
Introduction to R

Yuwu Chen
HPC @ LSU

2/27/2019 HPC training series Spring 2019

Some materials are borrowed from the EXST 7142/7152
data mining courses by Dr. Bin Li at Statistics Dept.

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

2/27/2019 HPC training series Spring 2019 1

What is R
• R is an integrated suite of software facilities for

– importing, storing, exporting and manipulating data;
– scientific computation;
– conducting statistical analyses;
– displaying the results by tables, graphs, etc.

• Highly customizable via thousands of freely available
packages.

• R is also a platform for the development and
implementation of new algorithms.

• Many graphical user interface to R both free and
commercial
(e.g. Rstudio and Revolution R (now Microsoft R)).

2/27/2019 HPC training series Spring 2019 2

What is R
• R mailing lists: http://www.R-project.org/mail.html

– R-announce: announcements of major R developments.
– R-packages: announcements of new R packages.
– R-help: main discussion list.
– R-devel: discussion on code development in R.
– Special interest group (e.g. R-SIG-Finance).

2/27/2019 HPC training series Spring 2019 3

History of R
• R is a dialect of the S language

– S was created in 1976 at the Bell Labs as an internal statistical analysis
environment

– Goal of S was “to turn ideas into software, quickly and faithfully".
– Most well known implementation is S-plus (most recent stable release was in

2010). S-Plus integrates S with a nice GUI interface and full customer support.

• R was created by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand.

• The R core group was formed in 1997, who controls the source code of R
(written in C)

• The first stable version R 1.0.0 was released in 2000
• Latest stable version is 3.5.2 released on Dec 20, 2018

2/27/2019 HPC training series Spring 2019 4

Features of R
• R is a language designed for statistical analysis
• Available on most platform/OS
• Rich data analysis functionalities and sophisticated

graphical capabilities
• Active development and very active community

– CRAN: The Comprehensive R Archive Network
• Source code and binaries, user contributed packages and

documentation
– More than 13,000 packages available on CRAN (as of March

2018)
• 6,000 three years ago

• Free to use!

2/27/2019 HPC training series Spring 2019 5

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

2/27/2019 HPC training series Spring 2019 6

Installing and Loading R
• On your PC

– R console can be downloaded from: http://cran.r-project.org/
– Rstudio is the de facto environment for R on a desktop system

• On a cluster
– R is installed on all LONI and LSU HPC clusters

• QB2: r/3.1.0/INTEL-14.0.2
• SuperMIC: r/3.1.0/INTEL-14.0.2
• Philip: r/3.1.3/INTEL-15.0.3
• SuperMike2 Softenv: +R-3.3.3-gcc-4.7.2

Module: r/3.4.3/INTEL-18.0.0
– User requested R

• Usually installed in user home directory

2/27/2019 HPC training series Spring 2019 7

R Console

• Linux/Mac/Windows version available
• Limited graphic user interface (GUI)
• Command line interface (CLI) is similar to HPC

environment

2/27/2019 HPC training series Spring 2019 8

R Console

2/27/2019 HPC training series Spring 2019 9

RStudio

• Similar graphic user interface (GUI) to other Windows
software, dividing the screen into panes
– Source code
– Console
– Workspace
– Others (help message, plot etc.)

• Rstudio in a desktop environment is better suited for
development and/or a limited number of small jobs

2/27/2019 HPC training series Spring 2019 10

2/27/2019 HPC training series Spring 2019 11

On LONI and LSU HPC Clusters

• Two modes to run R on clusters
– Interactive mode

• Type R command to launch the console
• Run R commands in the console

– Batch mode
• Write the R script first, then submit a batch job to run it

(use the Rscript command)
• This mode is better for production runs

2/27/2019 HPC training series Spring 2019 12

On LONI and LSU HPC Clusters

2/27/2019 HPC training series Spring 2019 13

Clusters are Better for Resource-
demanding Jobs

2/27/2019 HPC training series Spring 2019 14

Training random forest model
Resampling method: 10-fold cross-validation

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

2/27/2019 HPC training series Spring 2019 15

Basic Syntax
• The default R prompt is the greater-than sign (>)
> 2*4
[1] 8
> options(prompt="R>")
R>

• If a line is not syntactically complete, a continuation prompt (+) appears.
> 2*
+ 4
[1] 8

• Assignment operators are the left arrow (<-) and =. They both assign the
value of the object on the right to the object on the left.

> x <- 2*4

• The contents of the object x can be viewed by typing value at the R
prompt

> x
[1] 8

2/27/2019 HPC training series Spring 2019 16

Basic Syntax
• Last expression can be retrieved through an internal object .Last.value
> 2*4
[1] 8
> x <- .Last.value
> x
[1] 8

• Removing objects with the function rm()
> rm(x)
> x
Error: object 'value' not found

• Legal R Names
– names for R objects can be any combination of letters, numbers and

periods (.) but must not start with a number nor period
• Note: R is case sensitive. X and x are different in R.
> x <- 8
> X
Error: object 'X' not found

2/27/2019 HPC training series Spring 2019 17

Basic Syntax
• Function to clear the console in R and Rstudio
> cat("\014")

• The code above is the same as CTRL + L
• The saved object or function will not be affected
> x
[1] 8

2/27/2019 HPC training series Spring 2019 18

Basic Syntax
• Avoid assignment to built in functions

– R has a number of built in functions e.g. c, T, F, t
– An easy way to avoid this problem is to check the contents of the object

you wish to use, this also stops you from overwriting the contents of a
previously saved object

