
Introduction to R

Yuwu Chen
HPC @ LSU

10/21/2020 HPC training series Fall 2020

Some materials are borrowed from the EXST 7142/7152
data mining courses by Dr. Bin Li at Statistics Dept.

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 1

What is R
• R is an integrated suite of software facilities for

– importing, storing, exporting and manipulating data;
– scientific computation;
– conducting statistical analyses;
– displaying the results by tables, graphs, etc.

• Highly customizable via thousands of freely available
packages.

• R is also a platform for the development and
implementation of new algorithms.

• Many graphical user interface to R both free and
commercial
(e.g. Rstudio and Revolution R (now Microsoft R)).

10/21/2020 HPC training series Fall 2020 2

What is R
• R mailing lists: http://www.R-project.org/mail.html

– R-announce: announcements of major R developments.
– R-packages: announcements of new R packages.
– R-help: main discussion list.
– R-devel: discussion on code development in R.
– Special interest group (e.g. R-SIG-Finance).

10/21/2020 HPC training series Fall 2020 3

History of R
• R is a dialect of the S language

– S was created in 1976 at the Bell Labs as an internal statistical analysis
environment

– Goal of S was “to turn ideas into software, quickly and faithfully".
– Most well known implementation is S-plus (most recent stable release was in

2010). S-Plus integrates S with a nice GUI interface and full customer support.

• R was created by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand.

• The R core group was formed in 1997, who controls the source code of R
(written in C)

• The first stable version R 1.0.0 was released in 2000
• Latest stable version is 4.0.3 released on Oct 10, 2020

10/21/2020 HPC training series Fall 2020 4

Features of R
• R is a language designed for statistical analysis
• Available on most platform/OS
• Rich data analysis functionalities and sophisticated

graphical capabilities
• Active development and very active community

– CRAN: The Comprehensive R Archive Network
• Source code and binaries, user contributed packages and

documentation
– More than 16,000 packages available on CRAN (as of October

2020)
• 6,000 five years ago

• Free to use!

10/21/2020 HPC training series Fall 2020 5

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 6

Installing and Loading R
• On your PC

– R console can be downloaded from: http://cran.r-project.org/
– Rstudio is the de facto environment for R on a desktop system

• On a cluster
– R is installed on all LONI and LSU HPC clusters

• QB2: r/3.5.3/INTEL-18.0.1
• QB3:r/3.6.2/intel-19.0.5
• SuperMIC: r/3.5.3/INTEL-18.0.1
• SuperMike2: r/3.5.3/INTEL-18.0.0

– User requested R
• Usually installed in user home directory

10/21/2020 HPC training series Fall 2020 7

R Console

• Linux/Mac/Windows version available
• Limited graphic user interface (GUI)
• Command line interface (CLI) is similar to HPC

environment

10/21/2020 HPC training series Fall 2020 8

R Console

10/21/2020 HPC training series Fall 2020 9

RStudio

• Similar graphic user interface (GUI) to other Windows
software, dividing the screen into panes
– Source code
– Console
– Workspace
– Others (help message, plot etc.)

• Rstudio in a desktop environment is better suited for
development and/or a limited number of small jobs

10/21/2020 HPC training series Fall 2020 10

10/21/2020 HPC training series Fall 2020 11

On LONI and LSU HPC Clusters

• Two modes to run R on clusters
– Interactive mode

• Type R command to launch the console
• Run R commands in the console

– Batch mode
• Write the R script first, then submit a batch job to run it

(use the Rscript command)
• This mode is better for production runs

10/21/2020 HPC training series Fall 2020 12

On LONI and LSU HPC Clusters

10/21/2020 HPC training series Fall 2020 13

Clusters are Better for Resource-
demanding Jobs

10/21/2020 HPC training series Fall 2020 14

Training random forest model
Resampling method: 10-fold cross-validation

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 15

Basic Syntax
• The default R prompt is the greater-than sign (>)
> 2*4
[1] 8
> options(prompt="R>")
R>

• If a line is not syntactically complete, a continuation prompt (+) appears.
> 2*
+ 4
[1] 8

• Assignment operators are the left arrow (<-) and =. They both assign the
value of the object on the right to the object on the left.

