
Basic Shell Scripting

Zach Byerly
HPC User Services
LSU HPC & LONI
sys-help@loni.org

Louisiana State University
Baton Rouge
July 8, 2020

Basic Shell Scripting

Outline

2

• Introduction to Linux Shell
• Shell Scripting Basics

• Variables/Special Characters
• Arithmetic Operations
• Arrays

• Beyond Basic Shell Scripting
– Flow Control
– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

Basic Shell Scripting

Linux System Architecture

3

Basic Shell Scripting

▪ An application running on top of the kernel and provides a
command line interface to the system
▪ Process user’s commands, gather input from user and execute programs

▪ Types of shell with varied features
o sh

o the original Bourne shell.

o ksh
o one of the three: Public domain ksh (pdksh), AT&T ksh or mksh

o bash
o the GNU Bourne-again shell. It is mostly Bourne-compatible, mostly

POSIX-compatible, and has other useful extensions. It is the default on
most Linux systems.

o csh
o BSD introduced the C shell, which sometimes resembles slightly the C

programming language.

o tcsh
o csh with more features. csh and tcsh shells are NOT Bourne-

compatible.

What is a Linux Shell

4

Basic Shell Scripting

Shell Comparison

*: not by default

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Software sh csh ksh bash tcsh

Programming language y y y y y

Shell variables y y y y y

Command alias n y y y y

Command history n y y y y

Filename autocompletion n y* y* y y

Command line editing n n y* y y

Job control n y y y y

5

http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html
http://www.cis.rit.edu/class/simg211/unixintro/Shell.html

Basic Shell Scripting

▪ Check the current shell you are using
▪ echo $0

▪ List available shells on the system
▪ cat /etc/shells

▪ Change to another shell
▪ csh

▪ Date
▪ date

▪ wget: get online files
▪ wget https://ftp.gnu.org/gnu/gcc/gcc-7.1.0/gcc-7.1.0.tar.gz

▪ Compile and run applications
▪ gcc hello.c –o hello
▪ ./hello

▪ What we need to learn today?
o Automation of an entire script of commands!
o Use the shell script to run jobs – Write job scripts

What can you do with a shell?

6

Basic Shell Scripting

Shell Scripting

▪ Script: a program written for a software environment to automate
execution of tasks
▪ A series of shell commands put together in a file
▪ When the script is executed, those commands will be executed

one line at a time automatically
▪ Shell script is interpreted, not compiled.

▪ The majority of script programs are “quick and dirty”, where the main
goal is to get the program written quickly
▪ May not be as efficient as programs written in C and Fortran

7

Basic Shell Scripting

When NOT to use Shell Scripting…
▪ Selected situations:

o Resource-intensive tasks, especially where speed is a factor
(sorting, hashing, recursion [2] ...)

o Procedures involving heavy-duty math operations, especially
floating point arithmetic, arbitrary precision calculations, or
complex numbers (use C++ or FORTRAN instead)

o Complex applications, where structured programming is a
necessity (type-checking of variables, function prototypes, etc.)

o Extensive file operations required (Bash is limited to serial file
access, and that only in a particularly clumsy and inefficient line-
by-line fashion.)

o Need native support for multi-dimensional arrays, data structures,
such as linked lists or trees

o Need to use libraries or interface with legacy code

8

Basic Shell Scripting

Script Example (~/.bashrc)

.bashrc

Source global definitions
if [-f /etc/bashrc]; then
. /etc/bashrc

fi

User specific aliases and functions
export PATH=$HOME/packages/bin:$PATH

export LD_LIBRARY_PATH=$HOME/packages/lib:$LD_LIBRARY_PATH
alias qsubI="qsub -I -X -l nodes=1:ppn=20 -l walltime=01:00:00
–A my_allocation"
alias lh="ls -altrh"

9

Basic Shell Scripting

Hello World

1. #!: "Shebang” line to instruct which interpreter to use.
In the current example, bash. For tcsh, it would be: #!/
bin/tcsh

2. All comments begin with "#".
3. Print "Hello World!" to the screen.

#!/bin/bash
A script example
echo "Hello World!" # print something

10

[fchen14@mike1 shelltut]$./hello_world.sh # using default /bin/bash
Hello World!
[fchen14@mike1 shelltut]$ bash hello_world.sh # using bash to run the
script
Hello World!

