
HPC User Environment 2

Jielin Yu
HPC User Services
LSU HPC & LONI
sys-help@loni.org

Louisiana State University
Baton Rouge

Feburary 03, 2021

Outline
 Review HPC User Environment 1 topics

– Available HPC resources
– Accounts and Allocations
– Cluster architecture
– Connect to clusters
– Software management using module

 Things to be covered in this training
– Job management

• Interactive vs Batch jobs
• Submit and monitor your jobs

– Understanding Job scheduling
• Job priority
• Backfill

02/03/2021 HPC User Environment 2 Spring 2021 2

Brief Review of Session 1
HPC User Environment 2

02/03/2021 3

Inside A Cluster Rack

02/03/2021 HPC User Environment 2 Spring 2021 4

Rack

Infiniband
Switch

Compute
Node

Inside A QB2 Compute Node (Dell C8000)

HPC User Environment 2 Spring 2021

Storage

Accelerator 1
(GPU)

Accelerator 2
(GPU)

Processor

Memory

Network
Card

Processor

502/03/2021

Conceptual Relationship

HPC User Environment 2 Spring 2021

Cluster Compute
Node

CPUs

Memory

GPUs

602/03/2021

Cluster Nomenclature

02/03/2021 HPC User Environment 2 Spring 2021 7

Term Definition

Cluster The top-level organizational unit of an HPC cluster,
comprising a set of nodes, a queue, and jobs.

Node A single, named host machine in the cluster.

Core The basic computation unit of the CPU. For example, a
quad-core processor is considered 4 cores.

Job A user's request to use a certain amount of resources for a
certain amount of time on cluster for the work.

HPC Cluster Architectures
 Major architecture

– Intel x86_64 clusters
• Vendor: Dell
• Operating System: Linux (RHEL 6/7)
• Processor: Intel

02/03/2021 HPC User Environment 2 Spring 2021 8

Accessing cluster using ssh (Secure Shell)
 On Unix and Mac

– use ssh on a terminal to connect
 Windows box (ssh client):

– MobaXterm (http://mobaxterm.mobatek.net/ , recommended)
– Putty, Cygwin

(http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html)
 ssh username@mike.hpc.lsu.edu
 Host name

– LONI: <cluster_name>.loni.org
• <cluster_name> can be:

– qb.loni.org
– qbc.loni.org

– LSU HPC: <cluster_name>.hpc.lsu.edu
• <cluster_name> can be:

– mike.hpc.lsu.edu
– smic.hpc.lsu.edu

02/03/2021 HPC User Environment 2 Spring 2021 9

http://mobaxterm.mobatek.net/
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html

Review Questions for Section 1
HPC User Environment 2

02/03/2021 10

Access to cluster
 How do I connect to HPC/LONI cluster?

a) By logging onto HPC webpage at www.hpc.lsu.edu
b) Using an ssh (secure shell) client such as MobaXterm/Putty
c) Go to the machine room in ISB in downtown Baton Rouge and connect

my laptop to the nodes using a cable

02/03/2021 HPC User Environment 2 Spring 2021 11

Software Management
 How do we manage the software installed on HPC/LONI clusters?

– Using the modules command
– Using a drop down menu on the www.hpc.lsu.edu webpage

 Recall the basic 5 module commands, what are they used for?
– module av/avail
– module li/list
– module disp/display
– module load/unload <key>
– module swap <key1> <key2>

02/03/2021 HPC User Environment 2 Spring 2021 12

http://www.hpc.lsu.edu/

Account and Allocation Policy
 Who can apply for allocations?

a) Graduate student
b) PostDoc
c) Full time faculty
d) All of the above

02/03/2021 HPC User Environment 2 Spring 2021 13

Account Security
 How to get your account suspended?

a) Give your password to your friend/lab colleagues and let him/her use it.
b) Give your password to your advisor so he/she can use your account to

see your data.
c) Run my simulation on the login node.
d) All of the above

02/03/2021 HPC User Environment 2 Spring 2021 14

Job Queue basics
HPC User Environment 2

02/03/2021 15

Job submission basics
1. Find appropriate queue

2. Understand the queuing system and your requirements and proceed
to submit jobs

3. Monitor jobs during execution

02/03/2021 HPC User Environment 2 Spring 2021 17

Job Queues
 Nodes are organized into queues. Nodes can be shared.
 Each job queue differs in

– Number of available nodes
– Max run time
– Max running jobs per user
– Nodes may have special characteristics: GPU/Xeon Phi’s, Large

memory, etc.
 Jobs need to specify resource requirements

– Nodes, time, queue
 Its called a queue for a reason, but jobs don’t run on a “First Come

First Served” policy,
– This will be detailed in later slides

02/03/2021 HPC User Environment 2 Spring 2021 18

Queue Characteristics – LONI clusters

02/03/2021 HPC User Environment 2 Spring 2021 19

Machine Queue Max
Runtime ppn Max nodes

per job Use

QB2

workq
3 days

20 128 Unpreemptable

checkpt 20 256 Preemptable

single 7 days 1,2,4,6,8 1 ppn=1/2/4/6/8

bigmem 3 days 48 1 Big memory

QB3

workq
3 days

48 96 Unpreemptable

checkpt 48 96 Preemptable

single 7 days 1-47 1 ppn=1-47

gpu 3 days 48 4 Job using GPU

bigmem 3 days 48 1 Big memory

Queue Characteristics – LSU HPC clusters

02/03/2021 HPC User Environment 2 Spring 2021 20

Machine Queue Max
Runtime ppn Max nodes

per job Use

SuperMike II

workq
3 days

16 128 Unpreemptable

checkpt 16 128 Preemptable

bigmem 7 days 16 1 Big memory

gpu 3 days 16 16 Job using GPU

single 3 days 1,2,4,8 1 Single node job

SuperMIC

single 3 days 1,2,4,8 1 Single node job

workq
3 days

20 128 Unpreemptable

checkpt 20 360 Preemptable

Queue Characteristics
 “qstat -q” will give you more info on the queues

[jyu31@mike2 ~]$ qstat -q

server: mike3

Queue Memory CPU Time Walltime Node Run Que Lm State
---------------- ------ -------- -------- ---- --- --- -- -----
lasigma -- -- 72:00:00 28 0 0 -- E R
preempt -- -- 72:00:00 -- 0 0 -- E R
workq -- -- 72:00:00 128 12 0 -- E R
bigmemtb -- -- 168:00:0 1 0 0 -- E R
shelob -- -- 72:00:00 42 0 0 -- E R
priority -- -- 168:00:0 128 0 0 -- E R
bigmem -- -- 168:00:0 1 0 0 -- E R
checkpt -- -- 72:00:00 128 14 0 -- E R
single -- -- 72:00:00 1 4 0 -- E R
gpu -- -- 72:00:00 16 0 0 -- E R
admin -- -- 24:00:00 -- 0 0 -- E R
mwfa -- -- 72:00:00 8 0 0 -- E R

----- -----
30 0

 For a more detailed description use mdiag

02/03/2021 HPC User Environment 2 Spring 2021 21

Queue Querying – Linux Clusters
 Displays information about active, eligible, blocked, and/or recently

completed jobs: showq command
$ showq
active jobs------------------------
JOBID USERNAME STATE PROCS REMAINING STARTTIME
236875 ebeigi3 Running 16 1:44:29 Mon Sep 15 20:00:22
236934 mwu3 Running 16 00:03:27 Mon Sep 15 19:04:20
...
eligible jobs----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
236795 dmarce1 Idle 1456 00:15:00 Mon Sep 15 16:38:45
236753 rsmith Idle 2000 4:00:00 Mon Sep 15 14:44:52
236862 dlamas1 Idle 576 2:00:00 Mon Sep 15 17:28:57
...
121 eligible jobs
blocked jobs-----------------------
JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME
232741 myagho1 Idle 2000 1:00:00:00 Mon Sep 8 07:22:12
235545 tanping Idle 1 2:21:10:00 Fri Sep 12 16:50:49
235546 tanping Idle 1 2:21:10:00 Fri Sep 12 16:50:50
...