> X # object with no value assigned
Error: object 'value' not found
> x # object with a value assigned
[1] 8
> T # Built in R value
[1] TRUE
> t # Built in R function
function (x)
UseMethod("t")

• Spaces
– R will ignore extra spaces between object names and operators
> x <- 2 * 4
[1] 8

– Spaces cannot be placed between the < and - in the assignment operator
> x < - -2 * 4
[1] FALSE

2/27/2019 HPC training series Spring 2019 19

R as a Calculator
• Arithmetic operators and parentheses
> (1+2)/(3*2)
> [1] 0.5

• Power operator
> 2^3
[1] 8
> 4^0.5
[1] 2
> sqrt(4)
[1] 2

• Scientific notation
> 2.1e2
[1] 210

2/27/2019 HPC training series Spring 2019 20

R as a Calculator
• Exponential function
> exp(1); exp(0) # ; is the newline separate commands
[1] 2.718282
[1] 1

• Inf means "non-finite numeric value"
> x <- 1/0
> x
[1] Inf
> y <- -1/0
> y
[1] -Inf

• NaN means "not a number"
> x+y
[1] NaN

• pi
> pi
[1] 3.141593
> help(pi) # Get help from R. You can also use ?pi

2/27/2019 HPC training series Spring 2019 21

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

2/27/2019 HPC training series Spring 2019 22

Data Classes
• R has five atomic classes

– Two numeric classes (integer or double)
• Numbers in R are treated as numeric unless specified otherwise.

> x <- 605
> x
[1] 605

– Complex
> cn <- 2 + 3i
> cn
[1] 2 + 3i

– Character
> string <- “Hello World”
> string
[1] “Hello World”

– Logical
• TRUE or FALSE

> 2 < 4
[1] TRUE

2/27/2019 HPC training series Spring 2019 23

Data Classes
• The function class() can be used to determine the class of each

object
> class(x)
[1] “numeric”
> class(string)
[1] “character”
> class(cn)
[1] “complex”

• The code missing values in R is NA. The is.<type>()functions
can be used to check for the data classes

> is.numeric(x)
[1] TURE
> is.character(string)
[1] TURE
> value <- NA
> is.na(value)
[1] TRUE

2/27/2019 HPC training series Spring 2019 24

Data Objects

• R Data objects
– Vector: elements of same class, one dimension
– Matrix: elements of same class, two dimensions
– Array: elements of same class, 2+ dimensions
– Lists: elements can be any objects
– Data frames: “datasets” where columns are

variables and rows are observations

2/27/2019 HPC training series Spring 2019 25

Data Objects - Vectors
• Vectors can only contain elements of the same data class
• Vectors can be constructed by

– Using the c()function (concatenate)
> d <- c(1,2,3) ##numeric
> d <- c("1","2","3") ##character
> value.logical <- c(F,F,T) ##logical

– you can convert an object with as.TYPE()functions
> as.numeric(d)

– Coercion will occur when mixed objects are passed to the c()
function, as if the as.<Type>()function is explicitly called

> y <- c(1.7, "a") ## character
> y <- c(TRUE, 2) ## numeric
> y <- c("a", TRUE) ## character

2/27/2019 HPC training series Spring 2019 26

Data Objects - Vectors
• Vectors can also be constructed by

– Using the vector() function
> x <- vector("numeric", length = 10)
> x
[1] 0 0 0 0 0 0 0 0 0 0

– Using seq()or rep() function
> x <- 0:6
> x <- seq(from=2,to=10,by=2)
> x <- seq(from=2,to=10,length=5)
> x <- rep(5,6)

• Vectors can be created using a combination of these functions.
> value1 <- c(1,3,4,rep(3,4),seq(from=1,to=6,by=2))
> value2 <- rep(c(1,2),3)
> value3 <- rep(c(1,2),each=3)

2/27/2019 HPC training series Spring 2019 27

Data Objects - Vectors
• NA in R means missing value
> weight <- c(60, 72, NA, 90, 95, 72) # unit is kg, contents after the # sign are comments
> weight
[1] 60 72 NA 90 95 72
> height <- c(1.75,1.80,1.65,1.90,1.74,1.91) # unit: meter

• Vector based operations are very fast!
> bmi <- weight/height^2 # bmi stands for body mass index
> bmi
[1] 19.59184 22.22222 NA 24.93075 31.37799 19.73630
> mean(weight)
[1] NA
> mean(weight, na.rm=TRUE)
[1] 77.8
> sd(weight, na.rm=T)
[1] 14.39444
> median(weight, na.rm=T)
[1] 72
> round(height, d=1)
[1] 1.8 1.8 1.6 1.9 1.7 1.9

2/27/2019 HPC training series Spring 2019 28

Vectors Indexing
• One can use [<index>] to access individual element of interest

– Indices start from 1
> x <- 1:10
> x[4] ## individual element of a vector
> x[1,4] ## how about multiple elements?
Error in x[1,4] : incorrect number of dimensions
> x[c(1,4)] ## this is the correct way
[1] 1 4
> x[c(1,8:9,3)] ## not necessarily in order
[1] 1 8 9 3
> x[-1] ## negative indices drop elements
[1] 2 3 4 5 6 7 8 9 10
> x[-1:-5]
[1] 6 7 8 9 10
> x[c(T,T,T,T,T,F,F,F,F,F)] ## Can use logical values as indices
[1] 1 2 3 4 5
> x[c(T,F)] ## Use a pattern
[1] 1 3 5 7 9