Interactive and non-interactive shells
• An interactive shell is one started without non-option arguments, unless -s is

specified, without specifying the -c option, and whose input and error output
are both connected to terminals or one started with the -i option.
o The user can interact with the shell from the terminal.
o e.g., open an interactive shell by typing bash or ssh from the terminal

• A shell running a script is always a non-interactive shell.
o All the same, the script can still access its tty. It is even possible to

emulate an interactive shell in a script.

o Test whether you are using an interactive shell using $- (prints The current
set of options in your current shell.)

[fchen14@mike1 shelltut]$ echo $-
himBH
[fchen14@mike1 shelltut]$ cat checkshell.sh
#!/bin/bash
read value # you can still interact with the script
echo $-
[fchen14@mike1 shelltut]$./checkshell.sh
hB

Subshell

o Definition:
o A subshell is a child process launched by a shell (or shell script).
o Just as your commands are interpreted at the command-line prompt,

similarly does a script batch-process a list of commands.
o Each shell script running is, in effect, a subprocess (child process) of

the parent shell.
o Two typical examples of starting subshell:

o Running a shell script launches a new process, a subshell.
o Type “bash” from an interactive shell

Basic Shell Scripting

Outline

• Introduction to Linux Shell
• Shell Scripting Basics

• Variables/Special Characters
• Arithmetic Operations

• Beyond Basic Shell Scripting
• Control flow
• Functions

• Advanced Text Processing Commands
(grep, sed, awk)

13

Basic Shell Scripting

Variables

▪ Variable names
▪ Must start with a letter or underscore
▪ Number can be used anywhere else
▪ Do not use special characters such as @,#,%,$
▪ Case sensitive
▪ Allowed: VARIABLE, VAR1234able, var_name, _VAR
▪ Not allowed: 1var, %name, $myvar, var@NAME,

myvar-1
▪ To reference a variable, prepend $ to the name of the variable
▪ Example: $PATH, $LD_LIBRARY_PATH, $myvar etc.

14

Basic Shell Scripting

Global and Local Variables
▪ Two types of variables:

▪ Global (Environmental) variables
o Inherited by subshells (child process, see next slide)
o provide a simple way to share configuration settings

between multiple applications and processes in Linux
o Using all uppercase letters by convention
o Example: PATH, LD_LIBRARY_PATH, DISPLAY etc.
o printenv/env list the current environmental variables

in your system.

▪ Local (shell) variables
o Only visible to the current shell
o Not inherited by subshells

15

Basic Shell Scripting

Editing Variables

▪ Local (Shell) variables is only valid within the current shell, while
environment variables are valid for all subsequently opened shells.

▪ Example: useful when running a script, where exported variables
(global) at the terminal can be inherited within the script.

16

Type sh/ksh/bash csh/tcsh
Shell (local) name=value set name=value

Environment (global) export name=value setenv name value

With export Without export
$ export v1=one
$ bash
$ echo $v1
!one

$ v1=one
$ bash
$ echo $v1
!

Basic Shell Scripting

Global and Local Variables
- current shell and subshell

17

Current Shell

Sub Shell
export VARC=XX

visible

export VARS=YY

not
 visi

ble

Type bash or call
another script

Exit the Sub Shell

echo $VARC
echo $VARS

echo $VARC
echo $VARS

How to inherit the variables in the script?
• Using the source command, it has a synonym in dot “.” (period)

o Syntax:
. filename [arguments]
source filename [arguments]

o The script does not need execute permission in this case. Commands
are executed in the current shell process, so any changes made to your
environment will be visible when the script finishes execution.

o Executing will run the commands in a new shell process (subshell).

[fchen14@mike1 shelltut]$ cat source_var.sh
#!/bin/bash
export myvar="newvalue"
[fchen14@mike1 shelltut]$ bash source_var.sh
[fchen14@mike1 shelltut]$ echo $myvar

[fchen14@mike1 shelltut]$ source source_var.sh
[fchen14@mike1 shelltut]$ echo $myvar
newvalue

Basic Shell Scripting

List of Some Environment Variables

PATH A list of directory paths which will be searched when a command is issued

LD_LIBRARY_PATH colon-separated set of directories where libraries should be searched for first

HOME indicate where a user's home directory is located in the file system.

PWD contains path to current working directory.

OLDPWD contains path to previous working directory.

TERM specifies the type of computer terminal or terminal emulator being used

SHELL contains name of the running, interactive shell.

PS1 default command prompt

PS2 Secondary command prompt

HOSTNAME The systems host name

USER Current logged in user's name

DISPLAY Network name of the X11 display to connect to, if available.