02/03/2021 HPC User Environment 2 Spring 2021 22

Submit and Monitor Your Jobs
through PBS

HPC User Environment 2

02/03/2021 23

Two Job Types
 Interactive job

– Set up an interactive environment on compute nodes for users
• Advantage: can run programs interactively
• Disadvantage: must be present when the job starts

– Purpose: testing and debugging, compiling
• Do not run on the head node!!!
• Try not to run interactive jobs with large core count, which is a waste of

resources)
 Batch job

– Executed without user intervention using a job script
• Advantage: the system takes care of everything
• Disadvantage: can only execute one sequence of commands which cannot

changed after submission
– Purpose: production run

02/03/2021 HPC User Environment 2 Spring 2021 24

Submitting Jobs on Linux Clusters
 Interactive job example:

qsub –I -X \
-l walltime=<hh:mm:ss>,nodes=<num_nodes>:ppn=<num_cores> \
-A <Allocation> \
-q <queue name>

DO NOT directly ssh to compute nodes,
unless the nodes are assigned to you by the job scheduler.

– Add -X to enable X11 forwarding

 Batch Job example:
qsub job_script

02/03/2021 HPC User Environment 2 Spring 2021 25

Check Your Available Allocations
[fchen14@mike2 ~]$ balance
====================== Allocation information for fchen14 ======================

Proj. Name| Alloc| Balance| Deposited| %Used| Days Left| End
--
hpc_hpcadmin3|hpc_hpcadmin3 on @mike2|282854.91| 350000.00| 19.18| 16|2017-06-30
hpc_trn17mike2|hpc_trn17mike2 on @mike2| 20305.62| 25000.00| 18.78| 291|2018-04-01

Note: Balance and Deposit are measured in CPU-hours
[fchen14@mike2 ~]$ showquota
Hard disk quotas for user fchen14 (uid 32584):

Filesystem MB used quota files fquota
/homem 4518 5000 94354 0
/work 424228 0 286002 4000000
/project 65346 100000 1119432 4000000

CPU Allocation SUs remaining:
hpc_hpcadmin3: 282854.91
hpc_trn17mike2: 20305.62

02/03/2021 HPC User Environment 2 Spring 2021 26

[fchen14@mike1 ~]$ qsub -I -X -l nodes=1:ppn=16,walltime=2:00:00 -q workq -A hpc_train_2018
qsub: waiting for job 675733.mike3 to start
qsub: job 675733.mike3 ready

Running PBS prologue script
...
Job ID: 675733.mike3
Username: fchen14
Group: Admins
Date: 13-Jun-2018 15:34
Node: mike044 (62703)

PBS has allocated the following nodes:
mike044
A total of 16 processors on 1 nodes allocated

...
Concluding PBS prologue script - 13-Jun-2017 15:34:19
--
[fchen14@mike044 ~]$

Submit An Interactive Job on SuperMike2

02/03/2021 HPC User Environment 2 Spring 2021 27

Enable X11
forwarding
(GUI)

1 node 16 cores
per node

2 hour
walltime

submit to
workq

Allocation
name

Interactive job

PBS Environmental Variables
[fchen14@mike315 ~]$ echo $PBS_ # hit <tab> twice

$PBS_ENVIRONMENT $PBS_MOMPORT $PBS_NUM_PPN $PBS_O_MAIL

$PBS_QUEUE $PBS_WALLTIME $PBS_GPUFILE $PBS_NODEFILE

$PBS_O_HOME $PBS_O_PATH $PBS_SERVER $PBS_JOBCOOKIE

$PBS_NODENUM $PBS_O_HOST $PBS_O_QUEUE $PBS_TASKNUM

$PBS_JOBID $PBS_NP $PBS_O_LANG $PBS_O_SHELL

$PBS_VERSION $PBS_JOBNAME $PBS_NUM_NODES $PBS_O_LOGNAME

$PBS_O_WORKDIR $PBS_VNODENUM

02/03/2021 HPC User Environment 2 Spring 2021 28

PBS Job Script – Serial Job
#!/bin/bash
#PBS -l nodes=1:ppn=1 # Number of nodes and processor
#PBS -l walltime=24:00:00 # Maximum wall time
#PBS -N myjob # Job name
#PBS -o <file name> # File name for standard output
#PBS -e <file name> # File name for standard error
#PBS -q single # The queue for serial jobs
#PBS -A <loni_allocation> # Allocation name
#PBS -m e # Send mail when job ends
#PBS -M <email address> # Send mail to this address

<shell commands>
<path_to_executable> <options>
<shell commands>

02/03/2021 HPC User Environment 2 Spring 2021 29

Tells the job
scheduler
how much
resource you
need.

How will you
use the
resources?

PBS Job Script – Parallel Job
#!/bin/bash
#PBS -l nodes=2:ppn=16 #Number of nodes and processors per node
#PBS -l walltime=24:00:00 #Maximum wall time
#PBS -N myjob #Job name
#PBS -o <file name> #File name for standard output
#PBS -e <file name> #File name for standard error
#PBS -q checkpt #Queue name
#PBS -A <allocation_if_needed> #Allocation name
#PBS -m e #Send mail when job ends
#PBS -M <email address> #Send mail to this address

<shell commands>
mpirun -machinefile $PBS_NODEFILE -np 32 <path_to_executable> <options>
<shell commands>

02/03/2021 HPC User Environment 2 Spring 2021 30

Tells the
scheduler
how much
resource
you need.

How will
you use the
resources?

True or False?
 I have the below job script on QB2, since I used nodes=2:ppn=20, my

script will run in parallel using 2 nodes with 40 cores.
a) True
b) False

#!/bin/bash
#PBS -l nodes=2:ppn=20
#PBS -l walltime=24:00:00
#PBS -N myjob
#PBS -j oe
#PBS -q checkpt
#PBS -A my_allocation

./my_executable.out

02/03/2021 HPC User Environment 2 Spring 2021 31

Job Monitoring - Linux Clusters
 Check details on your job using qstat

$ qstat -n -u $USER : For quick look at nodes assigned to you
$ qstat -f jobid : For details on your job
$ qdel jobid : To delete job

 Check approximate start time using showstart
$ showstart jobid

 Check details of your job using checkjob
$ checkjob jobid

 Check health of your job using qshow
$ qshow jobid

 Please pay close attention to the load and the memory consumed by
your job!

02/03/2021 HPC User Environment 2 Spring 2021 32

Using the “top” command
 The top program provides a dynamic real-time view of a running

system.

top - 19:39:56 up 89 days, 4:13, 1 user, load average: 0.63, 0.18, 0.06
Tasks: 489 total, 2 running, 487 sleeping, 0 stopped, 0 zombie
Cpu(s): 6.3%us, 0.0%sy, 0.0%ni, 93.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 65909356k total, 3389616k used, 62519740k free, 151460k buffers
Swap: 207618040k total, 5608k used, 207612432k free, 947716k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
39595 fchen14 20 0 266m 257m 592 R 99.9 0.4 0:06.94 a.out
39589 fchen14 20 0 17376 1612 980 R 0.3 0.0 0:00.05 top
38479 fchen14 20 0 108m 2156 1348 S 0.0 0.0 0:00.03 bash
39253 fchen14 20 0 103m 1340 1076 S 0.0 0.0 0:00.00 236297.mike3.SC
39254 fchen14 20 0 103m 1324 1060 S 0.0 0.0 0:00.00 bm_laplace.sh
39264 fchen14 20 0 99836 1908 992 S 0.0 0.0 0:00.00 sshd
39265 fchen14 20 0 108m 3056 1496 S 0.0 0.0 0:00.03 bash

02/03/2021 HPC User Environment 2 Spring 2021 33

Pay attention to single queue usage
 Single queue - Used for jobs that will only execute on a single node,

i.e. nodes=1:ppn=1/2/4/6/8.
 Jobs in the single queue should not use:

– More than 2GB memory per core SuperMike2 (32G/16).
– More than 3.2GB memory per core for QB2 (64G/20).

