconda

...

scipy: 1.0.1-py27hfc37229_0 anaconda

tensorflow-gpu: 1.4.1-0 anaconda

tensorflow-gpu-base: 1.4.1-py27h01caf0a_0 anaconda

...

Proceed ([y]/n)? y

...

tensorflow-gpu 100% |##########################| Time: 0:00:10 11.45 MB/s

...

keras-gpu-2.1. 100% |##########################| Time: 0:00:00 11.59 MB/s

(/work/fchen14/myenv/) [fchen14@qb001 ~]$ python

Python 2.7.14 |Anaconda, Inc.| (default, Mar 27 2018, 17:29:31)

[GCC 7.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import tensorflow as tf

>>> tf.__version__

'1.4.1'

>>>04/18/2018 88Introduction to Deep Learning and Software Spring 2018

Torch/PyTorch

Deep Learning Software

04/18/2018 89Introduction to Deep Learning and Software Spring 2018

About PyTorch

(from http://pytorch.org/about/)
 PyTorch is a python package that provides two high-level features:

– Tensor computation (like numpy) with strong GPU acceleration

– Deep Neural Networks built on a tape-based autodiff system

 Usually one uses PyTorch either as:

– A replacement for numpy to use the power of GPUs.

– a deep learning research platform that provides maximum flexibility and

speed

 A GPU-ready Tensor library

– If you use numpy, then you have used Tensors (a.k.a ndarray).

– PyTorch provides Tensors that can live either on the CPU or the GPU,

and accelerate compute by a huge amount.

04/18/2018 90Introduction to Deep Learning and Software Spring 2018

Installation of PyTorch on QB2
 Create conda virtual environment:
[fchen14@qb001 fchen14]$ pwd

/work/fchen14

[fchen14@qb001 fchen14]$ conda create --prefix /work/fchen14/myenv python=2.7

Fetching package metadata

Solving package specifications: .

Package plan for installation in environment /work/fchen14/myenv:

The following NEW packages will be INSTALLED:

ca-certificates: 2018.03.07-0

certifi: 2018.1.18-py27_0

...

Proceed ([y]/n)? y

...

pip-9.0.3-py27 100% |##| Time: 0:00:00 11.82 MB/s

#

To activate this environment, use:

> source activate /work/fchen14/myenv

#

To deactivate an active environment, use:

> source deactivate

#

04/18/2018 Introduction to Deep Learning and Software Spring 2018 91

Installation of PyTorch on QB2

 Activate the virtual environment and install PyTorch, torchvision
[fchen14@qb001 fchen14]$ source activate /work/fchen14/myenv

(/work/fchen14/myenv) [fchen14@qb001 fchen14]$ echo $PYTHONPATH

/usr/local/packages/python/2.7.12-anaconda/lib/python2.7/site-packages/

(/work/fchen14/myenv) [fchen14@qb001 fchen14]$ unset PYTHONPATH # remove previous PYTHONPATH

do *not* use the “–c pytorch” which has the GLIBC2.17 issue on QB2

(/work/fchen14/myenv) [fchen14@qb001 fchen14]$ conda install -c soumith pytorch torchvision

Fetching package metadata

...

The following NEW packages will be INSTALLED:

cudnn: 7.0.5-cuda8.0_0

pytorch: 0.3.1-py27_cuda8.0.61_cudnn7.0.5_2 soumith

torchvision: 0.1.9-py27hdb88a65_1 soumith

Proceed ([y]/n)? y

cudnn-7.0.5-cu 100% |#############################| Time: 0:00:22 11.72 MB/s

pytorch-0.3.1- 100% |#############################| Time: 0:00:18 11.47 MB/s

torchvision-0. 100% |#############################| Time: 0:00:00 868.61 kB/s

(/work/fchen14/myenv) [fchen14@qb001 fchen14]$ python

Python 2.7.14 |Anaconda, Inc.| (default, Mar 27 2018, 17:29:31)

[GCC 7.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import torch # test we are able to use the pytorch module

>>>

04/18/2018 Introduction to Deep Learning and Software Spring 2018 92

Run PyTorch Example
scripts from the repository:

https://github.com/pytorch/examples/tree/master/mnist

(/work/fchen14/myenv) [fchen14@qb001 pytorch]$ cd
/project/fchen14/dlsoftware/mnist/pytorch

(/work/fchen14/myenv) [fchen14@qb001 pytorch]$ ls

mnist_pytorch.ipynb mnist_pytorch.py README.md requirements.txt

first time run will need to download mnist dataset, be patient

(/work/fchen14/myenv) [fchen14@qb001 pytorch]$ python mnist_pytorch.py

Train Epoch: 1 [0/60000 (0%)] Loss: 2.373651

Test set: Average loss: 0.2042, Accuracy: 9409/10000 (94%)

Train Epoch: 2 [0/60000 (0%)] Loss: 0.482378

Test set: Average loss: 0.1279, Accuracy: 9581/10000 (96%)

Train Epoch: 3 [0/60000 (0%)] Loss: 0.524040

Test set: Average loss: 0.1000, Accuracy: 9689/10000 (97%)

...