19

Basic Shell Scripting

Quotations
• Single quotation

– Enclosing characters in single quotes (')
preserves the literal value of each character within
the quotes. A single quote may not occur between
single quotes, even when preceded by a backslash.

• Double quotation
– Enclosing characters in double quotes (")

preserves the literal value of all characters within
the quotes, with the exception of ‘$’, ‘`’, ‘\’

• Back “quotation?”
– Command substitution (``) allows the output of a

command to replace the command itself, enclosed
string is executed as a command, almost the same
as $()

20

Basic Shell Scripting

Quotation - Examples

21

Always use double quotes around variable substitutions and
command substitutions: "$foo", "${foo}"

[fchen14@mike1 ~]$ str1='echo $USER'
[fchen14@mike1 ~]$ echo "$str1"
echo $USER
[fchen14@mike1 ~]$ str2="echo $USER"
[fchen14@mike1 ~]$ echo "$str2"
echo fchen14
[fchen14@mike1 ~]$ str3=`echo $USER`
[fchen14@mike1 ~]$ echo $str3
fchen14
[fchen14@mike1 ~]$ str3=$(echo $USER)
[fchen14@mike1 ~]$ echo "$str3"
fchen14

Basic Shell Scripting

Start a comment line.
$ Indicate the name of a variable.
\ Escape character to display next character literally
{} Enclose name of variable

;
Command separator. Permits putting two or more commands on the same
line.

;; Terminator in a case option
. “dot” command, equivalent to source (for bash only)
| Pipe: use the output of a command as the input of another one
>
<

Redirections (0<: standard input; 1>: standard out; 2>: standard error)

Special Characters (1)

22

Basic Shell Scripting

Special Characters (2)

$? Exit status for the last command, 0 is success, failure otherwise

$$ Process ID variable.

[] Test expression, eg. if condition

[[]] Extended test expression, more flexible than []

$[], $
(())

Integer expansion

||, &&, ! Logical OR, AND and NOT

23

Basic Shell Scripting

Outline

• Introduction to Linux Shell
• Shell Scripting Basics

• Variables/Special Characters
• Arithmetic Operations

• Beyond Basic Shell Scripting
– Arrays
– Flow Control
– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

24

Basic Shell Scripting

Integer Arithmetic Operations

Operation Operator
Addition +
Subtraction -
Multiplication *
Division /
Exponentiation ** (bash only)
Modulo %

25

Basic Shell Scripting

Integer Arithmetic Operations

▪ $((...)) or $[...] commands
o x=$((1+2)) # Addition, suggested
o echo $[$x*$x] # Multiplication, deprecated

▪ let command:
o let c=$x+$x # no space
o let c=x+x # you can omit the $ sign
o let c="x + x" # can have space
o let c+=1 or let --c # C-style increment operator

▪ expr command:
o expr 10 / 2 (space required)

 Note: Bash is picky about spaces!

26

Basic Shell Scripting

Floating-Point
Arithmetic Operations

GNU basic calculator (bc) external calculator
▪ Add two numbers

echo "3.8 + 4.2" | bc
▪ Divide two numbers and print result with a precision of 5

digits:
echo "scale=5; 2/5" | bc

▪ Convert between decimal and binary numbers
echo "ibase=10; obase=2; 10" |bc

▪ Call bc directly:
bc <<< "scale=5; sqrt(2)"

27

Basic Shell Scripting

Outline

• Introduction to Linux Shell
• Shell Scripting Basics

– Variables
– Quotations
– Arithmetic Operations
– Arrays

• Beyond Basic Shell Scripting
– Flow Control
– Command Line Arguments
– Functions

• Advanced Text Processing Commands (grep,
sed, awk)

28

Basic Shell Scripting

• Initialization
 my_array=("Alice" "Bill" "Cox” "David")
 my_array[0]="Alice";
 my_array[1]="Bill”

• Bash supports one-dimensional arrays
• Index starts at 0
• No space around “=“

• Reference an element
 ${my_array[i]} # must include curly braces
{}
• Print the whole array

 ${my_array[@]}
• Length of array

 ${#my_array[@]}

Arrays Operations (1)

29

Basic Shell Scripting

Array Operations (2)

• Add an element to an existing array
• my_array=(first ${my_array[@]})
• my_array=("${my_array[@]}" last)
• my_array[4]=(“Nason”)

• Copy the current array to a new array
• new_array=(${my_array[@]})

• Concatenate two arrays
• two_arrays=(${my_array[@]} ${new_array[@]})