 If applications require more memory, scale the number of cores (ppn)
to the amount of memory required: i.e. max memory available for jobs
in single queue is 8GB for ppn=4 on SuperMikeII.

 Typical type of warning:
– E124 - Exceeded memory allocation. This Job XXXX appears to be

using more memory (GB) than allocated (9 > 3).
– E123 - Exceeded ppn/core allocation. This Job XXXX appears to be

using more cores than allocated (6 > 1). Please allocate the number of
cores that the job will use, (ppn=6). This Job has 1 core(s) allocated
(ppn=1).

02/03/2021 HPC User Environment 2 Spring 2021 34

Core and Memory in Single queue

02/03/2021 HPC User Environment 2 Spring 2021 35

64GB memory

20 cores

64/20=3.2GB

Question:
On QB2, if my job needs 7GB memory, what ppn value should I use?
On SuperMike2, if my job needs 7GB memory, what ppn value should I use?

Submit and Monitor Your Jobs
through SLURM

QB3 HPC User Environment

02/03/2021 36

PBS to Slurm
 Why Slurm?

– Slurm has a more open model
– Slurm also feels more modern in its design and implementation
– Slurm scales well, job starts faster, etc.

02/03/2021 37HPC User Environment 2 Spring 2021

Slurm Interactive Job Command
 To start an interactive job, use the srun command like the example below:

srun --x11 -t 1:00:00 -n8 -N1 -p single -A your_allocation_name --pty /bin/bash

02/03/2021 HPC User Environment 2 Spring 2021 38

Enable X11
forwarding
(GUI)

1 node

request
8 cores

1 hour
walltime

submit to
single queue

Allocation name

--pty flag for
interactive job,
must be at the end
of the command

Check Available Allocations
[fchen14.fchen14-t460] ➤ ssh fchen14@qbc.loni.org
Warning: Permanently added 'qbc2.loni.org' (RSA) to the list of known hosts.
Last login: Thu Sep 17 11:41:42 2020 from crimson.its.lsu.edu
##
Send questions and comments to the email ticket system at sys-help@loni.org.
##
...Message Of The Day...
[fchen14@qbc2 slurmdoc]$ showquota
Hard disk quotas for user fchen14 (uid 32584):

Filesystem MB used quota files fquota
/home 6440 10000 110083 0
/work 19419 0 48919 4000000

CPU Allocation SUs remaining:
loni_loniadmin1: 521749.16
loni_train_2020: 37208.87 50000.00 2021-04-01

02/03/2021 HPC User Environment 2 Spring 2021 39

Start an Slurm Interactive Job
[fchen14@qbc2 ~]$ srun --x11 -t 1:00:00 -n8 -N1 -p single -A loni_train_2020 --pty /bin/bash
[fchen14@qbc192 ~]$ hostname # verify that you are on a compute node
qbc192
[fchen14@qbc192 ~]$ some_job_commands # your own job commands

02/03/2021 HPC User Environment 2 Spring 2021 40

Slurm Environmental Variables
[fchen14@qbc2 slurmdoc]$ srun --x11 -t 1:00:00 -n8 -N1 -p single -A
loni_loniadmin1 --pty /bin/bash
[fchen14@qbc198 slurmdoc]$ echo $SLURM_
$SLURM_CLUSTER_NAME $SLURM_JOB_NAME
$SLURM_NPROCS $SLURM_STEP_NODELIST
$SLURM_CPU_BIND $SLURM_JOB_NODELIST
$SLURM_NTASKS $SLURM_STEP_NUM_NODES
$SLURM_CPU_BIND_LIST $SLURM_JOB_NUM_NODES
$SLURM_PRIO_PROCESS $SLURM_STEP_NUM_TASKS
$SLURM_CPU_BIND_TYPE $SLURM_JOB_PARTITION
$SLURM_PROCID $SLURM_STEP_TASKS_PER_NODE
...
$SLURM_JOB_GID $SLURM_NNODES
$SLURM_STEPID $SLURM_TOPOLOGY_ADDR_PATTERN
$SLURM_JOBID $SLURM_NODEID
$SLURM_STEP_ID $SLURM_UMASK
$SLURM_JOB_ID $SLURM_NODELIST
$SLURM_STEP_LAUNCHER_PORT $SLURM_WORKING_CLUSTER

02/03/2021 HPC User Environment 2 Spring 2021 41

Slurm Batch Job Script
 To create a batch Slurm script, use your favorite editor (e.g. vi or

emacs, nano) to create a text file with both Slurm instructions and
commands how to run your job.

 All Slurm directives (special instructions) are prefaced by the #SBATCH.

#!/bin/bash
#SBATCH -N 1 # request one node
#SBATCH -t 2:00:00 # request two hours
#SBATCH -p single # in single partition (queue)
#SBATCH -A your_allocation_name
#SBATCH -o %x-%j.out-%N # optional, name of the stdout, using the job number (%j) and the
hostname of the node (%N)
#SBATCH -e %x-%j.err-%N # optional, name of the stderr, using job and hostname values
below are job commands

date
cd /work/$USER/myjob
./mydemo
Mark the time it finishes.
date
exit the job
exit 0

02/03/2021 HPC User Environment 2 Spring 2021 42

Tells the job
scheduler how much
resource you need.

How will you
use the
resources?

Common Slurm Switches
 #SBATCH -A allocation_name:

– short for --account, charge jobs to your allocation named allocation_name.
 #SBATCH -N <number_of_nodes>:

– short for --nodes, number of nodes on which to run.
 #SBATCH -n <number_of_cores/processes>:

– short for --ntasks, number of tasks (CPU cores) to run job on. The memory limit for
jobs is 4 GB of MEM per CPU core requested.

 #SBATCH -c <cores_per_process>:
– short for --ncpus-per-task, number of threads per process.

 #SBATCH -p partition:
– short for --partition, submit job to the partition queue. Allowed values for partition:

single, checkpt, workq, gpu, bigmem. Depending on cluster (use sinfo command)
 #SBATCH -t hh:mm:ss:

– short for --time, request walltime.
 #SBATCH -o filename.out:

– short for --output, write standard output.
 #SBATCH -e filename.err:

– short for --error, write standard error.
– Note that by default, Slurm will merge standard error and standard output.

