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What is R
• R is an integrated suite of software facilities for

– importing, storing, exporting and manipulating data;
– scientific computation;
– conducting statistical analyses;
– displaying the results by tables, graphs, etc.

• Highly customizable via thousands of freely available 
packages.

• R is also a platform for the development and 
implementation of new algorithms.

• Many graphical user interface to R both free and 
commercial
(e.g. Rstudio and Revolution R (now Microsoft R) ).
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What is R
• R mailing lists: http://www.R-project.org/mail.html

– R-announce: announcements of major R developments.
– R-packages: announcements of new R packages.
– R-help: main discussion list.
– R-devel: discussion on code development in R.
– Special interest group (e.g. R-SIG-Finance).
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History of R
• R is a dialect of the S language

– S was created in 1976 at the Bell Labs as an internal statistical analysis 
environment

– Goal of S was “to turn ideas into software, quickly and faithfully".
– Most well known implementation is S-plus (most recent stable release was in 

2010). S-Plus integrates S with a nice GUI interface and full customer support. 

• R was created by Ross Ihaka and Robert Gentleman at the 
University of Auckland, New Zealand.

• The R core group was formed in 1997, who controls the source code of R 
(written in C)

• The first stable version R 1.0.0 was released in 2000
• Latest stable version is 4.0.3 released on Oct 10, 2020
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Features of R
• R is a language designed for statistical analysis
• Available on most platform/OS
• Rich data analysis functionalities and sophisticated 

graphical capabilities
• Active development and very active community

– CRAN: The Comprehensive R Archive Network
• Source code and binaries, user contributed packages and 

documentation
– More than 16,000 packages available on CRAN (as of October 

2020)
• 6,000 five years ago

• Free to use!
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Installing and Loading R
• On your PC

– R console can be downloaded from: http://cran.r-project.org/
– Rstudio is the de facto environment for R on a desktop system

• On a cluster
– R is installed on all LONI and LSU HPC clusters

• QB2: r/3.5.3/INTEL-18.0.1
• QB3:r/3.6.2/intel-19.0.5
• SuperMIC: r/3.5.3/INTEL-18.0.1
• SuperMike2: r/3.5.3/INTEL-18.0.0

– User requested R 
• Usually installed in user home directory
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R Console

• Linux/Mac/Windows version available
• Limited graphic user interface (GUI)
• Command line interface (CLI) is similar to HPC 

environment
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R Console
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RStudio

• Similar graphic user interface (GUI) to other Windows 
software, dividing the screen into panes
– Source code
– Console
– Workspace
– Others (help message, plot etc.)

• Rstudio in a desktop environment is better suited for 
development and/or a limited number of small jobs
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On LONI and LSU HPC Clusters

• Two modes to run R on clusters
– Interactive mode

• Type R command to launch the console
• Run R commands in the console

– Batch mode
• Write the R script first, then submit a batch job to run it 

(use the Rscript command)
• This mode is better for production runs
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On LONI and LSU HPC Clusters
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Clusters are Better for Resource-
demanding Jobs
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Training random forest model
Resampling method: 10-fold cross-validation
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Basic Syntax
• The default R prompt is the greater-than sign (>)
> 2*4
[1] 8
> options(prompt="R>")
R>

• If a line is not syntactically complete, a continuation prompt (+) appears.
> 2*
+ 4
[1] 8

• Assignment operators are the left arrow (<-) and =. They both assign the 
value of the object on the right to the object on the left.

> x <- 2*4

• The contents of the object x can be viewed by typing value at the R 
prompt

> x
[1] 8
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Basic Syntax
• Last expression can be retrieved through an internal object .Last.value
> 2*4
[1] 8
> x <- .Last.value
> x
[1] 8

• Removing objects with the function rm()
> rm(x)
> x
Error: object 'value' not found

• Legal R Names 
– names for R objects can be any combination of letters, numbers and 

periods (.) but must not start with a number nor period
• Note: R is case sensitive. X and x are different in R.
> x <- 8
> X
Error: object 'X' not found
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Basic Syntax
• Function to clear the console in R and Rstudio
> cat("\014") 

• The code above is the same as CTRL + L
• The saved object or function will not be affected
> x
[1] 8