2/27/2019 HPC training series Spring 2019 29

Data Objects - Matrices
• Matrices are vectors with a dimension attribute
• R matrices can be constructed by

– Using the matrix() function
> m <- matrix(1:12,nrow=3,ncol=4)
> m

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

• R matrices are constructed column-wise by default
> m <- matrix(1:12,nrow=3,ncol=4,byrow=F) ## is the same as x <- matrix(1:12,nrow=3,ncol=4)
> m <- matrix(1:12,nrow=3,ncol=4,byrow=T) ## try this one

2/27/2019 HPC training series Spring 2019 30

Data Objects - Matrices
• R matrices can also be constructed by

– Passing an dim attribute to a vector
> m <- 1:10
> m
[1] 1 2 3 4 5 6 7 8 9 10
> dim(m) <- c(2, 5)
> m

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

– Using cbind() or rbind() functions
> x <- 1:3
> y <- 10:12
> cbind(x, y)
x y
[1,] 1 10
[2,] 2 11
[3,] 3 12
> rbind(x, y)
[,1] [,2] [,3]
x 1 2 3
y 10 11 12

2/27/2019 HPC training series Spring 2019 31

Data Objects – Arrays
• Elements of same class with a number of dimensions

– Vectors and matrices are arrays of 1 and 2 dimensions
– Function array() creates an array with given dimensions
> # An array with 8 elements and 3 dimensions
> m <- array(data = 1:8,dim = c(2,2,2))
>m
, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

2/27/2019 HPC training series Spring 2019 32

Data Objects - Lists
• Lists are an ordered collection of objects (which can be of different types

or classes and different lengths)
• Lists can be constructed by using the list() function
> x <- c(31, 32, 40)
> y <- factor(c("F", "M", "M", "F"))
> z <- c("London", "New York")
> my_list <- list(x,y,z)
> my_list
[[1]]
[1] 31 32 40

[[2]]
[1] F M M F
Levels: F M

[[3]]
[1] "London" "New York"

2/27/2019 HPC training series Spring 2019 33

Data Objects - Lists
• Elements of R objects can have names, names() function can display:
> names(my_list)
NULL

• Names can be assigned
> names(my_list) <- c("age","sex","city")
> names(my_list)
[1] "age" "sex" "city“

• Or can be assigned when creating a list.
> my_list2 <- list(age=x,sex=y,city=z)
> names(my_list2)
[1] "age" "sex" "city“

2/27/2019 HPC training series Spring 2019 34

Lists Indexing
• Using two equivalent ways to access the first component (e.g. age in my_list):

– the [[]] operator
> my_list[[1]]
[1] 31 32 40

– the “$” sign if the elements of list have names
> my_list$age
[1] 31 32 40

• Referring individual element
> my_list$age[1]
[1] 31

2/27/2019 HPC training series Spring 2019 35

Data Objects - Data Frames
• Data frames are used to store tabular data

– They are a special type of lists where every element (i.e.
column) has to be of the same length, but can be of
different class

– Why do we need data frames if it is simply a list? - More
efficient storage, and indexing!

– Data frames can have special attributes such as
row.names

– Data frames can be created by reading data files, using
functions such as read.table() or read.csv()

• More on this later

2/27/2019 HPC training series Spring 2019 36

Data Objects - Data Frames
• Data frames can be created directly by calling data.frame()
> my_df <- data.frame(age=c(31,40,50), sex=c("M","F","M"))
> my_df

age sex
1 31 M
2 40 F
3 50 M

• Column names can be assigned
> names(my_df) <- c("c1","c2")
> my_df

c1 c2
1 31 M
2 40 F
3 50 M

2/27/2019 HPC training series Spring 2019 37

Data Objects - Data Frames
• Row names are automatically assigned and are by default labelled “1”, “2”,

“3”, …
> row.names(my_df)
[1] "1" "2" "3"

• These can also be renamed if desired
> row.names(my_df)<-c("r1","r2","r3")
> my_df

c1 c2
r1 31 M
r2 40 F
r3 50 M

2/27/2019 HPC training series Spring 2019 38

Matrices and Data Frames Indexing
• One can use [<index>,<index>] to access individual element
> my_df[1,2]
[1] M

• Indexing by columns
> my_df[,1]
[1] 31 40 50
> my_df[,1:2]

age sex
1 31 M
2 40 F
3 50 M

• Indexing by rows
> my_df[1,]

age sex
1 31 M
> my_df[2:3,]

age sex
2 40 F
3 50 M

2/27/2019 HPC training series Spring 2019 39

Matrices and Data Frames Indexing
• the “$” sign if the elements of matrix/dataframe have names
> my_df$sex
[1] M F M
Levels: F M
> my_df$sex[2] ## Referring individual element

[1] F
Levels: F M

• the [[]] operator
> my_df[[1]]
[1] 31 40 50
> my_df[[1]][1]
[1] 31
> my_df[[3]][1]
Error in .subset2(x, i, exact = exact) : subscript out of bounds