> x <- 2*4

• The contents of the object x can be viewed by typing value at the R
prompt

> x
[1] 8

10/21/2020 HPC training series Fall 2020 16

Basic Syntax
• Last expression can be retrieved through an internal object .Last.value
> 2*4
[1] 8
> x <- .Last.value
> x
[1] 8

• Removing objects with the function rm()
> rm(x)
> x
Error: object 'value' not found

• Legal R Names
– names for R objects can be any combination of letters, numbers and

periods (.) but must not start with a number nor period
• Note: R is case sensitive. X and x are different in R.
> x <- 8
> X
Error: object 'X' not found

10/21/2020 HPC training series Fall 2020 17

Basic Syntax
• Function to clear the console in R and Rstudio
> cat("\014")

• The code above is the same as CTRL + L
• The saved object or function will not be affected
> x
[1] 8

• In R, any line starting with “#” will be interpreted as a comment
> # z <- 2*4
> # Nothing will happen

10/21/2020 HPC training series Fall 2020 18

Basic Syntax
• R allows automatic completion of type function or object name via the TAB

key
–Convenient, also error-proof
– If there is no unique name, all matching names will show

• R allows using the up arrow key “↑” -- the previous command you entered
shows up on the command line

10/21/2020 HPC training series Fall 2020 19

Basic Syntax
• Avoid assignment to built in functions

– R has a number of built in functions e.g. c, T, F, t
– An easy way to avoid this problem is to check the contents of the object

you wish to use, this also stops you from overwriting the contents of a
previously saved object

> X # object with no value assigned
Error: object 'value' not found
> x # object with a value assigned
[1] 8
> T # Built in R value
[1] TRUE
> t # Built in R function
function (x)
UseMethod("t")

• Spaces
– R will ignore extra spaces between object names and operators
> x <- 2 * 4
[1] 8

– Spaces cannot be placed between the < and - in the assignment operator
> x < - -2 * 4
[1] FALSE

10/21/2020 HPC training series Fall 2020 20

R as a Calculator
• Arithmetic operators and parentheses
> (1+2)/(3*2)
> [1] 0.5

• Power operator
> 2^3
[1] 8
> 4^0.5
[1] 2
> sqrt(4)
[1] 2

• Scientific notation
> 2.1e2
[1] 210

10/21/2020 HPC training series Fall 2020 21

R as a Calculator
• Exponential function
> exp(1); exp(0) # ; is the newline separate commands
[1] 2.718282
[1] 1

• Inf means "non-finite numeric value"
> x <- 1/0
> x
[1] Inf
> y <- -1/0
> y
[1] -Inf

• NaN means "not a number"
> x+y
[1] NaN

• pi
> pi
[1] 3.141593
> help(pi) # Get help from R. You can also use ?pi

10/21/2020 HPC training series Fall 2020 22

R as a Calculator

• Comparisons: <, <=, >, >=, ==, !=
> 1 > 2
> 1 !=2

• Logical operations
– NOT: !
– AND (element wise): &
– OR(element wise): |

10/21/2020 HPC training series Fall 2020 23

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 24

Data Classes
• R has five atomic classes

– Two numeric classes (numeric (double) or special type integer)
• Numbers in R are treated as numeric unless specified otherwise.

> x <- 605
> x
[1] 605

– Complex
> cn <- 2 + 3i
> cn
[1] 2 + 3i

– Character
> string <- “Hello World”
> string
[1] “Hello World”

– Logical
• TRUE, FALSE or NA. The code missing values in R is NA.