• In R, any line starting with “#” will be interpreted as a comment
> # z <- 2*4
> # Nothing will happen
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Basic Syntax
• R allows automatic completion of type function or object name via the TAB 

key
–Convenient, also error-proof
– If there is no unique name, all matching names will show

• R allows using the up arrow key “↑” -- the previous command you entered 
shows up on the command line
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Basic Syntax
• Avoid assignment to built in functions

– R has a number of built in functions e.g. c, T, F, t
– An easy way to avoid this problem is to check the contents of the object 

you wish to use, this also stops you from overwriting the contents of a 
previously saved object

> X    # object with no value assigned 
Error: object 'value' not found
> x     # object with a value assigned
[1] 8
> T      # Built in R value
[1] TRUE
> t      # Built in R function
function (x) 
UseMethod("t")

• Spaces
– R will ignore extra spaces between object names and operators
> x <- 2 * 4
[1] 8

– Spaces cannot be placed between the < and - in the assignment operator 
> x < - -2 * 4
[1] FALSE
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R as a Calculator 
• Arithmetic operators and parentheses
>   (1+2)/(3*2) 
>   [1] 0.5

• Power operator
> 2^3
[1] 8
> 4^0.5
[1] 2
> sqrt(4)
[1] 2

• Scientific notation
> 2.1e2
[1] 210
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R as a Calculator 
• Exponential function
> exp(1); exp(0) # ; is the newline separate commands
[1] 2.718282
[1] 1

• Inf means "non-finite numeric value"
> x <- 1/0   
> x
[1] Inf
> y <- -1/0
> y
[1] -Inf

• NaN means "not a number"
> x+y
[1] NaN

• pi
> pi
[1] 3.141593
> help(pi) # Get help from R. You can also use ?pi
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R as a Calculator 

• Comparisons: <, <=, >, >=, ==, !=
> 1 > 2
> 1 !=2

• Logical operations
– NOT: !
– AND (element wise): &
– OR(element wise): |
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Data Classes
• R has five atomic classes 

– Two numeric classes (numeric (double) or special type integer)
• Numbers in R are treated as numeric unless specified otherwise.

> x <- 605
> x
[1] 605

– Complex
> cn <- 2 + 3i
> cn 
[1] 2 + 3i

– Character
> string <- “Hello World”
> string
[1] “Hello World”

– Logical
• TRUE, FALSE or NA. The code missing values in R is NA.

> 2 < 4
[1] TRUE
> value <- NA
> is.logical(value)
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Data Classes

• The function class() can determine the class of each object
> class(x)
[1] “numeric” 
> class(string) 
[1] “character” 
> class(cn)
[1] “complex”

• The is.<type>()functions check the data classes
> is.numeric(x)
[1] TURE 
> is.character(string) 

• The as.<type>() funtions convert an object to a different type
> as.character(x)
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Data Objects

• R Data objects
– Vector: elements of same class, one dimension
– Matrix: elements of same class, two dimensions
– Array: elements of same class, 2+ dimensions
– Lists: elements can be any objects
– Data frames: “datasets” where columns are 

variables and rows are observations
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Data Objects - Vectors
• Vectors can only contain elements of the same data class
• Vectors can be constructed by

– Using the c()function (concatenate)
> d <- c(1,2,3)  ##numeric
> d <- c("1","2","3") ##character
> value.logical <- c(F,F,T)  ##logical

– you can convert an object with as.TYPE()functions
> as.numeric(d)

– Coercion will occur when mixed objects are passed to the c() 
function, as if the as.<Type>()function is explicitly called

> y <- c(1.7, "a") ## character
> y <- c(TRUE, 2) ## numeric
> y <- c("a", TRUE) ## character
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Data Objects - Vectors
• Vectors can also be constructed by

– Using the vector() function
> x <- vector("numeric", length = 10)
> x
[1] 0 0 0 0 0 0 0 0 0 0

– Using seq()or rep() function
> x <- seq(from=2,to=10,by=2)
> x <- seq(from=2,to=10,length=5)
> x <- rep(5,6)