2/27/2019 HPC training series Spring 2019 40

Matrices and Data Frames Indexing
• Indexing can be conditional on another variable!
> pain <- c(0, 3, 2, 2, 1)
> sex <- factor(c("M", "M", "F", "F", "M"))
> age <- c(45, 51, 45, 32, 90)
> which(sex=="M")
[1] 1 2 5
> pain[sex=="M"]
[1] 0 3 1
> pain[age>32]
[1] 0 3 2 1
> pain[(age>32)&(sex=="M")]
[1] 0 3 1
> pain[(age>=49)|(age<41)]
[1] 3 2 1
> my_df

age sex
1 31 M
2 40 F
3 50 M
> my_df$age[my_df$sex=="M"]
[1] 31 50

2/27/2019 HPC training series Spring 2019 41

Querying Object Attributes
• The length() function
• The class() function
• The dim() function
• The str() function
• The attributes() function reveals attributes of an object

– Class
– Names
– Dimensions
– Length
– User defined attributes

• They work on all objects (including functions)
• More examples in the “Data inspection” section

2/27/2019 HPC training series Spring 2019 42

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

2/27/2019 HPC training series Spring 2019 43

Flow Control Structures
• Control structures allow one to control the flow of

execution.
– Similar to other script languages

2/27/2019 HPC training series Spring 2019 44

if …
else

testing a condition

for executing a loop (with fixed number of iterations)

while executing a loop when a condition is true

repeat executing an infinite loop

break breaking the execution of a loop

next skipping to next iteration

return exit a function

Testing Conditions

2/27/2019 HPC training series Spring 2019 45

Comparisons: <, <=, >, >=, ==, !=
Logical operations:
!: NOT
&: AND (elementwise)
&&: AND (only leftmost element)
|: OR (element wise)
||: OR (only leftmost element)

> x <- 10
> if(x > 3 && x < 5) {
+ print ("x is between 3 and 5")
+ } else if(x <= 3) {
+ print ("x is less or equal to 3")
+ } else {
+ print ("x is greater or equal to 5")
+ }
[1] "x is greater or equal to 5"

An example if.R

For Loops

2/27/2019 HPC training series Spring 2019 46

Syntax
for (value in sequence) {
statements
}

> x <- c(2,5,3,9,8,11,6)
> count <- 0
> for (i in x) {
+ if (i %% 2 == 0) count <- count+1
+ }
> count
[1] 3

Loops are not very frequent used because of many inherently
vectorized operations and the family of apply()functions (more
on this later)

An example for.R

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

2/27/2019 HPC training series Spring 2019 47

Simple Statistic Functions
min() Minimum value

max() Maximum value

which.min() Location of minimum value

which.max() Location of maximum value

sum() Sum of the elements of a vector

mean() Mean of the elements of a vector

sd() Standard deviation of the elements of a vector

quantile() Show quantiles of a vector

summary() Display descriptive statistics

2/27/2019 HPC training series Spring 2019 48

> mean(weight,na.rm=T)
[1] 77.8
> which.min(weight)
[1] 1
> min(weight,na.rm=T)
[1] 60
>

Distributions and Random Variables
• For each distribution R provides four functions: density (d),

cumulative density (p), quantile (q), and random generation (r)
– The function name is of the form [d|p|q|r]<name of
distribution>

– e.g. qbinom() gives the quantile of a binomial distribution

2/27/2019 HPC training series Spring 2019 49

Distribution Distribution name in R

Uniform unif

Binomial binom

Poisson pois

Geometric geom

Gamma gamma

Normal norm

Log Normal lnorm

Exponential exp

Student’s t t

Distributions and Random Variables
• Generating random number from normal distribution
> set.seed(1)
> rnorm(2,mean=0,sd=1)
[1] -0.6264538 0.1836433

> pnorm(1.96)
[1] 0.9750021

• The inverse of the above function call
> qnorm(0.975)
[1] 1.959964

2/27/2019 HPC training series Spring 2019 50

Sorting and Random Samples
• Sort and order elements: sort(), rank() and order().
> x <- c(1.2,0.4,2.3,0.9)
> sort(x) ## sort x in ascending order
> sort(x,decreasing=T) ## sort x in descending order
> rank(x)
[1] 3 1 4 2
> order(x) ## order() returns the indices of the vector in sorted order
[1] 2 4 1 3

2/27/2019 HPC training series Spring 2019 51

Sorting and Random Samples
• Random sampling function sample().
> sample(1:4,4,replace=F)
> sample(1:10,10,replace=F)
> sample(1:10,10,replace=T) ## will be different from the last run
> sample(1:4,10,replace=T,prob=c(.2,.5,.2,.1))

• Using the same seed value through set.seed() can reproduce the
same outcome.

> set.seed(1)
> sample(1:4,10,replace=T)
[1] 2 2 3 4 1 4 4 3 3 1
> set.seed(1)
> sample(1:4,10,replace=T)
[1] 2 2 3 4 1 4 4 3 3 1

2/27/2019 HPC training series Spring 2019 52

The table Function
• The table() function is useful to tabulate factors or find the frequency of

an object
• Example: The quine dataset consists of 146 rows describing children's

ethnicity (Eth), age (Age), sex (Sex), days absent from school (Days) and their
learning ability (Lrn).
– If we want to find out the frequency of the age classes in quine dataset
> library(MASS)
> table(quine$Age)
F0 F1 F2 F3
27 46 40 33

– If we need to know the breakdown of ages according to sex
> table(quine$Sex,quine$Age)

F0 F1 F2 F3
F 10 32 19 19
M 17 14 21 14

2/27/2019 HPC training series Spring 2019 53

The apply Function

• The apply() function evaluate a function over
the margins of an array
– More concise than the for loops (not necessarily

faster)

2/27/2019 HPC training series Spring 2019 54

X: array objects
MARGIN: a vector giving the subscripts which the function will be applied over
FUN: a function to be applied

> str(apply)
function (X, 2, FUN, ...)