> 2 < 4
[1] TRUE
> value <- NA
> is.logical(value)

10/21/2020 HPC training series Fall 2020 25

Data Classes

• The function class() can determine the class of each object
> class(x)
[1] “numeric”
> class(string)
[1] “character”
> class(cn)
[1] “complex”

• The is.<type>()functions check the data classes
> is.numeric(x)
[1] TURE
> is.character(string)

• The as.<type>() funtions convert an object to a different type
> as.character(x)

10/21/2020 HPC training series Fall 2020 26

Data Objects

• R Data objects
– Vector: elements of same class, one dimension
– Matrix: elements of same class, two dimensions
– Array: elements of same class, 2+ dimensions
– Lists: elements can be any objects
– Data frames: “datasets” where columns are

variables and rows are observations

10/21/2020 HPC training series Fall 2020 27

Data Objects - Vectors
• Vectors can only contain elements of the same data class
• Vectors can be constructed by

– Using the c()function (concatenate)
> d <- c(1,2,3) ##numeric
> d <- c("1","2","3") ##character
> value.logical <- c(F,F,T) ##logical

– you can convert an object with as.TYPE()functions
> as.numeric(d)

– Coercion will occur when mixed objects are passed to the c()
function, as if the as.<Type>()function is explicitly called

> y <- c(1.7, "a") ## character
> y <- c(TRUE, 2) ## numeric
> y <- c("a", TRUE) ## character

10/21/2020 HPC training series Fall 2020 28

Data Objects - Vectors
• Vectors can also be constructed by

– Using the vector() function
> x <- vector("numeric", length = 10)
> x
[1] 0 0 0 0 0 0 0 0 0 0

– Using seq()or rep() function
> x <- seq(from=2,to=10,by=2)
> x <- seq(from=2,to=10,length=5)
> x <- rep(5,6)

‒ Using “:” operator
> x <- 0:6

• Vectors can be created using a combination of these functions.
> value1 <- c(1,2:4,rep(3,4),seq(from=1,to=6,by=2))
> value2 <- rep(c(1,2),3)
> value3 <- rep(c(1,2),each=3)

10/21/2020 HPC training series Fall 2020 29

Data Objects - Vectors
• NA in R means missing value
> weight <- c(60, 72, NA, 90, 95, 72) # unit is kg, contents after the # sign are comments
> weight
[1] 60 72 NA 90 95 72
> height <- c(1.75,1.80,1.65,1.90,1.74,1.91) # unit: meter

• Vector based operations are very fast!
> bmi <- weight/height^2 # bmi stands for body mass index
> bmi
[1] 19.59184 22.22222 NA 24.93075 31.37799 19.73630
> mean(weight)
[1] NA
> mean(weight, na.rm=TRUE)
[1] 77.8
> sd(weight, na.rm=T)
[1] 14.39444
> median(weight, na.rm=T)
[1] 72
> round(height, d=1)
[1] 1.8 1.8 1.6 1.9 1.7 1.9

10/21/2020 HPC training series Fall 2020 30

Vectors Indexing
• One can use [<index>] to access individual element of interest

– Indices start from 1
> x <- 1:10
> x[4] ## individual element of a vector
> x[1,4] ## how about multiple elements?
Error in x[1,4] : incorrect number of dimensions
> x[c(1,4)] ## this is the correct way
[1] 1 4
> x[c(1,8:9,3)] ## not necessarily in order
[1] 1 8 9 3
> x[-1] ## negative indices drop elements
[1] 2 3 4 5 6 7 8 9 10
> x[-1:-5]
[1] 6 7 8 9 10
> x[c(T,T,T,T,T,F,F,F,F,F)] ## Can use logical values as indices
[1] 1 2 3 4 5
> x[c(T,F)] ## Use a pattern
[1] 1 3 5 7 9

10/21/2020 HPC training series Fall 2020 31

Exercises 1

1. Create a vector of the positive odd integers less than 100,
save it to “x” (Hint: use seq function).

2. Only access the values less than 18 in x.

10/21/2020 HPC training series Fall 2020 32

Exercises 1 - solution
1. x <- seq(from=1,to=100,by=2)
2. x[c(1:9)]

10/21/2020 HPC training series Fall 2020 33

Data Objects - Matrices
• Matrices are vectors with a dimension attribute
• R matrices can be constructed by

– Using the matrix() function
> m <- matrix(1:12,nrow=3,ncol=4)
> m

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

10/21/2020 HPC training series Fall 2020 34

• R matrices are constructed column-wise by default
> m <- matrix(1:12,nrow=3,ncol=4,byrow=F) ## is the same as x <- matrix(1:12,nrow=3,ncol=4)
> m <- matrix(1:12,nrow=3,ncol=4,byrow=T) ## try this one