30

Basic Shell Scripting

Array Operations (3)

• Delete the entire array
• unset my_array

• Delete an element to an existing array
• unset my_array[0]

31

Basic Shell Scripting

Outline

• Introduction to Linux Shell
• Shell Scripting Basics

– Arrays
– Arithmetic Operations

• Beyond Basic Shell Scripting
– Flow Control
– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

32

Basic Shell Scripting

Flow Control

• Shell scripting languages execute commands in sequence
similar to programming languages such as C and Fortran
– Control constructs can change the order of command

execution
• Control constructs in bash

– Conditionals:
➢ if-then-else
➢ Switches: case

– Loops: for, while, until

33

Basic Shell Scripting

if statement

• if/then construct test whether the exit status of a list of
commands is 0, and if so, execute one or more
commands

if [condition]; then
Do something

elif [condition 2] ; then
Do something

else
Do something else

fi
• Strict spaces between condition and the brackets (bash)
• [[condition]] extended test construct is the more versatile

Bash version of [condition], generally safer to use.

34

Basic Shell Scripting

File Operations

Operation bash

File exists if [-e test]

File is a regular file if [-f test]

File is a directory if [-d /home]

File is not zero size if [-s test]

File has read permission if [-r test]

File has write permission if [-w test]

File has execute permission if [-x test]

35

Basic Shell Scripting

Integer Comparisons

Operation bash

Equal to if [1 –eq 2]

Not equal to if [$a –ne $b]

Greater than if [$a –gt $b]

Greater than or equal to if [1 –ge $b]

Less than if [$a –lt 2]

Less than or equal to if [$a –le $b]

36

Basic Shell Scripting

String Comparisons

Operation bash

Equal to if [$a == $b]

Not equal to if [$a != $b]

Zero length or null if [-z $a]

Non zero length if [-n $a]

37

Basic Shell Scripting

Logical Operators

Operation Example

! (NOT) if [! –e test]

&& (AND) if [-f test] && [-s test]
if [[-f test && -s test]]
if (-e test && ! –z test)

|| (OR) if [-f test1] || [-f test2]
if [[-f test1 || -f test2]]

38

Basic Shell Scripting

if condition examples
Example 1:
read input
if [$input == "hello"]; then

echo hello;
else echo wrong ;
fi

Example 2
touch test.txt
if [-e test.txt]; then

echo “file exist”
elif [! -s test.txt]; then

echo “file empty”;
fi
What happens after
echo “hello world” >> test.txt

39

Basic Shell Scripting

Loop Constructs

• A loop is a block of code that iterates a list of
commands as long as the loop control condition
stays true

• Loop constructs
for, while and until

40

Basic Shell Scripting

for loop examples
Exmaple1:
for arg in `seq 1 4`
do

echo $arg;
 touch test.$arg
done

How to delete test files using a loop?
rm test.[1-4]

Example 2:
for file in `ls /home/$USER`
do

cat $file
done

41

Basic Shell Scripting

While Loop

• The while construct test for a condition at the top of a loop
and keeps going as long as that condition is true.

• In contrast to a for loop, a while is used when loop
repetitions is not known beforehand.

read counter
while [$counter -ge 0]
do let counter--
 echo $counter
done

42

Basic Shell Scripting

Until Loop

• The until construct test a condition at the top of a
loop, and stops looping when the condition is met
(opposite of while loop)

read counter
until [$counter -lt 0]
do let counter--
 echo $counter
done

43

Basic Shell Scripting

Switching Constructs - bash
• The case constructs are technically not loops since they do not iterate the

execution of a code block
#!/bin/sh
echo "Please talk to me ..."
while :
do
 read INPUT_STRING
 case $INPUT_STRING in

hello)
echo "Hello yourself!"
;;

bye)
echo "See you again!"
break
;;

*)
echo "Sorry, I don't understand"
;;

 esac
Done
echo "That's all folks!"

44

Basic Shell Scripting

Outline

• Introduction to Linux Shell
• Shell Scripting Basics
• Beyond Basic Shell Scripting

– Arithmetic Operations
– Arrays
– Flow Control
– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

45

Basic Shell Scripting

Functions
• A function is a code block that implements a set of

operations. Code reuse by passing parameters,
• Syntax:

function_name () {
command...