‒ Using “:” operator
> x <- 0:6

• Vectors can be created using a combination of these functions. 
> value1 <- c(1,2:4,rep(3,4),seq(from=1,to=6,by=2))
> value2 <- rep(c(1,2),3)
> value3 <- rep(c(1,2),each=3)
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Data Objects - Vectors
• NA in R means missing value
> weight <- c(60, 72, NA, 90, 95, 72)   # unit is kg, contents after the # sign are comments 
> weight
[1] 60 72 NA 90 95 72
> height <- c(1.75,1.80,1.65,1.90,1.74,1.91)   # unit: meter

• Vector based operations are very fast!
> bmi <- weight/height^2   # bmi stands for body mass index
> bmi
[1] 19.59184     22.22222     NA 24.93075      31.37799        19.73630
> mean(weight)
[1] NA
> mean(weight, na.rm=TRUE)
[1] 77.8
> sd(weight, na.rm=T)
[1] 14.39444
> median(weight, na.rm=T)
[1] 72
> round(height, d=1)
[1] 1.8 1.8 1.6 1.9 1.7 1.9
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Vectors Indexing
• One can use [<index>] to access individual element of interest

– Indices start from 1
> x <- 1:10
> x[4] ## individual element of a vector
> x[1,4] ## how about multiple elements?
Error in x[1,4] : incorrect number of dimensions
> x[c(1,4)] ## this is the correct way
[1] 1 4
> x[c(1,8:9,3)] ## not necessarily in order
[1] 1 8 9 3
> x[-1] ## negative indices drop elements
[1] 2 3 4 5 6 7 8 9 10
> x[-1:-5]
[1] 6 7 8 9 10
> x[c(T,T,T,T,T,F,F,F,F,F)] ## Can use logical values as indices
[1] 1 2 3 4 5
> x[c(T,F)] ## Use a pattern
[1] 1 3 5 7 9
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Exercises 1

1. Create a vector of the positive odd integers less than 100, 
save it to “x” (Hint: use seq function).

2. Only access the values less than 18 in x.
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Exercises 1 - solution
1. x <- seq(from=1,to=100,by=2)
2. x[c(1:9)] 
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Data Objects - Matrices
• Matrices are vectors with a dimension attribute
• R matrices can be constructed by

– Using the matrix() function
> m <- matrix(1:12,nrow=3,ncol=4)
> m

[,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
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• R matrices are constructed column-wise by default
> m <- matrix(1:12,nrow=3,ncol=4,byrow=F) ## is the same as x <- matrix(1:12,nrow=3,ncol=4)
> m <- matrix(1:12,nrow=3,ncol=4,byrow=T) ## try this one



Data Objects - Matrices
• R matrices can also be constructed by

– Passing an dim attribute to a vector
> m <- 1:10
> m
[1]  1  2  3  4  5  6  7  8  9 10
> dim(m) <- c(2, 5)
> m

[,1] [,2] [,3] [,4] [,5]
[1,]    1    3    5    7    9
[2,]    2    4    6    8   10

– Using cbind() or rbind() functions
> x <- 1:3
> y <- 10:12
> cbind(x, y)
x y
[1,] 1 10
[2,] 2 11
[3,] 3 12
> rbind(x, y)
[,1] [,2] [,3]
x 1 2 3
y 10 11 12
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Data Objects – Arrays
• Elements of same class with a number of dimensions

– Vectors and matrices are arrays of 1 and 2 dimensions
– Function array() creates an array with given dimensions
> # An array with 8 elements and 3 dimensions
> m <- array(data = 1:8,dim = c(2,2,2))
>m
, , 1

[,1] [,2]
[1,]    1    3
[2,]    2    4

, , 2

[,1] [,2]
[1,]    5    7
[2,]    6    8
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Data Objects - Lists
• Lists are an ordered collection of objects (which can be of different types 

or classes and different lengths)
• Lists can be constructed by using the list() function
> x <- c(31, 32, 40)   
> y <- factor(c("F", "M", "M", "F"))
> z <- c("London", "New York")
> my_list <- list(x,y,z)
> my_list
[[1]]
[1] 31 32 40

[[2]]
[1] F M M F
Levels: F M

[[3]]
[1] "London"   "New York"
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Data Objects - Lists
• Elements of R objects can have names, names() function can display:
> names(my_list)
NULL

• Names can be assigned
> names(my_list) <- c("age","sex","city")
> names(my_list)
[1] "age"  "sex"  "city“