Data Objects - Matrices
• R matrices can also be constructed by

– Passing an dim attribute to a vector
> m <- 1:10
> m
[1] 1 2 3 4 5 6 7 8 9 10
> dim(m) <- c(2, 5)
> m

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

– Using cbind() or rbind() functions
> x <- 1:3
> y <- 10:12
> cbind(x, y)
x y
[1,] 1 10
[2,] 2 11
[3,] 3 12
> rbind(x, y)
[,1] [,2] [,3]
x 1 2 3
y 10 11 12

10/21/2020 HPC training series Fall 2020 35

Data Objects – Arrays
• Elements of same class with a number of dimensions

– Vectors and matrices are arrays of 1 and 2 dimensions
– Function array() creates an array with given dimensions
> # An array with 8 elements and 3 dimensions
> m <- array(data = 1:8,dim = c(2,2,2))
>m
, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

10/21/2020 HPC training series Fall 2020 36

Data Objects - Lists
• Lists are an ordered collection of objects (which can be of different types

or classes and different lengths)
• Lists can be constructed by using the list() function
> x <- c(31, 32, 40)
> y <- factor(c("F", "M", "M", "F"))
> z <- c("London", "New York")
> my_list <- list(x,y,z)
> my_list
[[1]]
[1] 31 32 40

[[2]]
[1] F M M F
Levels: F M

[[3]]
[1] "London" "New York"

10/21/2020 HPC training series Fall 2020 37

Data Objects - Lists
• Elements of R objects can have names, names() function can display:
> names(my_list)
NULL

• Names can be assigned
> names(my_list) <- c("age","sex","city")
> names(my_list)
[1] "age" "sex" "city“

• Or can be assigned when creating a list.
> my_list2 <- list(age=x,sex=y,city=z)
> names(my_list2)
[1] "age" "sex" "city“

10/21/2020 HPC training series Fall 2020 38

Lists Indexing
• Using two equivalent ways to access the first component (e.g. age in my_list):

– the [[]] operator
> my_list[[1]]
[1] 31 32 40

– the “$” sign if the elements of list have names
> my_list$age
[1] 31 32 40

• Referring individual element
> my_list$age[1]
[1] 31

10/21/2020 HPC training series Fall 2020 39

Data Objects - Data Frames
• Data frames are used to store tabular data

– They are a special type of lists where every element (i.e.
“column” or “variable”) has to be of the same length, but can
be of different class

– Why do we need data frames if it is simply a list? - More
efficient storage, and indexing!

– Data frames can have special attributes such as row.names
– Data frames can be created by

• combining elements with the same length using data.frame()
functions

• reading data files, using functions such as read.table() or
read.csv()

10/21/2020 HPC training series Fall 2020 40

Data Objects - Data Frames
• Data frames can be created directly by calling data.frame()
> my_df <- data.frame(age=c(31,40,50), sex=c("M","F","M"))
> my_df

age sex
1 31 M
2 40 F
3 50 M

• Column names can be assigned
> names(my_df) <- c("c1","c2")
> my_df

c1 c2
1 31 M
2 40 F
3 50 M

10/21/2020 HPC training series Fall 2020 41

Data Objects - Data Frames
• Row names are automatically assigned and are by default labelled “1”, “2”,

“3”, …
> row.names(my_df)
[1] "1" "2" "3"

• These can also be renamed if desired
> row.names(my_df)<-c("r1","r2","r3")
> my_df

c1 c2
r1 31 M
r2 40 F
r3 50 M

10/21/2020 HPC training series Fall 2020 42

Matrices and Data Frames Indexing
• One can use [<index>,<index>] to access individual element
> my_df[1,2]
[1] M

• Indexing by columns
> my_df[,1]
[1] 31 40 50
> my_df[,1:2]

age sex
1 31 M
2 40 F
3 50 M

• Indexing by rows
> my_df[1,]

age sex
1 31 M
> my_df[2:3,]

age sex
2 40 F
3 50 M

10/21/2020 HPC training series Fall 2020 43

Matrices and Data Frames Indexing
• the “$” sign if the elements of matrix/dataframe have names
> my_df$sex
[1] M F M
Levels: F M
> my_df$sex[2] ## Referring individual element