2/27/2019 HPC training series Spring 2019 55

> x <- matrix(rnorm(200), 20, 10)
Row means
> apply(x, 1, mean)
[1] -0.23457304 0.36702942 -0.29057632 -0.24516988 -0.02845449 0.38583231
[7] 0.16124103 -0.10164565 0.02261840 -0.52110832 -0.10415452 0.40272211

[13] 0.14556279 -0.58283197 -0.16267073 0.16245682 -0.28675615 -0.21147184
[19] 0.30415344 0.35131224

Column sums
> apply(x, 2, sum)
[1] 2.866834 2.110785 -2.123740 -1.222108 -5.461704 -5.447811 -4.299182
[8] -7.696728 7.370928 9.237883

25th and 75th Quantiles for rows
> apply(x, 1, quantile, probs = c(0.25, 0.75))

[,1] [,2] [,3] [,4] [,5] [,6]
25% -0.52753974 -0.1084101 -1.1327258 -0.9473914 -1.176299 -0.4790660
75% 0.05962769 0.6818734 0.7354684 0.5547772 1.066931 0.6359116

[,7] [,8] [,9] [,10] [,11] [,12]
25% -0.1968380 -0.5063218 -0.8846155 -1.54558614 -0.8847892 -0.2001400
75% 0.7910642 0.3893138 0.8881821 -0.06074355 0.5042554 0.9384258

[,13] [,14] [,15] [,16] [,17] [,18]
25% -0.5378145 -1.08873676 -0.5566373 -0.3189407 -0.6280269 -0.6979439
75% 0.6438305 -0.02031298 0.3495564 0.3391990 -0.1151416 0.2936645

[,19] [,20]
25% -0.259203 -0.1798460
75% 1.081322 0.8306676

Other apply Functions

• lapply - Loop over a list (data frame) and
evaluate a function on each element

• sapply - Same as lapply but try to simplify
the result

lapply & sapply example
> x <- list(a = 1, b = 1:3, c = 10:100)
> lapply(x, FUN = length)
> sapply(x, FUN = length)
> lapply(x, FUN = sum)
> sapply(x, FUN = sum)

2/27/2019 HPC training series Spring 2019 56

Other apply Functions
• In statistics, one of the most basic activities is

computing summaries of variables
• tapply - Apply a function over subsets of a vector
• mapply - Multivariate version of lapply
generate medical data for tapply example (https://www.r-bloggers.com/r-
function-of-the-day-tapply-2/)
> medical.example <-
+ data.frame(patient = 1:100,
+ age = rnorm(100, mean = 60, sd = 12),
+ treatment = gl(2, 50,
+ labels = c("Treatment", "Control")))
> tapply(medical.example$age, medical.example$treatment, mean)
Treatment Control

61.7065 59.9123

2/27/2019 HPC training series Spring 2019 57

User Defined Functions

• Similar to other languages, functions in rare
defined by using the function()directives

• The return value is the last expression in the
function body to be evaluated

• Functions can be nested
• Functions are R objects

– For example, they can be passed as an argument to
other functions

2/27/2019 HPC training series Spring 2019 58

Example of User Defined Function
Syntax
function_name <- function (arguments) {
statement
}
#
Define the function for the power calculation
> pow <- function(x, y) {
+ result <- x^y
+}

Call the function
> c <- pow(4,2)
> c
[1] 16

2/27/2019 HPC training series Spring 2019 59

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

2/27/2019 HPC training series Spring 2019 60

Installing and Loading R Packages - PC

• Installation:
– Option 1: menu item
– Option 2: run install.packages(“<package
name>”) function in the console

• Loading: the library(<package name>)
function load previously installed packages

2/27/2019 HPC training series Spring 2019 61

Installing and Loading R Packages - Cluster
• Installation

– You most likely do NOT have root privilege
– Point the environment variable R_LIBS_USER to a

desired location
– In the R console, libraries that R currently searching

can be shown with .libPaths()
– Use the install.packages(“<package
name>”) function to install a library

• Loading: the library(<package name>)
function load previously installed packages

2/27/2019 HPC training series Spring 2019 62

2/27/2019 HPC training series Spring 2019 63

[ychen64@mike002 ~]$ export R_LIBS_USER=/home/ychen64/packages/R/libraries
[ychen64@mike002 ~]$ echo $R_LIBS_USER
/home/ychen64/packages/R/libraries
[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> .libPaths ()
[1] "/home/ychen64/packages/R/libraries"
[2] "/home/packages/r/3.4.3/INTEL-18.0.0/lib64/R/library“

> install.packages("swirl")
> library(swirl)

| Hi! Type swirl() when you are ready to begin.