}
• By default all variables are global.
• Modifying a variable in a function changes it in the

whole script.
• Create a local variables using the local command,

which is invisible outside the function
local var=value
local varName

46

Basic Shell Scripting

Pass Arguments to Bash Scripts
• Note the difference between the arguments passed to the

script and the function.
• All parameters can be passed at runtime and accessed via

$1, $2, $3…, add {} when >=10
• $0: the shell script name
• Array variable called FUNCNAME contains the names of

all shell functions currently in the execution call stack.
• $* or $@: all parameters passed to a function
• $#: number of positional parameters passed to the

function
• $?: exist code of last command
• $$: PID of current process

47

Basic Shell Scripting

Function example

48

#!/bin/bash

func_add () # define a simple function
{
 local x=$1 # 1st argument to the function
 local y=$2 # 2nd argument to the function
 result=$((x + y))
 # echo "result is: " $result
}

a=3;b=4
echo "a= $a, b= $b"
result="nothing"
echo "result before calling the function is: " $result
func_add $a $b # note this is arguments to the function
echo "result by passing function arguments is: " $result
func_add $1 $2 # note this is command line arguments
echo "result by passing command line arguments is: "
$result

Basic Shell Scripting

Outline

• Introduction to Linux Shell
• Shell Scripting Basics

– Variables/Special Characters
– Arrays
– Arithmetic Operations

• Beyond Basic Shell Scripting
– Flow Control
– Functions

• Advanced Text Processing Commands
(grep, sed, awk)

49

Basic Shell Scripting

Advanced Text Processing Commands

• grep
• sed
• awk

50

One slide about Regular Expression
• What are Regular Expressions (regex)?

o They describe patterns in strings

o These patterns can be used to modify strings

o Invented by Stephen Cole Kleene

o Idea of RegEx dates back to the 1950s

• Today, they come indifferent “flavors”

• PCRE, POSIX Basic & Extended RegEx, ECMA RegEx and loads more!

• Examples:

Regex examples
• Anchors - ^ and $

^The matches any string that starts with The
end$ matches a string that ends with end
^The end$ exact string match (starts and ends with The end)
roar matches any string that has the text roar in it

• Quantifiers  -  * + ? and {}
abc* matches a string that has ab followed by zero or more c
abc+ matches a string that has ab followed by one or more c
abc? matches a string that has ab followed by zero or one c
abc{2} matches a string that has ab followed by 2 c
abc{2,} matches a string that has ab followed by 2 or more c
abc{2,5} matches a string that has ab followed by 2 up to 5 c

• OR operator  - | or []
a(b|c) matches a string that has a followed by b or c
a[bc] same as previous

Basic Shell Scripting

grep & egrep

• grep: Unix utility that searches a pattern through either information
piped to it or files.

• egrep: extended grep, same as grep –E
• zgrep: compressed files.

• Usage: grep <options> <search pattern> <files>
• Options:

-i ignore case during search
-r,-R search recursively
-v invert match i.e. match everything except pattern
-l list files that match pattern
-L list files that do not match pattern
-n prefix each line of output with the line number within its input file.
-A num print num lines of trailing context after matching lines.
-B num print num lines of leading context before matching lines.

53

Basic Shell Scripting

grep Examples

• Search files containing the word bash in current directory

• Repeat above search using a case insensitive pattern match and
print line number that matches the search pattern

grep bash *

grep -in bash *

• Search files NOT containing the word bash in current directory
grep -v bash *

• Search files not matching certain name pattern
ls | grep –vi fun

54

Basic Shell Scripting

grep Examples

• grep OR

100 Thomas Manager Sales $5,000
200 Jason Developer Technology $5,500
300 Raj Sysadmin Technology $7,000
500 Randy Manager Sales $6,000

grep ‘Man\|Sales’ employee.txt
-> 100 Thomas Manager Sales $5,000
 300 Raj Sysadmin Technology $7,000

 500 Randy Manager Sales $6,000

• grep AND
grep –i ‘sys.*Tech’ employee.txt
-> 100300 Raj Sysadmin Technology $7,000

55

Basic Shell Scripting

sed

• "stream editor" to parse and transform information
– information piped to it or from files

• line-oriented, operate one line at a time and allow
regular expression matching and substitution.

• S substitution command

56

Basic Shell Scripting

sed commands and flags
Flags Operation Command Operation

-e combine multiple
commands

s substitution

-f read commands from file g global replacement

-h print help info p print

-n disable print i ignore case

-V print version info d delete

-r use extended regex G add newline

w write to file

x exchange pattern with hold
buffer

h copy pattern to hold buffer

; separate commands

57

Basic Shell Scripting

sed Examples

#!/bin/bash

My First Script

echo "Hello World!”