[1] F
Levels: F M

• the [[]] operator
> my_df[[1]]
[1] 31 40 50
> my_df[[1]][1]
[1] 31
> my_df[[3]][1]
Error in .subset2(x, i, exact = exact) : subscript out of bounds

10/21/2020 HPC training series Fall 2020 44

Matrices and Data Frames Indexing
• Indexing can be conditional on the variable itself or on another variable!
> pain <- c(0, 3, 2, 2, 1)
> sex <- factor(c("M", "M", "F", "F", "M"))
> age <- c(45, 51, 45, 32, 90)
> which(sex=="M")
[1] 1 2 5
> pain[sex=="M"]
[1] 0 3 1
> pain[age>32]
[1] 0 3 2 1
> pain[(age>32)&(sex=="M")]
[1] 0 3 1
> pain[(age>=49)|(age<41)]
[1] 3 2 1
> my_df

age sex
1 31 M
2 40 F
3 50 M
> my_df$age[my_df$sex=="M"]
[1] 31 50

10/21/2020 HPC training series Fall 2020 45

Querying Object Attributes
• The length() function
• The class() function
• The dim() function
• The str() function
• The attributes() function reveals attributes of an object

– Class
– Names
– Dimensions
– Length
– User defined attributes

• They work on all objects (including functions)
• More examples in the “Data inspection” section

10/21/2020 HPC training series Fall 2020 46

Exercises 2
1. In the Exercises 1, a vector x <- seq(from=1,to=100,by=2) has

been created. What if we want to exclude the values greater
than 40 and less than 80?

2. Create a data frame called “cone” with three elements. The
first two elements are radiuses and heights of the cones:

R <- c(2.27, 1.98, 1.69, 1.88, 1.64, 2.14)
H <- c(8.28, 8.04, 9.06, 8.70, 7.58, 8.34)
Recall the volume of a cone with radius R and height H is given by
ଵ

ଷ
ଶ . Make the third element as V, which is the volume of the cone.

10/21/2020 HPC training series Fall 2020 47

Exercises 2 - solution
1. x[x>40 & x<80]
2. > R <- c(2.27, 1.98, 1.69, 1.88, 1.64, 2.14)

> H <- c(8.28, 8.04, 9.06, 8.70, 7.58, 8.34)
> V <- 1/3*pi*R^2*H
> V
[1] 44.67974 33.00768 27.09756 32.20057 21.34939 39.99652
> data.frame(R,H,V)

10/21/2020 HPC training series Fall 2020 48

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 49

Flow Control Structures
• Control structures allow one to control the flow of

execution.
– Similar to other script languages

10/21/2020 HPC training series Fall 2020 50

if …
else

testing a condition

for executing a loop (with fixed number of iterations)

while executing a loop when a condition is true

repeat executing an infinite loop

break breaking the execution of a loop

next skipping to next iteration

return exit a function

Testing Conditions

10/21/2020 HPC training series Fall 2020 51

Comparisons: <, <=, >, >=, ==, !=
Logical operations:
!: NOT
&: AND (element wise)
&&: AND (only leftmost element)
|: OR (element wise)
||: OR (only leftmost element)

> x <- 10
> if(x > 3 && x < 5) {
+ print ("x is between 3 and 5")
+ } else if(x <= 3) {
+ print ("x is less or equal to 3")
+ } else {
+ print ("x is greater or equal to 5")
+ }
[1] "x is greater or equal to 5"

An example if.R

For Loops

10/21/2020 HPC training series Fall 2020 52

Syntax
for (value in sequence) {
statements
}

> x <- c(2,5,3,9,8,11,6)
> count <- 0
> for (i in x) {
+ if (i %% 2 == 0) count <- count+1
+ }
> count
[1] 3

Loops are not very frequent used because of many inherently
vectorized operations and the family of apply()functions (more
on this later)