Listing and Unloading
R Packages - PC and Cluster

• List all available packages library(), press “q” to
quit

• List all packages in the default library (on the
SuperMike2 cluster the default is
/home/packages/r/3.4.3/INTEL-18.0.0/lib64/R/library)
library(lib = .Library)

• Show currently loaded libraries: the
search()function or sessionInfo()function

• Check package version: packageVersion
(“<package name>”)

• Unload detach(package:<package name>)

2/27/2019 HPC training series Spring 2019 64

2/27/2019 HPC training series Spring 2019 65

[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> library()
> library(lib = .Library)

> search()
[1] ".GlobalEnv" "package:swirl" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"
> packageVersion("swirl")
> detach(package:swirl)

Updating and Uninstall
R Packages - PC and Cluster

• Update update.packages(“<package
name>”)

• Uninstall remove.packages(“<package
name>”)

• Documentation page:
http://www.hpc.lsu.edu/docs/faq/installation-
details.php

2/27/2019 HPC training series Spring 2019 66

2/27/2019 HPC training series Spring 2019 67

[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> update.packages("swirl")
> remove.packages("swirl")

Steps for Data Analysis

• Get the data
• Read and inspect the data
• Preprocess the data (remove missing and dubious

values, discard columns not needed etc.)
• Analyze the data
• Generate the report

2/27/2019 HPC training series Spring 2019 68

Take-home message
• R basics

– What is R
– How to run R codes on PC and cluster
– Basic syntax (variable assignment)
– R as a calculator
– Data classes and objects in R (dataframe!)
– Flow control structures
– Functions (basic statistical functions)
– How to install and load R packages

2/27/2019 HPC training series Spring 2019 69

Not Covered
• Data acquisition
• Data inspection
• Report generation
• Data manipulation
• Statistical analysis (e.g regression models, machine

learning/data mining)
• Advanced graphics in R
• Parallel processing in R

2/27/2019 HPC training series Spring 2019 70

Learning R
• User documentation on CRAN

– An Introduction on R: http://cran.r-project.org/doc/manuals/r-
release/R-intro.html

• Online tutorials (tons of them)
– http://www.cyclismo.org/tutorial/R/

• Online courses (e.g. Coursera)
• Blogs

– https://www.r-bloggers.com
• Educational R packages

– Swirl: Learn R in R

2/27/2019 HPC training series Spring 2019 71

Next HPC Training

• Version Control with Git, March 13.
• Weekly trainings during regular semester

– Wednesdays “9:00am-11:00am” session, Frey 307
CSC

• Programming/Parallel Programming
workshops
– Usually in summer

2/27/2019 HPC training series Spring 2019 72

Next R Tutorial – Data Analysis in R

• You will learn the data analysis fundamentals
with applications in R.

• The data pre-processing using R will be
introduced first, then some basic statistical
analysis methods such as linear regression,
classification as well as re-sampling methods for
the basic machine learning will be covered

• Date: March 20th, 2019

2/27/2019 HPC training series Spring 2019 73

More R Tutorials – Data Visualization in R

• This training provided an introduction to the R
graphics in detail

• An overview on how to create and save graphs
in R, then focus on the ggplot2 package.

• http://www.hpc.lsu.edu/training/archive/tuto
rials.php

2/27/2019 HPC training series Spring 2019 74

More R Tutorials – Parallel Computing with R

• This training focused on how to use the
"parallel" package in R and a few related
packages to parallelize and enhance the
performance of R programs

• http://www.hpc.lsu.edu/training/archive/tuto
rials.php

2/27/2019 HPC training series Spring 2019 75

Getting Help

• User Guides
– LSU HPC:

http://www.hpc.lsu.edu/docs/guides.php#hpc
– LONI:http://www.hpc.lsu.edu/docs/guides.php#loni

• Documentation: http://www.hpc.lsu.edu/docs
• Contact us

– Email ticket system: sys-help@loni.org
– Telephone Help Desk: 225-578-0900

2/27/2019 HPC training series Spring 2019 76

Questions?

2/27/2019 HPC training series Spring 2019 77

Exercises 1
1. Create a vector of the positive odd integers less than 100

(Hint: use seq function).
2. Remove the values greater than 60 and less than 80.
3. Create a data frame called cone with two elements:

R <- c(2.27, 1.98, 1.69, 1.88, 1.64, 2.14)
H <- c(8.28, 8.04, 9.06, 8.70, 7.58, 8.34)
Recall the volume of a cone with radius R and height H is given by
ଵ

ଷ
ଶ . Make the third element as V, which is the volume of the

cone.

2/27/2019 HPC training series Spring 2019 78

Exercises 1 - solution
1. x <- seq(from=1,to=100,by=2)
2. x[x>60&x<80]
3. > R <- c(2.27, 1.98, 1.69, 1.88, 1.64, 2.14)

> H <- c(8.28, 8.04, 9.06, 8.70, 7.58, 8.34)
> V <- 1/3*pi*R^2*H
> V
[1] 44.67974 33.00768 27.09756 32.20057 21.34939 39.99652
> data.frame(R,H,V)

2/27/2019 HPC training series Spring 2019 79

Exercises 2
1. Import dataset forbes, save it as forbes
2. Run the following commands:

head(forbes)
str(forbes)
summary(forbes)

3. Remove the observations with missing values
4. Find all German companies with negative profit
5. Find the 50 companies in the Forbes dataset with the highest profit
6. Find the average value of sales for the companies in each country (Hint: use

tapply function)
7. Find the number of companies in each country with profits above 5 billion US

dollars

2/27/2019 HPC training series Spring 2019 80

How does R work
• R works best if you have a dedicated folder for each separate project - the

working folder. Put all data files in the working folder (or in subfolders).
> getwd() #Show current working directory
[1] "/home/ychen64"
> dir.create("data") #Create a new directory
> getwd()
[1] "/home/ychen64"
> setwd("data")
> getwd()
[1] "/home/ychen64/data“
> list.files() # List files in current directory

• Work on the project - your objects can be automatically saved in the
.RData file

• To quit use q()or CTRL + D or just kill the window. R will automatically
ask you “Save workspace image?”. You can choose:
– No: leave R without saving your results in R (recommended);
– Yes: save your results in .RData in your working directory;
– Cancel: not quitting R.