• Or can be assigned when creating a list. 
> my_list2 <- list(age=x,sex=y,city=z)
> names(my_list2)
[1] "age"  "sex"  "city“
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Lists Indexing
• Using two equivalent ways to access the first component (e.g. age in my_list):

– the [[]] operator
> my_list[[1]]
[1] 31 32 40

– the “$” sign  if the elements of list have names
> my_list$age
[1] 31 32 40

• Referring individual element 
> my_list$age[1]
[1] 31
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Data Objects - Data Frames
• Data frames are used to store tabular data

– They are a special type of lists where every element (i.e. 
“column” or “variable”) has to be of the same length, but can 
be of different class

– Why do we need data frames if it is simply a list? - More 
efficient storage, and indexing!

– Data frames can have special attributes such as row.names
– Data frames can be created by 

• combining elements with the same length using data.frame() 
functions

• reading data files, using functions such as read.table() or 
read.csv()
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Data Objects - Data Frames
• Data frames can be created directly by calling data.frame()
> my_df <- data.frame(age=c(31,40,50), sex=c("M","F","M"))
> my_df

age sex
1  31   M
2  40   F
3 50   M

• Column names can be assigned
> names(my_df) <- c("c1","c2")
> my_df

c1 c2
1 31  M
2 40  F
3 50  M
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Data Objects - Data Frames
• Row names are automatically assigned and are by default labelled “1”, “2”, 

“3”, …
> row.names(my_df)
[1] "1" "2" "3"

• These can also be renamed if desired
> row.names(my_df)<-c("r1","r2","r3")
> my_df

c1 c2
r1 31  M
r2 40  F
r3 50  M

10/21/2020 HPC training series Fall 2020 42



Matrices and Data Frames Indexing
• One can use [<index>,<index>] to access individual element
> my_df[1,2]
[1] M

• Indexing by columns 
> my_df[,1]
[1] 31 40 50
> my_df[,1:2]

age sex
1  31   M
2  40   F
3  50   M

• Indexing by rows
> my_df[1,]

age sex
1  31   M
> my_df[2:3,]

age sex
2  40   F
3  50   M
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Matrices and Data Frames Indexing
• the “$” sign  if the elements of matrix/dataframe have names
> my_df$sex
[1] M F M
Levels: F M
> my_df$sex[2] ## Referring individual element 

[1] F
Levels: F M

• the [[]] operator
> my_df[[1]]
[1] 31 40 50
> my_df[[1]][1]
[1] 31
> my_df[[3]][1]
Error in .subset2(x, i, exact = exact) : subscript out of bounds
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Matrices and Data Frames Indexing
• Indexing can be conditional on the variable itself or on another variable!
> pain <- c(0, 3, 2, 2, 1)
> sex <- factor(c("M", "M", "F", "F", "M"))
> age <- c(45, 51, 45, 32, 90)
> which(sex=="M")
[1] 1 2 5
> pain[sex=="M"]
[1] 0 3 1
> pain[age>32]
[1] 0 3 2 1
> pain[(age>32)&(sex=="M")]
[1] 0 3 1
> pain[(age>=49)|(age<41)]
[1] 3 2 1
> my_df

age sex
1  31   M
2  40   F
3  50   M
> my_df$age[my_df$sex=="M"]
[1] 31 50
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Querying Object Attributes
• The length() function
• The class() function
• The dim() function
• The str() function
• The attributes() function reveals attributes of an object

– Class
– Names
– Dimensions
– Length
– User defined attributes

• They work on all objects (including functions)
• More examples in the “Data inspection” section
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Exercises 2
1. In the Exercises 1, a vector x <- seq(from=1,to=100,by=2) has 

been created. What if we want to exclude the values greater 
than 40 and less than 80?