An example for.R

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 53

Simple Statistical Functions
min() Minimum value

max() Maximum value

which.min() Location of minimum value

which.max() Location of maximum value

sum() Sum of the elements of a vector

mean() Mean of the elements of a vector

sd() Standard deviation of the elements of a vector

quantile() Show quantiles of a vector

summary() Display descriptive statistics

10/21/2020 HPC training series Fall 2020 54

> mean(weight,na.rm=T)
[1] 77.8
> which.min(weight)
[1] 1
> min(weight,na.rm=T)
[1] 60
>

Distributions and Random Variables
• For each distribution R provides four functions: density (d),

cumulative density (p), quantile (q), and random generation (r)
– The function name is of the form [d|p|q|r]<name of
distribution>

– e.g. qbinom() gives the quantile of a binomial distribution

10/21/2020 HPC training series Fall 2020 55

Distribution Distribution name in R

Uniform unif

Binomial binom

Poisson pois

Geometric geom

Gamma gamma

Normal norm

Log Normal lnorm

Exponential exp

Student’s t t

Distributions and Random Variables
• Generating random number from normal distribution
> set.seed(1)
> rnorm(2,mean=0,sd=1)
[1] -0.6264538 0.1836433

> pnorm(1.96)
[1] 0.9750021

• The inverse of the above function call
> qnorm(0.975)
[1] 1.959964

10/21/2020 HPC training series Fall 2020 56

Sorting and Random Samples
• Sort and order elements: sort(), rank() and order().
> x <- c(1.2,0.4,2.3,0.9)
> sort(x) ## sort x in ascending order
> sort(x,decreasing=T) ## sort x in descending order
> rank(x)
[1] 3 1 4 2
> order(x) ## order() returns the indices of the vector in sorted order
[1] 2 4 1 3

10/21/2020 HPC training series Fall 2020 57

Sorting and Random Samples
• Random sampling function sample().
> sample(1:4,4,replace=F)
> sample(1:10,10,replace=F)
> sample(1:10,10,replace=T) ## will be different from the last run
> sample(1:4,10,replace=T,prob=c(.2,.5,.2,.1))

• Using the same seed value through set.seed() can reproduce the
same outcome.

> set.seed(1)
> sample(1:4,10,replace=T)
[1] 2 2 3 4 1 4 4 3 3 1
> set.seed(1)
> sample(1:4,10,replace=T)
[1] 2 2 3 4 1 4 4 3 3 1

10/21/2020 HPC training series Fall 2020 58

The table Function
• The table() function is useful to tabulate factors or find the frequency of

an object
• Example: The quine dataset consists of 146 rows describing children's

ethnicity (Eth), age (Age), sex (Sex), days absent from school (Days) and their
learning ability (Lrn).
– If we want to find out the frequency of the age classes in quine dataset
> library(MASS)
> table(quine$Age)
F0 F1 F2 F3
27 46 40 33

– If we need to know the breakdown of ages according to sex
> table(quine$Sex,quine$Age)

F0 F1 F2 F3
F 10 32 19 19
M 17 14 21 14

10/21/2020 HPC training series Fall 2020 59

The apply Function

• The apply() function evaluate a function over
the margins of an array
– More concise than the for loops (not necessarily

faster)

10/21/2020 HPC training series Fall 2020 60

X: array objects
MARGIN: a vector giving the subscripts which the function will be applied over
FUN: a function to be applied

> str(apply)
function (X, 2, FUN, ...)

10/21/2020 HPC training series Fall 2020 61

> x <- matrix(rnorm(200), 20, 10)
Row means
> apply(x, 1, mean)
[1] -0.23457304 0.36702942 -0.29057632 -0.24516988 -0.02845449 0.38583231
[7] 0.16124103 -0.10164565 0.02261840 -0.52110832 -0.10415452 0.40272211

[13] 0.14556279 -0.58283197 -0.16267073 0.16245682 -0.28675615 -0.21147184
[19] 0.30415344 0.35131224

Column sums
> apply(x, 2, sum)
[1] 2.866834 2.110785 -2.123740 -1.222108 -5.461704 -5.447811 -4.299182
[8] -7.696728 7.370928 9.237883