02/03/2021 HPC User Environment 2 Spring 2021 43

Number of processes

Submit Slurm Batch Job
 To submit the above job to the scheduler, save the above script as a

text file, e.g., singlenode.sh, then use the sbatch command to submit,
the output will be something like the below:

[fchen14@qbc2 slurmdoc]$ sbatch singlenode.slm
Submitted batch job 37355 estimates 9 SUs from allocation loni_train_2020.
Estimated remaining SUs: 37352
See running job information with: scontrol show job 37355

 To check the status of your job use the squeue command:

[fchen14@qbc2 slurmdoc]$ squeue -u $USER
JOBID PARTITION QOS NAME USER ACCOUNT STATE PRIORITY TIME
SUBMIT_TIM TIME_LIMI NODES CPUS MIN_MEMORY NODELIST(REASON)

37480 checkpt normal batch.sl fchen14 loni_tra RUNNING
1 0:06 2020-09-18 1:00:00 2 96 3958M qbc[161-162]

02/03/2021 HPC User Environment 2 Spring 2021 44

Common Slurm Commands (1)
 squeue is used to show the partition (queue) status. Useful options:

– -u <username>: limit output to jobs by username --state=pending: limit
output to pending (i.e. queued) jobs --state=running: limit output to running
jobs

– Below is an example to query all jobs submitted by current user (fchen14)

[fchen14@qbc2 slurmdoc]$ squeue -u fchen14
JOBID PARTITION NAME USER ST TIME_LIMIT TIME CPUS NODES NODELIST(REASON)
37876 workq hybrid_job fchen14 CF 5:00 0:04 96 2 qbc[005-006]

02/03/2021 HPC User Environment 2 Spring 2021 45

Common Slurm Commands (2)
 sinfo is used to view information about Slurm nodes and partitions.

[fchen14@qbc2 ~]$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
admin up infinite 201 idle qbc[001-190,192-202]
admin up infinite 1 down qbc191
single* up 3-00:00:00 191 idle qbc[001-190,192]
single* up 3-00:00:00 1 down qbc191
checkpt up 3-00:00:00 191 idle qbc[001-190,192]
checkpt up 3-00:00:00 1 down qbc191
workq up 3-00:00:00 191 idle qbc[001-190,192]
workq up 3-00:00:00 1 down qbc191
gpu up 3-00:00:00 8 idle qbc[193-200]
bigmem up 3-00:00:00 2 idle qbc[201-202]

02/03/2021 HPC User Environment 2 Spring 2021 46

Common Slurm Commands (3)
 scancel is used to signal or cancel jobs. Typical usage with squeue.
[fchen14@qbc1 ~]$ squeue -u fchen14

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
341 checkpt bash fchen14 R 0:13 1 qbc001
340 checkpt bash fchen14 R 1:50:57 1 qbc002

cancel (delete) job with JOBID 340
[fchen14@qbc1 ~]$ scancel 340
job status might display a temporary "CG" ("CompletinG") status immediately after
scancel
[fchen14@qbc1 ~]$ squeue -u fchen14

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
340 checkpt bash fchen14 CG 1:51:08 1 qbc002
341 checkpt bash fchen14 R 0:41 1 qbc001

[fchen14@qbc1 ~]$ squeue -u fchen14
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

341 checkpt bash fchen14 R 1:08 1 qbc001

02/03/2021 HPC User Environment 2 Spring 2021 47

Common Slurm Commands (4)
 scontrol is used to view or modify Slurm configuration and state. Typical

usage for the user is to check job status:
[fchen14@qbc1 ~]$ squeue -u fchen14 # show all jobs

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
341 checkpt bash fchen14 R 1:29:20 1 qbc001

[fchen14@qbc1 ~]$ scontrol show job 341
JobId=341 JobName=bash

UserId=fchen14(32584) GroupId=Admins(10000) MCS_label=N/A
Priority=1 Nice=0 Account=hpc_hpcadmin6 QOS=normal
JobState=RUNNING Reason=None Dependency=(null)
... some details omitted...
MinCPUsNode=1 MinMemoryNode=22332M MinTmpDiskNode=0
Features=(null) DelayBoot=00:00:00
OverSubscribe=NO Contiguous=0 Licenses=(null) Network=(null)
Command=/bin/bash
WorkDir=/home/fchen14/test
Power=

02/03/2021 HPC User Environment 2 Spring 2021 48

Serial Job Script Template
#!/bin/bash
#SBATCH --job-name=serial_job_test # Job name
#SBATCH --ntasks=1 # Using a single core
#SBATCH --time=00:10:00 # Time limit hh:mm:ss
#SBATCH --output=%x_%j.log # Standard output and error log,

%x: job name
%j: job-id

module load python

echo "Running job on a single CPU core"

date
/home/user/single_core_job.py
date

02/03/2021 HPC User Environment 2 Spring 2021 49

MPI Job - (PMIx Versions)
 If you compiled your MPI application using our default mvapich2 libraries

(which is compiled with PMIx enabled), you should start the application
directly using the srun command.

#!/bin/bash
#SBATCH --job-name=mpi_job_test # Job name
#SBATCH --partition=workq # For jobs using more than 1 node, submit to workq
#SBATCH --nodes=2 # Number of nodes to be allocated
#SBATCH --ntasks=96 # Number of MPI tasks (i.e. processes/cores)
#SBATCH --time=00:05:00 # Wall time limit (hh:mm:ss)
#SBATCH --output=%x_%j.log # Standard output and error

echo ""
echo "Slurm Nodes Allocated = $Slurm_JOB_NODELIST"
echo "Number of Nodes Allocated = $Slurm_JOB_NUM_NODES"
echo "Number of Tasks Allocated = $Slurm_NTASKS"

module load mvapich2/2.3.3/intel-19.0.5
srun -n $Slurm_NTASKS ./a.out

02/03/2021 HPC User Environment 2 Spring 2021 50

MPI Job - (Non-PMIx Versions)
 If your MPI application did not use our default module key

mvapich2/2.3.3/intel-19.0.5, you should start the application using the
mpirun command.

#!/bin/bash
#SBATCH --job-name=mpi_job_test # Job name
#SBATCH --partition=workq # For jobs using more than 1 node, submit to workq
#SBATCH --nodes=2 # Number of nodes to be allocated
#SBATCH --ntasks=96 # Number of MPI tasks (i.e. processes/cores)
#SBATCH --time=00:05:00 # Wall time limit (hh:mm:ss)
#SBATCH --output=mpi_test_%j.log # Standard output and error

echo ""
echo "Slurm Nodes Allocated = $Slurm_JOB_NODELIST"
echo "Number of Nodes Allocated = $Slurm_JOB_NUM_NODES"
echo "Number of Tasks Allocated = $Slurm_NTASKS"

module load mvapich2/2.3.3/intel-19.0.5-hydra
mpirun -n $Slurm_NTASKS ./a.out

02/03/2021 HPC User Environment 2 Spring 2021 51

Job Monitoring on QB3
 Check details on your job using

$ squeue -u $USER : For quick look at nodes assigned to you
$ scontrol show job <jobid> : For details on your job
$ scancel jobid : To delete job

 Check memory usage of your job using qshow
$ qshow jobid

 Please pay close attention to the load and the memory consumed by
your job!