2. Create a data frame called “cone” with three elements. The 
first two elements are radiuses and heights of the cones:

R <- c(2.27, 1.98, 1.69, 1.88, 1.64, 2.14)
H <- c(8.28, 8.04, 9.06, 8.70, 7.58, 8.34)
Recall the volume of a cone with radius R and height H is given by 
ଵ

ଷ
ଶ . Make the third element as V, which is the volume of the cone.
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Exercises 2 - solution
1. x[x>40 & x<80]
2. > R <- c(2.27, 1.98, 1.69, 1.88, 1.64, 2.14)

> H <- c(8.28, 8.04, 9.06, 8.70, 7.58, 8.34)
> V <- 1/3*pi*R^2*H
> V
[1] 44.67974 33.00768 27.09756 32.20057 21.34939 39.99652
> data.frame(R,H,V)
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Flow Control Structures
• Control structures allow one to control the flow of 

execution.
– Similar to other script languages
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if … 
else

testing a condition

for executing a loop (with fixed number of iterations)

while executing a loop when a condition is true

repeat executing an infinite loop

break breaking the execution of a loop

next skipping to next iteration

return exit a function



Testing Conditions
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# Comparisons: <, <=, >, >=, ==, !=
# Logical operations: 
# !: NOT
# &: AND (element wise)
# &&: AND (only leftmost element)
# |: OR (element wise)
# ||: OR (only leftmost element)

> x <- 10
> if(x > 3 && x < 5) {
+   print ("x is between 3 and 5")
+ } else if(x <= 3) {
+   print ("x is less or equal to 3")
+ } else {
+   print ("x is greater or equal to 5")
+ }
[1] "x is greater or equal to 5"

An example if.R



For Loops
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# Syntax
# for (value in sequence) {
#   statements
# }

> x <- c(2,5,3,9,8,11,6)
> count <- 0
> for (i in x) {
+   if (i %% 2 == 0) count <- count+1
+ }
> count
[1] 3

# Loops are not very frequent used because of many inherently 
vectorized operations and the family of apply()functions (more 
on this later)

An example for.R
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Simple Statistical Functions
min() Minimum value

max() Maximum value

which.min() Location of minimum value

which.max() Location of maximum value

sum() Sum of the elements of a vector

mean() Mean of the elements of a vector

sd() Standard deviation of the elements of a vector

quantile() Show quantiles of a vector

summary() Display descriptive statistics
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> mean(weight,na.rm=T)
[1] 77.8
> which.min(weight)
[1] 1
> min(weight,na.rm=T)
[1] 60
> 



Distributions and Random Variables
• For each distribution R provides four functions: density (d), 

cumulative density (p), quantile (q), and random generation (r)
– The function name is of the form [d|p|q|r]<name of 
distribution>

– e.g. qbinom() gives the quantile of a binomial distribution
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Distribution Distribution name in R

Uniform unif

Binomial binom

Poisson pois

Geometric geom

Gamma gamma

Normal norm

Log Normal lnorm

Exponential exp

Student’s t t



Distributions and Random Variables
• Generating random number from normal distribution
> set.seed(1)
> rnorm(2,mean=0,sd=1)
[1] -0.6264538  0.1836433

> pnorm(1.96)
[1] 0.9750021

• The inverse of the above function call
> qnorm(0.975)
[1] 1.959964
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Sorting and Random Samples
• Sort and order elements: sort(), rank() and order().
> x <- c(1.2,0.4,2.3,0.9)
> sort(x)  ## sort x in ascending order
> sort(x,decreasing=T) ## sort x in descending order
> rank(x)
[1] 3 1 4 2
> order(x)  ## order() returns the indices of the vector in sorted order
[1] 2 4 1 3
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Sorting and Random Samples
• Random sampling function sample().
> sample(1:4,4,replace=F)
> sample(1:10,10,replace=F)
> sample(1:10,10,replace=T)  ## will be different from the last run
> sample(1:4,10,replace=T,prob=c(.2,.5,.2,.1))

• Using the same seed value through set.seed() can reproduce the 
same outcome.

> set.seed(1)
> sample(1:4,10,replace=T)
[1] 2 2 3 4 1 4 4 3 3 1
> set.seed(1)
> sample(1:4,10,replace=T)
[1] 2 2 3 4 1 4 4 3 3 1
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The table Function
• The table() function is useful to tabulate factors or find the frequency of 

an object
• Example: The quine dataset consists of 146 rows describing children's 

ethnicity (Eth), age (Age), sex (Sex), days absent from school (Days) and their 
learning ability (Lrn).
– If we want to find out the frequency of the age classes in quine dataset
> library(MASS)
> table(quine$Age)
F0 F1 F2 F3 
27 46 40 33

