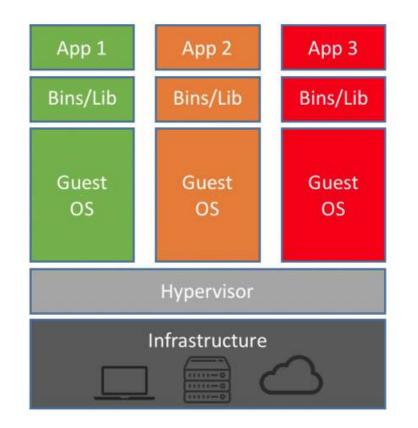


Introduction to Singularity: Creating and Running Containers on HPC

Le Yan

3/27/2019


HPC Training Series Spring 2019

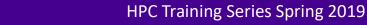
Virtualization

- Virtualization allows users to run multiple operating system instances on the same server
- Multiple applications can share the hardware resources on the server

3/27/2019

https://blog.netapp.com/blogs/containers-vs-vms/

Virtual Machines vs. Containers


Virtual machines	Containers						
		App 1	App 2	Арр З			
Very flexible, e.g. one		Bins/Lib	Bins/Lib	Bins/Lib			
can run a Windows guest OS on Linux or	Less flexible, On Linux systems only	Guest OS	Guest OS	App 1 App 2 Guest Bins/Lib OS Container Free	Bins/Lib	App Bins/	
vice versa		Hypervisor			Container Engine Operating System		
Heavyweight, need to install all files of a guest OS	Very lightweight, will use the kernel of the host OS	Ma	Infrastructure		Infrastructure		

3/27/2019

https://blog.netapp.com/blogs/containers-vs-vms/

What is Singularity

- Singularity is a open-source container software that allows users to pack an application and all of its dependencies into a single image (file)
- Developed by Greg Kurtzer at Lawrence Livermore National Laboratory
- "Container for HPC"
- Native command line interface
 - Syntax: singularity <command> <options>
 <arguments>

Containers: Docker vs. Singularity

Docker	Singularity		
Assumes that the user has root privilege in the production environment	Does not assume that the user has root privilege in the production environment		
Mature	Less mature, very active development		
Designed for system services	Designed for HPC use cases		

Why Singularity: HPC Users' Perspective

Pain points using HPC

Dependencies of an application are available on the host OS, e.g. GLIBC version too low

Dependencies of an application are complex and difficult to resolve/install

Reproducibility is not guaranteed

Difficult to share workflows, pipelines and environments

SNI

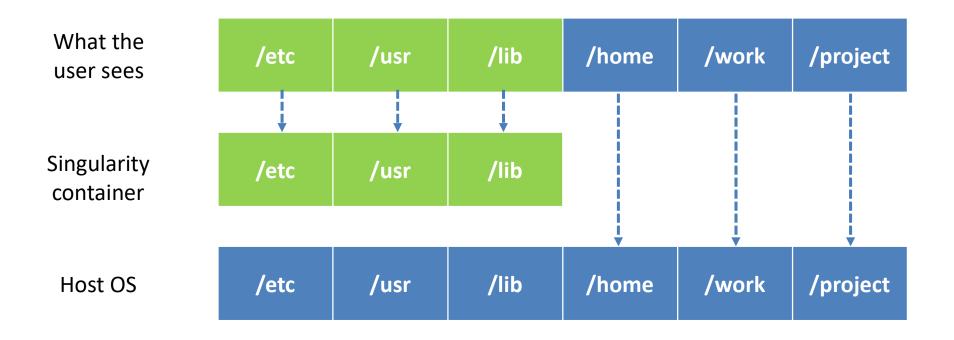
Why Singularity: HPC Users' Perspective

Ра	in points using HPC	With Singularity	
are av	dencies of an application vailable on the host OS, GLIBC version too low	Build an image with an different OS	
•	dencies of an application omplex and difficult to resolve/install	Obtain an image (from the developer or other users)	
R	eproducibility is not guaranteed	Build and share an image	
	ult to share workflows, ines and environments	Build and share an image	
3/27/2019	HPC Training Se	eries Spring 2019	6

Singularity on QB2

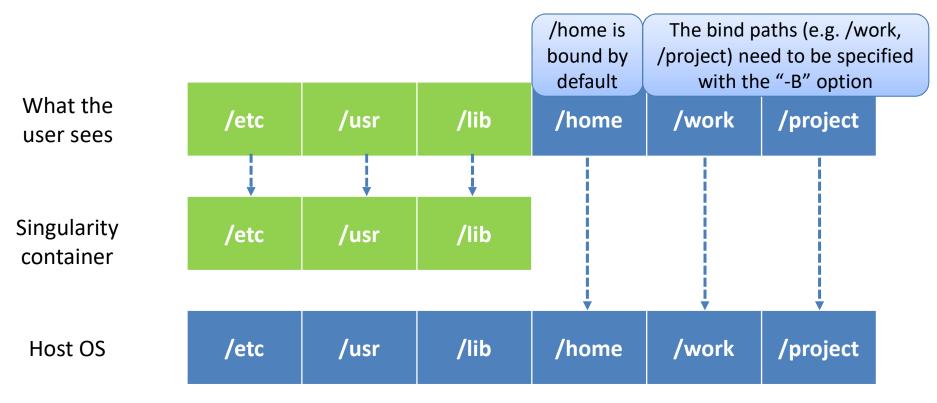
- Singularity is installed on all compute nodes
- Still in "friendly user" mode, which means
 - Users can only run images from a specific directory
 - Located under /home/admin/singularity
 - The images are built by HPC staff
 - Users can request Singularity images
- It will be in "production" so users can build and upload their own images

Demo


3/27/2019

HPC Training Series Spring 2019

Overlay File System



Overlay File System

Privilege Escalation

 A very important feature of Singularity: If you don't have root privileges outside the container, you won't be able to obtain root privileges inside the container.