02/03/2021 HPC User Environment 2 Spring 2021 52

Using the “top” command
 The top program provides a dynamic real-time view of a running

system.

top - 23:30:16 up 51 days, 16:18, 4 users, load average: 0.16, 0.05, 0.06
Tasks: 692 total, 2 running, 690 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.1 us, 1.0 sy, 0.0 ni, 97.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 19647060+total, 18699553+free, 8677504 used, 797560 buff/cache
KiB Swap: 13421772+total, 13405440+free, 163328 used. 18702988+avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
208754 fchen14 20 0 7731040 5.5g 20108 R 100.0 2.9 0:16.50 lmp
208999 fchen14 20 0 172868 2948 1624 R 0.7 0.0 0:00.07 top

1 root 20 0 191624 2832 1544 S 0.0 0.0 21:18.21 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:04.81 kthreadd
4 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H
6 root 20 0 0 0 0 S 0.0 0.0 1:06.85 ksoftirqd/0

02/03/2021 HPC User Environment 2 Spring 2021 53

Check memory Usage for Multi-Node Job

[fchen14@qbc2 slurmdoc]$ sbatch ex_lmp_hybrid.sh
Submitted batch job 37888 estimates 8 SUs from allocation loni_loniadmin1.
Estimated remaining SUs: 521696
JOBID NAME PARTITION TIME_LIMIT ST CPUS NODES REASON
37888 hybrid_job_test workq 5:00 PD 96 2 None
[fchen14@qbc2 slurmdoc]$ qshow 37888
PBS job: 37888, nodes: 2
Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)
qbc005 0 Autoloading 211 6 fchen14:lmp:5847M:3.2G fchen14:lmp:5846M:3.3G
fchen14:slurm_scr+:113M:2M fchen14:srun:388M:5M fchen14:srun:50M:1M
qbc006 0 Autoloading 216 3 fchen14:lmp:5870M:5.1G fchen14:lmp:4447M:3.3G
PBS_job=37888 user=fchen14 allocation=loni_loniadmin1 queue=workq total_load=0.00
cpu_hours=0.00 wall_hours=0.00 unused_nodes=0 total_nodes=2 ppn=48 avg_load=0.00
avg_cpu=213% avg_mem=7640mb avg_vmem=11746mb
top_proc=fchen14:lmp:qbc006:5870M:5.1G:0.0hr:105% node_processes=3

02/03/2021 HPC User Environment 2 Spring 2021 54

 Check health of your job using qshow
$ qshow <jobid>

Pay attention to single queue usage
 Single queue - Used for jobs that will only execute on a single node,

i.e. –N1 -n1-47.
 Jobs in the single queue should not use:

– More than 4GB memory per core for QB3 (192G/48).
 If applications require more memory, scale the number of cores (--

ntasks) to the amount of memory required: i.e. max memory available
for jobs in single queue is 16GB for --ntasks 4 on QB3.

02/03/2021 HPC User Environment 2 Spring 2021 55

More things to be noticed
 The purpose of bigmem queue on QB-2 is for jobs costing big (larger than

64 GB) memory not for jobs using more number of cores.
 GPU is available to workq or checkpt queues on QB-2.
 Xeon Phi is available to workq or checkpt queues on SuperMIC.
 Users are encouraged to use accelerators (GPU/Xeon Phi) whenever

possible. Application for allocation involving with usage of accelerators will
be easier to be approved.

02/03/2021 HPC User Environment 2 Spring 2021 56

Job Submission Quiz
 How to suspend your account? (cont’d)

– Use more memory than allowed. (e.g. use 5GB memory on SuperMike2
with ppn=1)

– Seriously underutilize node resources (e.g. allocate 32 nodes but just
use 1 core)

– Submit job to the big memory queue but use only few MB of memory

 How to monitor core and memory usage?

02/03/2021 HPC User Environment 2 Spring 2021 57

Job Scheduling Basics
HPC User Environment 2

02/03/2021 58

Back to Cluster Architecture
 As a user, you interact with the scheduler and/or resource manager

whenever you submit a job, or query on the status of your jobs or the
whole cluster, or seek to manage your jobs.

 Resource managers give access to compute resource
– Takes in a resource request (job) on login node
– Finds appropriate resource and assigns you a priority number
– Positions your job in a queue based on the priority assigned.
– Starts running jobs until it cannot run more jobs with what is available.

02/03/2021 HPC User Environment 2 Spring 2021 59

 HPC & LONI Linux clusters use TORQUE, an open source version of
the Portable Batch System (PBS) together with the MOAB Scheduler,
to manage user jobs.

 Resource Manager - Torque
– Manages a queue of jobs for a cluster of resources
– Launches job to a simple FIFO job queue

 Workload Manager - Moab
– A scheduler that integrates with one or more Resource Managers to

schedule jobs across domains of resources (servers, storage,
applications)

– Prioritizes jobs
– Provides status of running and queued jobs, etc.

 The batch queuing system determines
– The order jobs are executed
– On which node(s) jobs are executed

Job Scheduler

02/03/2021 HPC User Environment 2 Spring 2021 60

Job management philosophy
 Working Philosophy

– Prioritize workload into a queue for jobs
– Backfill idle nodes to maximize utilization

• Will be detailed later...

02/03/2021 HPC User Environment 2 Spring 2021 61

Job Priorities
 Jobs with a higher job priority are scheduled ahead of jobs with a

lower priority.
 Job priorities have contributions from the following:

– credential priority
– fairshare priority
– resource priority
– service priority

 Priority determination for each queued job, use
• mdiag -p:

$ mdiag -p
diagnosing job priority information (partition: ALL)
Job PRIORITY* Cred(User:Class) FS(User: WCA) Serv(QTime:XFctr) Res(Proc)

Weights -------- 100(10: 10) 100(10: 50) 2(2: 20) 30(10)

236172 246376 40.6(100.0: 0.0) 8.6(19.6: 0.3) 4.0(1480.: 99.7) 46.8(2048.)
235440 242365 41.3(100.0: 0.0) 4.6(8.2: 0.6) 6.6(3959.: 6.5) 47.5(512.0)
235441 242365 41.3(100.0: 0.0) 4.6(8.2: 0.6) 6.6(3959.: 6.5) 47.5(512.0)
235442 242361 41.3(100.0: 0.0) 4.6(8.2: 0.6) 6.6(3958.: 6.5) 47.5(512.0)
236396 241821 41.4(100.0: 0.0) 8.8(19.6: 0.3) 2.2(664.0: 67.4) 47.6(1456.)

02/03/2021 HPC User Environment 2 Spring 2021 62

Priority components
 Credential priority = credweight * (userweight * job.user.priority)

= 100 * (10 * 100) = 100000
It is a constant for all users.

 Fairshare priority = fsweight * min (fscap,(fsuserweight*DeltaUserFSUsage))
= 100 * (10 * DeltaUserFSUsage)

If you have not submitted jobs in the past 7 days, DeltaUserFSUsage = 20000
 Service priority = serviceweight * (queuetimeweight * QUEUETIME +

xfactorweight * XFACTOR)
= 2 * (2 * QUEUETIME + 20 * XFACTOR),

where XFACTOR = 1 + QUEUETIME / WALLTIMELIMIT.
 Resource priority = resweight * min (rescap, (procweight *

TotalProcessorsRequested)
= 30 * min (3840, (10 * TotalProcessorsRequested)

 See http://www.hpc.lsu.edu/docs/pbs.php , click “Job priority”.

02/03/2021 HPC User Environment 2 Spring 2021 63

http://www.hpc.lsu.edu/docs/pbs.php

How to get higher priority?
 Do not submit too many jobs within one week.
 Submit your job early to accumulate the queue time.
 More on resource priority:

– Request more compute nodes.
– Request a smaller walltime limit.
– see next few slides...

02/03/2021 HPC User Environment 2 Spring 2021 64

How to maximize the usage of a cluster?
 Fill in high-priority (large) jobs
 Backfill low-priority (small) jobs

02/03/2021 HPC User Environment 2 Spring 2021 65

1

2

An Overview of Backfilling (1)
 Backfill is a scheduling optimization

that allows a scheduler to make better
use of available resources by running
jobs out of order.

 Enabling backfill allows the scheduler
to start other, lower-priority jobs so
long as they do not delay the highest
priority job.

 If the FIRSTFIT algorithm is applied,
the following steps are taken:
– The list of feasible backfill jobs is

filtered, selecting only those that will
actually fit in the current backfill
window.

– The first job is started.
– While backfill jobs and idle resources

remain, repeat step 1.
02/03/2021 HPC User Environment 2 Spring 2021 66

An Overview of Backfilling (2)
 Although by default the start time of the highest priority job is

protected by a reservation, there is nothing to prevent the third priority
job from starting early and possibly delaying the start of the second
priority job.