58

Basic Shell Scripting

sed Examples (2)
• Delete blank lines from a file

• Delete line n through m in a file

sed ’/^$/d’ hello.sh

#!/bin/bash
My First Script
echo "Hello World!"

sed ’2,4d’ hello.sh

#!/bin/bash
echo "Hello World!"

59

Basic Shell Scripting

sed Examples (1)

• Add flag -e to carry out multiple matches.

• Alternate form

• The default delimiter is slash (/), can be changed

cat hello.sh | sed -e ’s/bash/tcsh/g’ -e ’s/First/Second/g’
#!/bin/tcsh
My Second Script
echo "Hello World!"

sed ’s/bash/tcsh/g; s/First/Second/g’ hello.sh

#!/bin/tcsh
My Second Script
echo "Hello World!"

sed ’s:/bin/bash:/bin/tcsh:g’ hello.sh

#!/bin/tcsh
My First Script
echo "Hello World!"

60

Basic Shell Scripting

sed Examples (4)

• Replace-in-place with a backup file

• echo with sed

sed –i.bak ’/First/Second/i’ hello.sh

$ echo "shell scripting" | sed "s/[si]/?/g”
$?hell ?cr?pt?ng

$ echo "shell scripting 101" | sed "s/[0-9]/#/g”
$ shell scripting ###

61

Basic Shell Scripting

awk

• The awk text-processing language is useful for tasks such as:
– Tallying information from text files and creating reports from the

results.
– Adding additional functions to text editors like "vi".
– Translating files from one format to another.
– Creating small databases.
– Performing mathematical operations on files of numeric data.

• awk has two faces:
– It is a utility for performing simple text-processing tasks, and
– It is a programming language for performing complex text-

processing tasks.

62

Basic Shell Scripting

How Does awk Work

• awk reads the file being processed line by line.

• The entire content of each line is split into columns with
space or tab as the delimiter.

• $0 Print the entire line
• $1, $2, $3, ... for each column (if exists)
• NR number of records (lines)
• NF number of fields or columns in the current line.
• By default the field delimiter is space or tab. To change the

field delimiter use the -F<delimiter> command.

63

Basic Shell Scripting

awk Syntax

awk pattern {action}
pattern decides when action is performed
Actions:
• Most common action: print
• Print file dosum.sh:

awk ’{print $0}’ dosum.sh

• Print line matching files in all .sh files in current directory:
 awk ’/bash/{print $0}’ *.sh

64

Basic Shell Scripting

uptime
11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11,
0.17

uptime | awk ’{print $0}’
11:18am up 14 days 0:40, 5 users, load average: 0.15, 0.11,
0.17

uptime | awk ’{print $1,NF}’
11:18am 12

uptime | awk ’{print NR}’
1

uptime | awk –F, ’{print $1}’
11:18am up 14 days 0:40

for i in $(seq 1 3); do touch file${i}.dat ; done
for i in file* ; do
> prefix=$(echo $i | awk -F. ’{print $1}’)
> suffix=$(echo $i | awk -F. ’{print $NF}’)
> echo $prefix $suffix $i; done

file1 dat file1.dat
file2 dat file2.dat
file3 dat file3.dat

65

Basic Shell Scripting

Awk Examples

• Print list of files that are bash script files

• Print extra lines below patterns

awk '/^#\!\/bin\/bash/{print $0, FILENAME}’ *
! #!/bin/bash Fun1.sh

#!/bin/bash fun_pam.sh
#!/bin/bash hello.sh
#!/bin/bash parm.sh

awk '/sh/{print;getline;print}' <hello.sh
#!/bin/bash

66

Basic Shell Scripting

Getting Help
▪ User Guides

▪ LSU HPC: http://www.hpc.lsu.edu/docs/guides.php#hpc
▪ LONI: http://www.hpc.lsu.edu/docs/guides.php#loni

▪ Documentation: http://www.hpc.lsu.edu/docs
▪ Archived tutorials: http://www.hpc.lsu.edu/training/archive/

tutorials.php
▪ Contact us

▪ Email ticket system: sys-help@loni.org
▪ Telephone Help Desk: 225-578-0900

67

http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#hpc
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs/guides.php#loni
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/docs
http://www.hpc.lsu.edu/training/archive/tutorials.php
http://www.hpc.lsu.edu/training/archive/tutorials.php
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org
mailto:sys-help@loni.org