2/27/2019 HPC training series Spring 2019 81

Case Study: Forbes Fortune List

• The forbes dataset consists of 2000 rows
(observations) describing companies’ rank,
name, country, category, sales, profits, assets
and market value.

2/27/2019 HPC training series Spring 2019 82

Getting Data

• Downloading files from internet
– Manually download the file to the working

directory
– or with R function download.file()

> download.file("http://www.hpc.lsu.edu/training/weekly-
materials/Downloads/Forbes2000.csv.zip", "Forbes2000.csv.zip")
> unzip("Forbes2000.csv.zip","Forbes2000.csv")

2/27/2019 HPC training series Spring 2019 83

Before R3.3, “unsupported URL scheme” error may occur when downloading from https
method="curl"

Reading and Writing Data
• R understands many different data formats and has

lots of ways of reading/writing them (csv, xml, excel,
sql, json etc.)

2/27/2019 HPC training series Spring 2019 84

read.table
read.csv

write.table
write.csv

for reading/writing tabular data

readLines writeLines for reading/writing lines of a text file

source dump for reading/writing in R code files

dget dput for reading/writing in R code files

load save for reading in/saving workspaces

Reading Data with read.table (1)

2/27/2019 HPC training series Spring 2019 85

List of arguments of the read.table() function
> str(read.table)
function (file, header = FALSE, sep = "", quote = "\"'", dec = ".", row.names,
col.names, as.is = !stringsAsFactors, na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip, strip.white = FALSE,
blank.lines.skip = TRUE, comment.char = "#", allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(), fileEncoding = "", encoding = "unknown",
text, skipNul = FALSE)

Reading Data with read.table (2)

• file - the name of a file, or a connection
• header - logical indicating if the file has a header line
• sep - a string indicating how the columns are separated
• na.strings - a character vector of strings which are to be

interpreted as NA values
• nrows - the number of rows in the dataset
• comment.char - a character string indicating the comment

character
• skip - the number of lines to skip from the beginning
• stringsAsFactors - should character variables be coded as

factors?

2/27/2019 HPC training series Spring 2019 86

Reading Data with read.table (3)

• The function will
– Skip lines that begin with #
– Figure out how many rows there are (and how much memory

needs to be allocated)
– Figure out what type of variable is in each column of the table

• Telling R all these things directly makes R run faster and
more efficiently.

• read.csv() is identical to read.table() except
that the default separator is a comma.

2/27/2019 HPC training series Spring 2019 87

> forbes <- read.csv("Forbes2000.csv",header=T,stringsAsFactors =
FALSE,na.strings ="NA",sep=",")

Reading EXCEL spreadsheets
• The XLConnect library can open both .xls and .xlsx files. It is Java-based, so

it is cross platform. But it may be very slow for loading large datasets.
>library(XLConnect)
wb <- loadWorkbook("Forbes2000.xls")
setMissingValue(wb, value = c("NA"))
forbes <- readWorksheet(wb, sheet=1, header=TRUE)>dim(forbes)
[1] 2000 8

• There are at least two other ways: read.xlsx from library(xlsx) (slow for
large datasets) and read.xls from library(gdata) (require PERL installed).

>library(xlsx)
>forbes <- read.xlsx("Forbes2000.xls", 1)

• Note: the libraries above requires both Java Dev Kit and rJava library. The
later is not available for R version installed on QB2 and SuperMic.

2/27/2019 HPC training series Spring 2019 88

Inspecting Data (1)
• head(): print the first part of an object
• tail(): print the last part of an object
> head(forbes)

rank name country category sales profits
1 1 Citigroup United States Banking 94.71 17.85
2 2 General Electric United States Conglomerates 134.19 15.59
3 3 American Intl Group United States Insurance 76.66 6.46
4 4 ExxonMobil United States Oil & gas operations 222.88 20.96
5 5 BP United Kingdom Oil & gas operations 232.57 10.27
6 6 Bank of America United States Banking 49.01 10.81

assets marketvalue
1 1264.03 255.30
2 626.93 328.54
3 647.66 194.87
4 166.99 277.02
5 177.57 173.54
6 736.45 117.55

2/27/2019 HPC training series Spring 2019 89

Inspecting Data (2)

2/27/2019 HPC training series Spring 2019 90

• Summary of the “forbes” dataframe.
> str(forbes)
'data.frame': 2000 obs. of 8 variables:
$ rank : num 1 2 3 4 5 6 7 8 9 10 ...
$ name : chr "Citigroup" "General Electric" "American Intl Group" "ExxonMobil" ...
$ country : chr "United States" "United States" "United States" "United States" ...
$ category : chr "Banking" "Conglomerates" "Insurance" "Oil & gas operations" ...
$ sales : num 94.7 134.2 76.7 222.9 232.6 ...
$ profits : num 17.85 15.59 6.46 20.96 10.27 ...
$ assets : num 1264 627 648 167 178 ...
$ marketvalue: num 255 329 195 277 174 ...