 Command to show current backfill windows:
– showbf

• Shows what resources are available for immediate use.
• This command can be used by any user to find out how many processors

are available for immediate use on the system. It is anticipated that users
will use this information to submit jobs that meet these criteria and thus
obtain quick job turnaround times.

– Example:

[fchen14@eric2 ~]$ showbf -c workq
Partition Tasks Nodes Duration StartOffset StartDate
--------- ----- ----- ------------ ------------ --------------
ALL 40 5 18:50:35 00:00:00 11:16:49_09/04
ALL 8 1 INFINITY 00:00:00 11:16:49_09/04

02/03/2021 HPC User Environment 2 Spring 2021 67

How Much Time Should I Ask for?

02/03/2021 HPC User Environment 2 Spring 2021 68

 It should be
– Long enough for your job to complete
– As short as possible to increase the chance of backfilling

Frequently Asked Questions
 I submitted job A before job B. Why job B started earlier than job A?
 There are free nodes available, why my job is still waiting and not

running?
 Why my job is not get accelerated when running on cluster?

– Is your job utilizing the parallel resource on the cluster?
– Does you job have lots of I/O tasks?
– See next section...

02/03/2021 HPC User Environment 2 Spring 2021 69

Take-home message
 Job queue

– Nodes are organized in to queues. Nodes can be shared.
– Nodes may have special characteristics: GPU, Large memory, etc

 Submit job for both PBS and SLURM
– Interactive & Batch job
– Serial & Parallel job

 Monitor job for both PBS and SLURM
– On the headnode: qstat/squeue, qshow, etc
– On the compute node: top

 Job schedule basics
– Jobs don’t run on a ”First come first served” policy
– Job priority

02/03/2021 HPC User Environment 2 Spring 2021 70

Future Trainings
 Next week training: Basic Shell Scripting

– Wednesday 9:00am, February 10, Via Zoom

 Workshops
– Usually in summer

 Keep an eye on our webpage: www.hpc.lsu.edu

02/03/2021 HPC User Environment 2 Spring 2021 71

Compile and Analyze Codes on
Cluster

HPC User Environment 2

02/03/2021 72

Compilers
 Serial compilers

 Parallel compilers

02/03/2021 HPC User Environment 2 Spring 2021 73

Language
Linux cluster

Intel PGI GNU

Fortran ifort pgf77, pgf90 gfortran

C icc pgcc gcc

C++ icpc pgCC g++

Language Linux clusters

Fortran mpif77, mpif90

C mpicc

C++ mpiCC

Example compiling serial code
 icc hello_cpu_elapsed.c
 gfortran test_hello2.f90

 List symbols for executables:
nm - list symbols from object files

 Example:
[fchen14@mike2 hello]$ nm ./a.out | grep intel
000000000060eb60 B __intel_cpu_indicator

[fchen14@mike2 hello]$ nm ./a.out | grep gfortran
U _gfortran_set_args@@GFORTRAN_1.0

02/03/2021 HPC User Environment 2 Spring 2021 74

CPU time vs Elapsed time
 CPU time (or process time):

– The amount of time for which a central processing unit (CPU) was used
for processing instructions of a computer program or operating system,
as opposed to, for example, waiting for input/output (I/O) operations or
entering low-power (idle) mode.

 Elapsed real time (or simply real time, or wall clock time)
– The time taken from the start of a computer program until the end as

measured by an ordinary clock. Elapsed real time includes I/O time and
all other types of waits incurred by the program.

 If a program uses parallel processing, total CPU time for that program
would be more than its elapsed real time.
– (Total CPU time)/(Number of CPUs) would be same as elapsed real

time if work load is evenly distributed on each CPU and no wait is
involved for I/O or other resources.

02/03/2021 HPC User Environment 2 Spring 2021 75

Compiling and Analyzing C serial program
#include <stdio.h>
#include <time.h>
int main(char *argc, char **argv) {

double s=0.0;
// fundamental arithmetic type representing clock tick counts.
clock_t start, end;
int i;
start = clock();
for (i=0;i<1000000000;i++)

s+=i*2.0; // doing some floating point operations
end = clock();
double time_elapsed_in_seconds = (end - start)/(double)CLOCKS_PER_SEC;
printf("cputime_in_sec: %e\n", time_elapsed_in_seconds);
start = clock();
system ("sleep 5"); // just sleep, does this accumulate CPU time?
end = clock();
time_elapsed_in_seconds = (end - start)/(double)CLOCKS_PER_SEC;
printf(“cputime_in_sec: %e\n", time_elapsed_in_seconds);
return 0;

}

02/03/2021 HPC User Environment 2 Spring 2021 76

Watch the actual cpu time using “time”

[fchen14@mike429 serial]$ gcc hello_cpu_elapsed.c
[fchen14@mike429 serial]$ time ./a.out
cputime_in_sec: 2.740000e+00
cputime_in_sec: 0.000000e+00

real 0m7.782s
user 0m2.750s
sys 0m0.005s

02/03/2021 HPC User Environment 2 Spring 2021 77

Some additional info about “time”
 Use the Linux command time to evaluate the actual time usage

– time a simple command or give resource usage
 Real refers to actual elapsed time (wall clock time)

– Time from start to finish of the call. This is all elapsed time including
time used by other processes and time the process spends blocked (for
example if it is waiting for I/O to complete).

 User and Sys refer to CPU time used only by the process.
– User is the amount of CPU time spent in user-mode code (outside the

kernel) within the process.
– Sys is the amount of CPU time spent in the kernel within the process.

 Purpose of this example:
– real < user: The process is CPU bound and takes advantage of parallel

execution on multiple cores/CPUs.
– real ≈ user: The process is CPU bound and takes no advantage of

parallel execution.
– real > user: The process is I/O bound. Execution on multiple cores

would be of little to no advantage.

02/03/2021 HPC User Environment 2 Spring 2021 78

Two parallel schemes
 Shared Memory system

– A single multicore compute node
– Open Multi-processing (OpenMP)

 Distributed Memory system
– Mutliple compute nodes
– Message Passing Interface (MPI)

02/03/2021 HPC User Environment 2 Spring 2021 79

CPU
Core

Memory

CPU
Core

Memory

CPU
Core

Memory

CPU
Core

Memory

Private
Arrays

MPI: Distributed Memory System

CPU
Core

CPU
Core

CPU
Core

CPU
Core

Memory, Shared Array, etc.

Typically less memory overhead/duplication.
Communication often implicit, through cache
coherency and runtime.

OpenMP: Shared Memory System

Network
Interconnect

Example compiling threaded OpenMP code
 Compiling OpenMP code often requires the openmp compiler flags, it

varies with different compiler
 Environment Variable OMP_NUM_THREADS sets the number of threads
 Examples:

[fchen14@mike2 src]$ gcc -fopenmp hello_openmp.c
[fchen14@mike2 src]$ ifort -openmp hello_openmp.f90

02/03/2021 HPC User Environment 2 Spring 2021 80

Compiler Compiler
Options

Default behavior for # of threads
(OMP_NUM_THREADS not set)

GNU
(gcc, g++, gfortran) -fopenmp as many threads as available cores

Intel
(icc ifort) -openmp as many threads as available cores

Portland Group
(pgcc,pgCC,pgf77,pgf90) -mp one thread

Sample OpenMP C code
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main (int argc, char *argv[]) {

int nthreads, tid;
/* Fork a team of threads with their own copies of variables */

#pragma omp parallel private(nthreads, tid)
{

/* Obtain thread number */
tid = omp_get_thread_num();
printf("Hello World from thread = %d\n", tid);
/* Only master thread does this */
if (tid == 0) {