25th and 75th Quantiles for rows
> apply(x, 1, quantile, probs = c(0.25, 0.75))

[,1] [,2] [,3] [,4] [,5] [,6]
25% -0.52753974 -0.1084101 -1.1327258 -0.9473914 -1.176299 -0.4790660
75% 0.05962769 0.6818734 0.7354684 0.5547772 1.066931 0.6359116

[,7] [,8] [,9] [,10] [,11] [,12]
25% -0.1968380 -0.5063218 -0.8846155 -1.54558614 -0.8847892 -0.2001400
75% 0.7910642 0.3893138 0.8881821 -0.06074355 0.5042554 0.9384258

[,13] [,14] [,15] [,16] [,17] [,18]
25% -0.5378145 -1.08873676 -0.5566373 -0.3189407 -0.6280269 -0.6979439
75% 0.6438305 -0.02031298 0.3495564 0.3391990 -0.1151416 0.2936645

[,19] [,20]
25% -0.259203 -0.1798460
75% 1.081322 0.8306676

Other apply Functions

• lapply - Loop over a list (data frame) and
evaluate a function on each element

• sapply - Same as lapply but try to simplify
the result

lapply & sapply example
> x <- list(a = 1, b = 1:3, c = 10:100)
> lapply(x, FUN = length)
> sapply(x, FUN = length)
> lapply(x, FUN = sum)
> sapply(x, FUN = sum)

10/21/2020 HPC training series Fall 2020 62

Other apply Functions
• In statistics, one of the most basic activities is

computing statistic of variables
• tapply - Apply a function over subsets of a vector
• mapply - Multivariate version of lapply
generate medical data for tapply example (https://www.r-bloggers.com/r-
function-of-the-day-tapply-2/)
> medical.example <-
+ data.frame(patient = 1:100,
+ age = rnorm(100, mean = 60, sd = 12),
+ treatment = gl(2, 50,
+ labels = c("Treatment", "Control")))
> tapply(medical.example$age, medical.example$treatment, mean)
Treatment Control

61.7065 59.9123

10/21/2020 HPC training series Fall 2020 63

User Defined Functions

• Similar to other languages, functions in rare
defined by using the function()directives

• The return value is the last expression in the
function body to be evaluated

• Functions can be nested
• Functions are R objects

– For example, they can be passed as an argument to
other functions

10/21/2020 HPC training series Fall 2020 64

Example of User Defined Function
Syntax
function_name <- function (arguments) {
statement
}
#
Define the function for the power calculation
> pow <- function(x, y) {
+ result <- x^y
+}

Call the function
> c <- pow(4,2)
> c
[1] 16

10/21/2020 HPC training series Fall 2020 65

Outline
• R basics

– What is R
– How to run R codes
– Basic syntax
– R as a calculator
– Data classes and objects in R
– Flow control structures
– Functions
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 66

Installing and Loading R Packages - PC

• Installation:
– Option 1: menu item
– Option 2: run install.packages(“<package
name>”) function in the console

• Loading: the library(<package name>)
function load previously installed packages

• Libraries that R currently searching can be shown with
.libPaths()

10/21/2020 HPC training series Fall 2020 67

Installing and Loading R Packages - Cluster
• Installation

– You most likely do NOT have root privilege
– Point the environment variable R_LIBS_USER to a

desired location
– Use the install.packages(“<package
name>”) function to install a library

• Loading: the library(<package name>)
function load previously installed packages

• Libraries that R currently searching can be shown
with .libPaths()

10/21/2020 HPC training series Fall 2020 68

10/21/2020 HPC training series Fall 2020 69

[ychen64@mike002 ~]$ export R_LIBS_USER=/home/ychen64/packages/R/libraries
[ychen64@mike002 ~]$ echo $R_LIBS_USER
/home/ychen64/packages/R/libraries
[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> .libPaths ()
[1] "/home/ychen64/packages/R/libraries"
[2] "/home/packages/r/3.4.3/INTEL-18.0.0/lib64/R/library“

> install.packages("swirl")
> library(swirl)

| Hi! Type swirl() when you are ready to begin.