– If we need to know the breakdown of ages according to sex
> table(quine$Sex,quine$Age)

F0 F1 F2 F3
F 10 32 19 19
M 17 14 21 14
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The apply Function

• The apply() function evaluate a function over 
the margins of an array 
– More concise than the for loops (not necessarily 

faster)
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# X: array objects
# MARGIN: a vector giving the subscripts which the function will be applied over
# FUN: a function to be applied

> str(apply)
function (X, 2, FUN, ...)
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> x <- matrix(rnorm(200), 20, 10)
# Row means
> apply(x, 1, mean)
[1] -0.23457304  0.36702942 -0.29057632 -0.24516988 -0.02845449  0.38583231
[7]  0.16124103 -0.10164565  0.02261840 -0.52110832 -0.10415452  0.40272211

[13]  0.14556279 -0.58283197 -0.16267073  0.16245682 -0.28675615 -0.21147184
[19]  0.30415344  0.35131224

# Column sums
> apply(x, 2, sum)
[1]  2.866834  2.110785 -2.123740 -1.222108 -5.461704 -5.447811 -4.299182
[8] -7.696728  7.370928  9.237883

# 25th and 75th Quantiles for rows
> apply(x, 1, quantile, probs = c(0.25, 0.75))

[,1]       [,2]       [,3]       [,4]      [,5]       [,6]
25% -0.52753974 -0.1084101 -1.1327258 -0.9473914 -1.176299 -0.4790660
75%  0.05962769  0.6818734  0.7354684  0.5547772  1.066931  0.6359116

[,7]       [,8]       [,9]       [,10]      [,11]      [,12]
25% -0.1968380 -0.5063218 -0.8846155 -1.54558614 -0.8847892 -0.2001400
75%  0.7910642  0.3893138  0.8881821 -0.06074355  0.5042554  0.9384258

[,13]       [,14]      [,15]      [,16]      [,17]      [,18]
25% -0.5378145 -1.08873676 -0.5566373 -0.3189407 -0.6280269 -0.6979439
75%  0.6438305 -0.02031298  0.3495564  0.3391990 -0.1151416  0.2936645

[,19]      [,20]
25% -0.259203 -0.1798460
75%  1.081322  0.8306676



Other apply Functions

• lapply - Loop over a list (data frame) and 
evaluate a function on each element

• sapply - Same as lapply but try to simplify 
the result

## lapply & sapply example 
> x <- list(a = 1, b = 1:3, c = 10:100) 
> lapply(x, FUN = length) 
> sapply(x, FUN = length) 
> lapply(x, FUN = sum) 
> sapply(x, FUN = sum) 
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Other apply Functions
• In statistics, one of the most basic activities is 

computing statistic of variables
• tapply - Apply a function over subsets of a vector
• mapply - Multivariate version of lapply
## generate medical data for tapply example (https://www.r-bloggers.com/r-
function-of-the-day-tapply-2/)
> medical.example <-
+     data.frame(patient = 1:100,
+                age = rnorm(100, mean = 60, sd = 12),
+                treatment = gl(2, 50,
+                  labels = c("Treatment", "Control")))
> tapply(medical.example$age, medical.example$treatment, mean)
Treatment   Control 

61.7065   59.9123 
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User Defined Functions

• Similar to other languages, functions in rare 
defined by using the function()directives

• The return value is the last expression in the 
function body to be evaluated

• Functions can be nested
• Functions are R objects

– For example, they can be passed as an argument to 
other functions
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Example of User Defined Function
# Syntax
# function_name <- function (arguments) {
#   statement
# }
#
# Define the function for the power calculation
> pow <- function(x, y) {
+    result <- x^y
+}

# Call the function
> c <- pow(4,2)
> c
[1] 16
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Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator 
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 66



Installing and Loading R Packages - PC

• Installation:
– Option 1: menu item 
– Option 2: run install.packages(“<package 
name>”) function in the console

• Loading: the library(<package name>) 
function load previously installed packages

• Libraries that R currently searching can be shown with 
.libPaths()
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Installing and Loading R Packages - Cluster
• Installation

– You most likely do NOT have root privilege
– Point the environment variable R_LIBS_USER to a 

desired location
– Use the install.packages(“<package 
name>”) function to install a library 

• Loading: the library(<package name>) 
function load previously installed packages

• Libraries that R currently searching can be shown 
with .libPaths()
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[ychen64@mike002 ~]$ export R_LIBS_USER=/home/ychen64/packages/R/libraries
[ychen64@mike002 ~]$ echo $R_LIBS_USER
/home/ychen64/packages/R/libraries
[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> .libPaths ()
[1] "/home/ychen64/packages/R/libraries"
[2] "/home/packages/r/3.4.3/INTEL-18.0.0/lib64/R/library“

> install.packages("swirl")
> library(swirl)

| Hi! Type swirl() when you are ready to begin.