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master thread and disband */

}

02/03/2021 HPC User Environment 2 Spring 2021 81

Sample OpenMP Fortran code
program hello

integer nthreads,tid,omp_get_num_threads,omp_get_thread_num
! fork a team of threads giving them their own copies of variables
!$omp parallel private(nthreads, tid)
! obtain thread number
tid = omp_get_thread_num()
print *, 'hello world from thread = ', tid
! only master thread does this
if (tid .eq. 0) then

nthreads = omp_get_num_threads()
print *, 'number of threads = ', nthreads

end if
! all threads join master thread and disband
!$omp end parallel
end

02/03/2021 HPC User Environment 2 Spring 2021 82

Analyzing a parallel (OpenMP) program
 What will be the CPU time and elapsed time for the following code

segment:
See (on SuperMike II):
/home/fchen14/userenv/src/openmp/hello_openmp_cpu_elapse.c
// fundamental arithmetic type representing clock tick counts.
clock_t start, end;
struct timeval r_start, r_end;
int i;
gettimeofday(&r_start, NULL);
start = clock();
#pragma omp parallel for // spawn the openmp threads
for (i=0;i<N;i++) a = i*2.0; // doing some floating point operations
end = clock();
gettimeofday(&r_end, NULL);
double cputime_elapsed_in_seconds = (end -
start)/(double)CLOCKS_PER_SEC;
double realtime_elapsed_in_seconds = ((r_end.tv_sec * 1000000 +
r_end.tv_usec) - (r_start.tv_sec * 1000000 +
r_start.tv_usec))/1000000.0;

02/03/2021 HPC User Environment 2 Spring 2021 83

Available MPI libraries on LONI & HPC

Name MPI Library
Default
serial

compiler
Cluster Resource Mvapich Mvapich2 OpenMPI MPICH

LONI
Eric 0.98, 1.1 1.4, 1.6, 1.8.1 1.3.4 X Intel 11.1

QB2 X 2.0 1.8.1 3.0.3 Intel 14.0.2

LSU

SuperMikeII X 1.9, 2.0.1
1.6.2
1.6.3
1.6.5

3.0.2 Intel 13.0.0

Philip X X 1.4.3, 1.6.1
1.2.7,
1.3.2,
1.4.1

Intel 11.1

SuperMIC X 2.0 1.8.1 3.0.3
3.1.1 Intel 14.0.2

02/03/2021 HPC User Environment 2 Spring 2021 84

MPI Compilers (1)

mpif90 hello.f90

mpicc hello.c

mpicxx hello.cpp

02/03/2021 HPC User Environment 2 Spring 2021 85

Language Linux clusters AIX clusters

Fortran mpif77, mpif90 mpxlf, mpxlf90

C mpicc mpcc

C++ mpiCC mpCC

MPI Compilers (2)
 These MPI compilers are actually wrappers

– They still use the compilers we've seen on the previous slide
• Intel, PGI or GNU

– They take care of everything we need to build MPI codes
• Head files, libraries etc.

– What they actually do can be reveal by the -show option
 It’s extremely important that you compile and run your code with the

same version of MPI!
– Use the default version if possible

02/03/2021 HPC User Environment 2 Spring 2021 86

Compiling a MPI C program
 Compiling Hello world in C version:

– mpicc hello_mpi.c
#include <mpi.h>
#include <stdio.h>
int main(int argc, char** argv) {

int name_len, world_size, world_rank;
char processor_name[MPI_MAX_PROCESSOR_NAME];
//Initialize the MPI environment
MPI_Init(NULL, NULL);
// Get the number and rank of processes
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
// Get the name of the processor
MPI_Get_processor_name(processor_name, &name_len);
// Print off a hello world message
printf("Iam from processor %s, rank %d out of %d processors\n",

processor_name, world_rank, world_size);
// Finalize the MPI environment.
MPI_Finalize();

}

02/03/2021 HPC User Environment 2 Spring 2021 87

Compiling a MPI Fortran program
 Compiling Hello world in Fortran:

– mpif90 hellp_mpi.f90
program hello_mpi

include 'mpif.h'
!use mpi
character 10 name
! Initialize the MPI library:
call MPI_Init(ierr)
! Get size and rank
call MPI_Comm_Size(MPI_COMM_WORLD, numtasks, ierr)
call MPI_Comm_Rank(MPI_COMM_WORLD, rank, ierr)
! print date
if (nrank == 0) then

write(,)'System date'
call system('date')

endif
call MPI_Barrier(MPI_COMM_WORLD, ierr)
! print rank
call MPI_Get_Processor_Name(name, len, ierr)
write(,)"I am ", nrank, "of", numtasks, "on ", name
! Tell the MPI library to release all resources it is using:
call MPI_Finalize(ierr)

end program hello_mpi

02/03/2021 HPC User Environment 2 Spring 2021 88

Notes for compiling a MPI program (1)
 Always verify what compiler/library is being used:

$ mpicc -show
icc -I/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/include -
L/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/lib -lmpi -ldl -lm -
Wl,--export-dynamic -lrt -lnsl -libverbs -libumad -lpthread -lutil

$ mpif90 -show
ifort -I/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/include -
I/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/lib -
L/usr/local/packages/openmpi/1.6.2/Intel-13.0.0/lib -lmpi_f90 -
lmpi_f77 -lmpi -ldl -lm -Wl,--export-dynamic -lrt -lnsl -libverbs -
libumad -lpthread -lutil

02/03/2021 HPC User Environment 2 Spring 2021 89

Notes for compiling a MPI program (2)
 Always verify what library is being used: Before and after:
$ ldd a.out #ldd - print shared library dependencies

linux-vdso.so.1 => (0x00007fff907ff000)
libmpi_f90.so.1 => /usr/local/packages/openmpi/1.6.2/Intel-

13.0.0/lib/libmpi_f90.so.1 (0x00002b9ae577e000)
libmpi_f77.so.1 => /usr/local/packages/openmpi/1.6.2/Intel-

13.0.0/lib/libmpi_f77.so.1 (0x00002b9ae5982000)
libmpi.so.1 => /usr/local/packages/openmpi/1.6.2/Intel-

13.0.0/lib/libmpi.so.1 (0x00002b9ae5bb9000)
...

libpthread.so.0 => /lib64/libpthread.so.0 (0x0000003b21800000)
...

libifport.so.5 =>
/usr/local/compilers/Intel/composer_xe_2013.0.079/compiler/lib/intel64/l
ibifport.so.5 (0x00002b9ae61ee000)

libifcore.so.5 =>
/usr/local/compilers/Intel/composer_xe_2013.0.079/compiler/lib/intel64/l
ibifcore.so.5 (0x00002b9ae641d000)

02/03/2021 HPC User Environment 2 Spring 2021 90

Running and Analyzing MPI program
 Make sure you are running your jobs on the correct nodes
 Important if you want to run less processes than ppn
 Understand the usage of $PBS_NODEFILE

[fchen14@mike2 ~]$ qsub -I -X -l nodes=2:ppn=16 -l walltime=01:00:00 -q gpu
...
[fchen14@mike429 ~]$ echo $PBS_NODEFILE
/var/spool/torque/aux//236660.mike3
[fchen14@mike429 ~]$ cat $PBS_NODEFILE
mike429
... # 16 repeats of mike429
mike429
mike430
... # 16 repeats of mike430
mike430
[fchen14@mike429 hybrid]$ cat $PBS_NODEFILE| uniq > hosts
[fchen14@mike429 hybrid]$ cat hosts
mike429
mike430