Listing and Unloading
R Packages - PC and Cluster

• List all available packages library(), press “q” to
quit

• List all packages in the default library (on the
SuperMike2 cluster the default is
/home/packages/r/3.5.3/INTEL-18.0.0/lib64/R/library)
library(lib = .Library)

• Show currently loaded libraries: the
search()function or sessionInfo()function

• Check package version: packageVersion
(“<package name>”)

• Unload detach(package:<package name>)

10/21/2020 HPC training series Fall 2020 70

10/21/2020 HPC training series Fall 2020 71

[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> library()
> library(lib = .Library)

> search()
[1] ".GlobalEnv" "package:swirl" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"
> packageVersion("swirl")
> detach(package:swirl)

Updating and Uninstall
R Packages - PC and Cluster

• Update update.packages(“<package
name>”)

• Uninstall remove.packages(“<package
name>”)

• Documentation page:
http://www.hpc.lsu.edu/docs/faq/installation-
details.php

10/21/2020 HPC training series Fall 2020 72

10/21/2020 HPC training series Fall 2020 73

[ychen64@mike002 ~]$ R

R version 3.3.3 (2017-03-06) -- "Another Canoe"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
…

> update.packages("swirl")
> remove.packages("swirl")

Steps for Data Analysis

• Get the data
• Read and inspect the data
• Preprocess the data (remove missing and dubious

values, discard columns not needed etc.)
• Analyze the data
• Generate the report

10/21/2020 HPC training series Fall 2020 74

Take-home message
• R basics

– What is R
– How to run R codes on PC and cluster
– Basic syntax (variable assignment)
– R as a calculator
– Data classes and objects in R (dataframe!)
– Flow control structures
– Functions (basic statistical functions)
– How to install and load R packages

10/21/2020 HPC training series Fall 2020 75

Not Covered
• Data acquisition
• Data inspection
• Report generation
• Data manipulation
• Statistical analysis (e.g regression models, machine

learning/data mining)
• Advanced graphics in R
• Parallel processing in R

10/21/2020 HPC training series Fall 2020 76

Learning R
• User documentation on CRAN

– An Introduction on R: http://cran.r-project.org/doc/manuals/r-
release/R-intro.html

• Online tutorials (tons of them)
– http://www.cyclismo.org/tutorial/R/

• Online courses (e.g. Coursera)
• Blogs

– https://www.r-bloggers.com
• Educational R packages

– Swirl: Learn R in R

10/21/2020 HPC training series Fall 2020 77

Next HPC Training

• Introduction to Python, October 28.
• Weekly trainings during regular semester

– Wednesdays “9:00am-11:00am” session, pure
Zoom

• Programming/Parallel Programming
workshops
– Usually in summer

10/21/2020 HPC training series Fall 2020 78

More R Tutorials – Data Analysis in R

• You will learn the data analysis fundamentals with
applications in R.

• The data pre-processing using R will be introduced
first, then some basic statistical analysis methods
such as linear regression, classification as well as re-
sampling methods for the basic machine learning will
be covered

10/21/2020 HPC training series Fall 2020 79

More R Tutorials – Data Visualization in R

• This training provided an introduction to the R
graphics in detail

• An overview on how to create and save graphs
in R, then focus on the ggplot2 package.

• http://www.hpc.lsu.edu/training/archive/tuto
rials.php

10/21/2020 HPC training series Fall 2020 80

More R Tutorials – Parallel Computing with R

• This training focused on how to use the
"parallel" package in R and a few related
packages to parallelize and enhance the
performance of R programs

• http://www.hpc.lsu.edu/training/archive/tuto
rials.php

10/21/2020 HPC training series Fall 2020 81

Getting Help

• User Guides
– LSU HPC:

http://www.hpc.lsu.edu/docs/guides.php#hpc
– LONI:http://www.hpc.lsu.edu/docs/guides.php#loni

• Documentation: http://www.hpc.lsu.edu/docs
• Contact us

– Email ticket system: sys-help@loni.org
– Telephone Help Desk: 225-578-0900

10/21/2020 HPC training series Fall 2020 82

Questions?

10/21/2020 HPC training series Fall 2020 83