Singularity Workflow

- Step 1: Install Singularity on a local Linux machine (or VM)
 - Root privilege is needed
- Step 2: Build Singularity images on the local machine
 Root privilege is needed
- Step 3: Upload images onto the HPC cluster
 - Root privilege is NOT needed
- Step 4: Run images on the HPC cluster
 - Root privilege is NOT needed

Installing Singularity

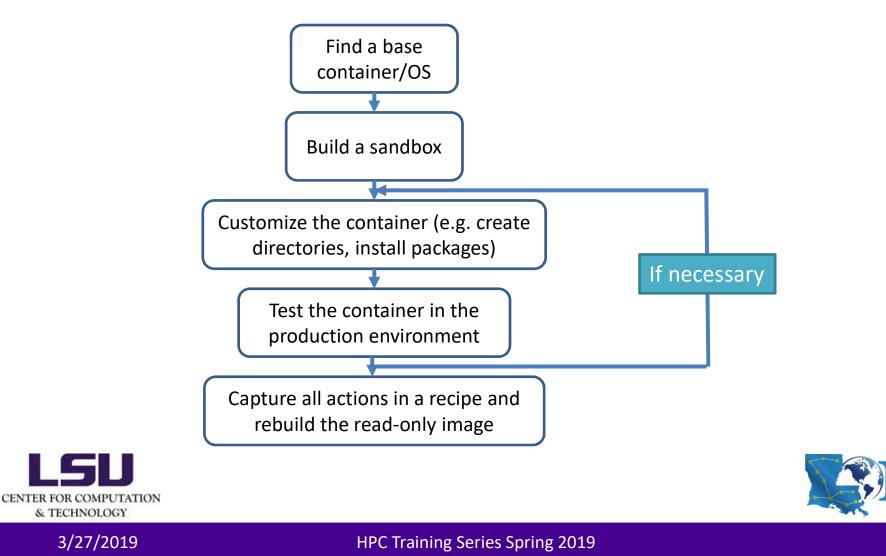
- On Linux
 - Install binary (recommended)
 - Use either apt-get or rpm/yum
 - Install from source
 - <u>https://github.com/sylabs/singularity</u>
- On Windows or Mac
 - Install a Linux VM first

Building Singularity Images

- Use the "build" command to build Singularity images
- Syntax:
 - singularity build [build options...] <container
 path> <BUILD TARGET>
- The "BUILD TARGET" defines the method how an image is built
 - A URI to a base OS/container image
 - Path to a Singularity sandbox
 - Path to a Singularity recipe (definition file)
- Build options
 - By default, a compressed, read-only image will be built
 - The "--writable" option builds a writable image
 - The "--sandbox" option builds a sandbox

Where to Find Base OS/Containers

- Docker hub: <u>https://hub.docker.com</u>
- Singularity hub: https://singularity-hub.org
- NVIDIA GPU Cloud: <u>https://ngc.nvidia.com</u>
- Distribution repos
 - YUM/RHEL
 - Debian/Ubuntu



Building Singularity Images

Demo

3/27/2019

HPC Training Series Spring 2019

17

Singularity Definition Files (Recipes)

Capture all the interactive building steps

```
BootStrap: docker
                                                         Header: describes the base container image
       From: ubuntu:16.04
       %labels
                                                         Label: metadata for the container
           Author lyan1@lsu.edu
       %post
                                                         Post: commands executed within the
       apt-get update && apt-get install -y vim
                                                         container after the base OS has been
       # Create bind points for HPC environment
                                                         installed at build time.
       mkdir /project /work
       %environment
                                                         Environment: define environment variables
       export LC ALL=C
       %runscript
                                                         Runscript: commands that will be run when
       echo "Hello, world!"
                                                         the container is run by "singularity run"
CENTER FOR COMPUTATION
   & TECHNOLOGY
```


Inspecting Singularity Images

- Use the "inspect" command to query
 - How an image is built
 - What the runscript is
 - What environment variables are set
- Syntax: singularity inspect [options] <container image>
 - The options are self-explanatory: "--labels", "-runscript", "--deffile", "--environment" etc.

Running Singularity on QB2

- Syntax
 - Singularity <command> [options] <container image>
- Commands
 - shell: run an interactive bash shell within container
 - run: launch a runscript within container
 - exec: execute a command within container

Running Singularity on QB2

• Singularity can be embedded in a job script just like any other application

```
#!/bin/sh
#PBS -A your_allocation
#PBS -q bigmem
#PBS -l nodes=1:ppn=48
#PBS -l walltime=24:00:00
#PBS -N Cactus_Singularity
```

Cd PBS_O_WORKDIR singularity exec -B /work /home/admin/singularity/cactus-ubuntu-16.04.simg cactus --binariesMode local --maxMemory 100G /work/lyan1/clustertest/cactus/jobstore evolverMammals.txt /work/lyan1/clustertest/cactus/output

Demo

3/27/2019

HPC Training Series Spring 2019

22

Questions?

3/27/2019

HPC Training Series Spring 2019

23