Listing and Unloading
R Packages - PC and Cluster

• List all available packages library(), press “q” to 
quit

• List all packages in the default library (on the 
SuperMike2 cluster the default is 
/home/packages/r/3.5.3/INTEL-18.0.0/lib64/R/library) 
library(lib = .Library)

• Show currently loaded libraries: the 
search()function or sessionInfo()function

• Check package version: packageVersion 
(“<package name>”)

• Unload detach(package:<package name>)
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[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> library()
> library(lib = .Library)

> search()
[1] ".GlobalEnv"        "package:swirl"     "package:stats"
[4] "package:graphics"  "package:grDevices" "package:utils"
[7] "package:datasets"  "package:methods"   "Autoloads"
[10] "package:base"
> packageVersion("swirl") 
> detach(package:swirl)



Updating and Uninstall 
R Packages - PC and Cluster

• Update update.packages(“<package 
name>”)

• Uninstall remove.packages(“<package 
name>”)

• Documentation page: 
http://www.hpc.lsu.edu/docs/faq/installation-
details.php
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[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> update.packages("swirl")
> remove.packages("swirl")



Steps for Data Analysis

• Get the data 
• Read and inspect the data
• Preprocess the data (remove missing and dubious 

values, discard columns not needed etc.)
• Analyze the data
• Generate the report
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Take-home message
• R basics

– What is R 
– How to run R codes on PC and cluster 
– Basic syntax (variable assignment) 
– R as a calculator 
– Data classes and objects in R (dataframe!)
– Flow control structures
– Functions (basic statistical functions) 
– How to install and load R packages
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Not Covered
• Data acquisition
• Data inspection
• Report generation
• Data manipulation
• Statistical analysis (e.g regression models, machine 

learning/data mining)
• Advanced graphics in R
• Parallel processing in R
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Learning R
• User documentation on CRAN

– An Introduction on R: http://cran.r-project.org/doc/manuals/r-
release/R-intro.html

• Online tutorials (tons of them)
– http://www.cyclismo.org/tutorial/R/

• Online courses (e.g. Coursera)
• Blogs

– https://www.r-bloggers.com
• Educational R packages

– Swirl: Learn R in R
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Next HPC Training

• Introduction to Python, October 28. 
• Weekly trainings during regular semester 

– Wednesdays “9:00am-11:00am” session, pure 
Zoom 

• Programming/Parallel Programming 
workshops 
– Usually in summer

10/21/2020 HPC training series Fall 2020 78



More R Tutorials – Data Analysis in R

• You will learn the data analysis fundamentals with 
applications in R. 

• The data pre-processing using R will be introduced 
first, then some basic statistical analysis methods 
such as linear regression, classification as well as re-
sampling methods for the basic machine learning will 
be covered
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More R Tutorials – Data Visualization in R

• This training provided an introduction to the R 
graphics in detail

• An overview on how to create and save graphs 
in R, then focus on the ggplot2 package.

• http://www.hpc.lsu.edu/training/archive/tuto
rials.php
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More R Tutorials – Parallel Computing with R

• This training focused on how to use the 
"parallel" package in R and a few related 
packages to parallelize and enhance the 
performance of R programs

• http://www.hpc.lsu.edu/training/archive/tuto
rials.php
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Getting Help

• User Guides
– LSU HPC: 

http://www.hpc.lsu.edu/docs/guides.php#hpc
– LONI:http://www.hpc.lsu.edu/docs/guides.php#loni

• Documentation: http://www.hpc.lsu.edu/docs
• Contact us

– Email ticket system: sys-help@loni.org
– Telephone Help Desk: 225-578-0900
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Questions?
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