Train Epoch: 8 [0/60000 (0%)] Loss: 0.277341

Test set: Average loss: 0.0578, Accuracy: 9819/10000 (98%)

Train Epoch: 9 [0/60000 (0%)] Loss: 0.072081

Test set: Average loss: 0.0535, Accuracy: 9839/10000 (98%)

Train Epoch: 10 [0/60000 (0%)] Loss: 0.103900

Test set: Average loss: 0.0487, Accuracy: 9845/10000 (98%)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 93

PyTorch MNIST Code Segments (1)

class Net(nn.Module): # define NN structure

def __init__(self):

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

self.conv2_drop = nn.Dropout2d()

self.fc1 = nn.Linear(320, 50)

self.fc2 = nn.Linear(50, 10)

def forward(self, x):

x = F.relu(F.max_pool2d(self.conv1(x), 2))

x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))

x = x.view(-1, 320)

x = F.relu(self.fc1(x))

x = F.dropout(x, training=self.training)

x = self.fc2(x)

return F.log_softmax(x, dim=1)

04/18/2018 Introduction to Deep Learning and Software Spring 2018 94

PyTorch MNIST Code Segments (2)

def train(epoch): # define the train function

model.train()

for batch_idx, (data, target) in enumerate(train_loader):

if args.cuda:

data, target = data.cuda(), target.cuda()

data, target = Variable(data), Variable(target)

optimizer.zero_grad()

output = model(data)

loss = F.nll_loss(output, target)

loss.backward()

optimizer.step()

if batch_idx % args.log_interval == 0:

print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

epoch, batch_idx * len(data), len(train_loader.dataset),

100. * batch_idx / len(train_loader), loss.data[0]))

04/18/2018 Introduction to Deep Learning and Software Spring 2018 95

Caffe

Deep Learning Software

04/18/2018 96Introduction to Deep Learning and Software Spring 2018

Caffe Introduction

 Caffe (http://caffe.berkeleyvision.org/) is a deep learning framework

made with expression, speed, and modularity in mind. It is developed

by Berkeley AI Research (BAIR) and by community contributors.

 Yangqing Jia created the project during his PhD at UC Berkeley. Caffe

is released under the BSD 2-Clause license.

 Switch between CPU and GPU by setting a single flag to train on a

GPU machine then deploy to commodity clusters or mobile devices.

 Extensible code fosters active development.

 Speed makes Caffe perfect for research experiments and industry

deployment. Caffe can process over 60M images per day with a single

NVIDIA K40 GPU*.

04/18/2018 97Introduction to Deep Learning and Software Spring 2018

http://caffe.berkeleyvision.org/

Steps to run MNIST on QB2 with Caffe
[fchen14@qb001 caffe]$ pwd

/project/fchen14/dlsoftware/mnist/caffe

[fchen14@qb001 caffe]$ module purge

[fchen14@qb001 caffe]$ module load caffe/1.0 # load the caffe module on QB2

[fchen14@qb001 caffe]$ ls

create_mnist.sh get_mnist.sh lenet_solver.prototxt lenet_train_test.prototxt
train_lenet.sh

[fchen14@qb001 caffe]$./get_mnist.sh # download mnist dataset

Downloading...

[fchen14@qb001 caffe]$./create_mnist.sh # create lmdb format using original data

Creating lmdb...

Done.

[fchen14@qb001 caffe]$./train_lenet.sh # train the LeNet using Caffe

I0411 19:23:08.499141 41865 caffe.cpp:218] Using GPUs 0

I0411 19:23:08.579864 41865 caffe.cpp:223] GPU 0: Tesla K40m

I0411 19:23:08.892921 41865 solver.cpp:44] Initializing solver from parameters:

test_iter: 100

...

I0411 19:23:45.728441 41865 solver.cpp:397] Test net output #1: loss =
0.0271103 (* 1 = 0.0271103 loss)

I0411 19:23:45.728446 41865 solver.cpp:315] Optimization Done.

I0411 19:23:45.728451 41865 caffe.cpp:259] Optimization Done.

04/18/2018 Introduction to Deep Learning and Software Spring 2018 98

Future Trainings

 This is the last training for this semester

– Keep an eye on future HPC trainings at:

• http://www.hpc.lsu.edu/training/tutorials.php#upcoming

 Programming/Parallel Programming workshops in Summer

– See http://www.hpc.lsu.edu/training/workshop.php#upcoming

 Visit our webpage: www.hpc.lsu.edu

04/18/2018 Introduction to Deep Learning and Software Spring 2018 99

http://www.hpc.lsu.edu/training/tutorials.php#upcoming
http://www.hpc.lsu.edu/training/workshop.php#upcoming