Inspecting Data (3)

2/27/2019 HPC training series Spring 2019 91

• Statistical summary of the “Forbes” dataframe.
> summary(forbes)

rank name country category
Min. : 1.0 Length:2000 Length:2000 Length:2000
1st Qu.: 500.8 Class :character Class :character Class :character
Median :1000.5 Mode :character Mode :character Mode :character
Mean :1000.5
3rd Qu.:1500.2
Max. :2000.0

sales profits assets marketvalue
Min. : 0.010 Min. :-25.8300 Min. : 0.270 Min. : 0.02
1st Qu.: 2.018 1st Qu.: 0.0800 1st Qu.: 4.025 1st Qu.: 2.72
Median : 4.365 Median : 0.2000 Median : 9.345 Median : 5.15
Mean : 9.697 Mean : 0.3811 Mean : 34.042 Mean : 11.88
3rd Qu.: 9.547 3rd Qu.: 0.4400 3rd Qu.: 22.793 3rd Qu.: 10.60
Max. :256.330 Max. : 20.9600 Max. :1264.030 Max. :328.54

NA's :5

• There are missing values in the profits category.

Inspecting Data (4) - Basic Plots

2/27/2019 HPC training series Spring 2019 92

• R offers a remarkable variety of graphics.
> attach(forbes) # attach the data frame
> boxplot(sales) # boxplot
> plot(sales,assets) # scatterplot

• The result of a graphical function cannot be assigned to an object but is sent to a
graphical device (i.e. a graphical window or a file)

• Save plots. For example:
• pdf, two plots will be saved into one pdf file

> pdf('rplot%03d.pdf')
> boxplot(sales)
> plot(sales,assets)
> dev.off() # must turn off the graphical device

• jpg, two plots will be saved into two jpg files
> jpeg('rplot%03d.jpg')
> boxplot(sales)
> plot(sales,assets)
> dev.off() # must turn off the graphical device

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

• Data analysis
– Data acquisition
– Data inspection
– Report generation

2/27/2019 HPC training series Spring 2019 93

Report Generation with R Markdown

• R markdown
– Allows one to generate dynamic report by

weaving R code and human readable texts
together

• The knitr and rmarkdown packages can
convert them into documents of various
formats

• Help make your research reproducible

2/27/2019 HPC training series Spring 2019 94

Put Everything Together
• Run R commands in batch mode with Rscript

2/27/2019 HPC training series Spring 2019 95

[ychen64@mike001 R]$ cat forbes.R
Check if the data directory exists; if not, create it.
if (!file.exists("data")) {

dir.create("data")
}

Check if the data file has been downloaded; if not, download it.
if (!file.exists(“Forbes2000.csv")) {

download.file("http://www.hpc.lsu.edu/training/weekly-
materials/Downloads/Forbes2000.csv.zip", "Forbes2000.csv.zip")
}
…

[ychen64@make001 R]$ Rscript forbes.R

Preprocessing - Missing Values
• Missing values are denoted in R by NA or NaN for undefined

mathematical operations.
– is.na() is used to test objects if they are NA

• Make sure when reading data R can recognize the missing values. E.g.
setMissingValue(wb, value = c("NA")) when using
XLConnect

• Many R functions also have a logical “na.rm” option
– na.rm=TRUE means the NA values should be discarded
mean(weight,na.rm=T)

• Note: Not all missing values are marked with “NA” in
raw data!

2/27/2019 HPC training series Spring 2019 96

Preprocessing - Missing Values
• There are many statistical techniques that can deal with the missing

values, but the simplest way is to remove them.
– If a row (observation) has a missing value, remove the row with
na.omit(). e.g.

> forbes <- na.omit(forbes)
> dim(forbes)

– If a column (variable) has a high percentage of the missing value,
remove the whole column or just don’t use it for the analysis

2/27/2019 HPC training series Spring 2019 97

Preprocessing - Subsetting Data (1)

• At most occasions we do not need all of the raw data
• There are a number of methods of extracting a subset

of R objects
• Subsetting data can be done either by row or by

column

2/27/2019 HPC training series Spring 2019 98

Preprocessing - Subsetting Data (2)

• Subsetting by row: use conditions

2/27/2019 HPC training series Spring 2019 99

Find all companies with negative profit
>forbes[forbes$profits < 0,c("name","sales","profits","assets")]

name sales profits assets
350 Allianz Worldwide 96.88 -1.23 851.24
354 Vodafone 47.99 -15.51 256.28
364 Deutsche Telekom 56.40 -25.83 132.01

Preprocessing - Subsetting Data (3)

• Subsetting by row: use the subset()function

2/27/2019 HPC training series Spring 2019 100

Find the business category to which most of the
Bermuda island companies belong.

>Bermudacomp <- subset(forbes, country == "Bermuda")
>table(Bermudacomp[,"category"]) #frequency table of categories

Banking Capital goods Conglomerates
1 1 2

Food drink & tobacco Food markets Insurance
1 1 10

Media Oil & gas operations Software & services
1 2 1

Preprocessing - Subsetting Data (4)

• Subsetting by column

2/27/2019 HPC training series Spring 2019 101

Create another data frame with only numeric
variables

forbes2 <- data.frame(sales=forbes$sale,profits=forbes$profits,
assets=forbes$assets, mvalue=forbes$marketvalue)

str(forbes2)

Or simply use indexing
forbes3 <- forbes[,c(5:8)]
str(forbes3)