02/03/2021 HPC User Environment 2 Spring 2021 91

Running and Analyzing MPI program
[fchen14@mike315 mpi]$ mpicc hello_mpi.c
[fchen14@mike315 mpi]$ mpirun -np 32 -hostfile $PBSNODEFILE ./a.out
Iam from processor mike315, rank 1 out of 32 processors
Iam from processor mike315, rank 6 out of 32 processors
Iam from processor mike315, rank 9 out of 32 processors
Iam from processor mike315, rank 12 out of 32 processors
Iam from processor mike315, rank 0 out of 32 processors
Iam from processor mike315, rank 2 out of 32 processors
Iam from processor mike315, rank 3 out of 32 processors
Iam from processor mike315, rank 7 out of 32 processors
Iam from processor mike315, rank 10 out of 32 processors
Iam from processor mike315, rank 5 out of 32 processors
Iam from processor mike315, rank 13 out of 32 processors
Iam from processor mike315, rank 4 out of 32 processors
Iam from processor mike315, rank 8 out of 32 processors
Iam from processor mike334, rank 17 out of 32 processors
Iam from processor mike315, rank 11 out of 32 processors
Iam from processor mike315, rank 14 out of 32 processors
Iam from processor mike315, rank 15 out of 32 processors
Iam from processor mike334, rank 18 out of 32 processors

02/03/2021 HPC User Environment 2 Spring 2021 92

Compiling hybrid (MPI+OpenMP) program
 See /home/fchen14/userenv/src/hybrid/hello_hybrid.c for complete source
 Use command:

– $ mpicc -openmp hello_hybrid.c

#pragma omp parallel default(shared) private(itd, np)
{

gtd = omp_get_num_threads(); //get total num of threads in a process
itd = omp_get_thread_num(); // get thread id
gid = nrank*gtd + itd; // global id
printf("Gid %d from thd %d out of %d from process %d out of %d on %s\n",

gid, itd, gtd, nrank, numprocs, processor_name);
if (nrank==0 && itd==0)
{

// system("pstree -ap -u $USER");
system("for f in `cat $PBS_NODEFILE|uniq`; do ssh $f pstree -ap -u

$USER; done;");
system("sleep 10");

}
}

02/03/2021 HPC User Environment 2 Spring 2021 93

Analyzing a hybrid program
[fchen14@mike315 hybrid]$ export OMP_NUM_THREADS=4
[fchen14@mike315 hybrid]$ mpirun -np 2 -x OMP_NUM_THREADS ./a.out
Gid 0 from thread 0 out of 4 from process 0 out of 2 on mike315
Gid 2 from thread 2 out of 4 from process 0 out of 2 on mike315
Gid 1 from thread 1 out of 4 from process 0 out of 2 on mike315
Gid 3 from thread 3 out of 4 from process 0 out of 2 on mike315
Gid 4 from thread 0 out of 4 from process 1 out of 2 on mike315
Gid 6 from thread 2 out of 4 from process 1 out of 2 on mike315
Gid 7 from thread 3 out of 4 from process 1 out of 2 on mike315
Gid 5 from thread 1 out of 4 from process 1 out of 2 on mike315
bash,108067

|-mpirun,110651 -np 2 -x OMP_NUM_THREADS ./a.out
| |-a.out,110652
| | |-sh,110666 -c ...
| | | `-ssh,110670 mike315 pstree -ap -u fchen14
| | |-{a.out},110654
| | |-{a.out},110656
| | |-{a.out},110662
| | |-{a.out},110663
| | |-{a.out},110664
| | `-{a.out},110665
|

02/03/2021 HPC User Environment 2 Spring 2021 94

Exercise
 Submit a small job to run “sleep 180”and “print PBS variables”

– Create a script to submit a 5 min job and print from within the job script
PBS variables $PBS_NODEFILE, $PBS_WORKDIR. Also run “sleep
180” to give you a few minutes to verify status.

– Once the job is running, find out the Mother Superior node and other
slave nodes assigned to your job using qstat.

– Log into MS node and verify that your job is running and find your
temporary output file

– Modify your script to print hello from each of your assigned nodes
 Run a shell script using mpirun to print process id of shell

02/03/2021 HPC User Environment 2 Spring 2021 95

QB3 in Friendly User Mode
 QB3 is an 857 TeraFlop peak performance cluster with 9,696 CPU

cores, comprised of 202 compute nodes connected by 100 Gbps
Infiniband fabric
– 192 regular nodes: two 24-core Intel Cascade Lake CPUs, 192 GB

RAM
– 8 GPU nodes: two 24-core Intel Cascade Lake CPUs, 192 GB RAM,

two NVIDIA Tesla V100 GPUs
– 2 bigmem nodes: two 24-core Intel Cascade Lake CPUs, 1.5 TB RAM

 log in QB3 with your current LONI HPC credentials using
– ssh qbc.loni.org

 Before you submit jobs on QB3, please make sure that you review the
user guide here:
– http://www.hpc.lsu.edu/docs/guides.php?system=QB3

 “Friendly user mode", which means that the hardware/software
configuration and policy may change without advance notice.

 The biggest difference QB2 users would notice on QB3 is that, instead
of Torque/Moab, Slurm is employed as the workload and resource
manager.

02/03/2021 HPC User Environment 2 Spring 2021 96

http://www.hpc.lsu.edu/docs/guides.php?system=QB3

	HPC User Environment 2
	Outline
	Brief Review of Session 1
	Inside A Cluster Rack
	Inside A QB2 Compute Node (Dell C8000)
	Conceptual Relationship
	Cluster Nomenclature
	HPC Cluster Architectures
	Accessing cluster using ssh (Secure Shell)
	Review Questions for Section 1
	Access to cluster
	Software Management
	Account and Allocation Policy
	Account Security
	Job Queue basics
	Job submission basics
	Job Queues
	Queue Characteristics – LONI clusters
	Queue Characteristics – LSU HPC clusters
	Queue Characteristics
	Queue Querying – Linux Clusters
	Submit and Monitor Your Jobs�through PBS
	Two Job Types
	Submitting Jobs on Linux Clusters
	Check Your Available Allocations
	Submit An Interactive Job on SuperMike2
	PBS Environmental Variables
	PBS Job Script – Serial Job
	PBS Job Script – Parallel Job
	True or False?
	Job Monitoring - Linux Clusters
	Using the “top” command
	Pay attention to single queue usage
	Core and Memory in Single queue
	Submit and Monitor Your Jobs�through SLURM
	PBS to Slurm
	Slurm Interactive Job Command
	Check Available Allocations
	Start an Slurm Interactive Job
	Slurm Environmental Variables
	Slurm Batch Job Script
	Common Slurm Switches
	Submit Slurm Batch Job
	Common Slurm Commands (1)
	Common Slurm Commands (2)
	Common Slurm Commands (3)
	Common Slurm Commands (4)
	Serial Job Script Template
	MPI Job - (PMIx Versions)
	MPI Job - (Non-PMIx Versions)
	Job Monitoring on QB3
	Using the “top” command
	Check memory Usage for Multi-Node Job
	Pay attention to single queue usage
	More things to be noticed
	Job Submission Quiz
	Job Scheduling Basics
	Back to Cluster Architecture
	Job Scheduler
	Job management philosophy
	Job Priorities
	Priority components
	How to get higher priority?
	How to maximize the usage of a cluster?
	An Overview of Backfilling (1)
	An Overview of Backfilling (2)
	How Much Time Should I Ask for?
	Frequently Asked Questions
	Take-home message
	Future Trainings
	Compile and Analyze Codes on Cluster
	Compilers
	Example compiling serial code
	CPU time vs Elapsed time
	Compiling and Analyzing C serial program
	Watch the actual cpu time using “time”
	Some additional info about “time”
	Two parallel schemes
	Example compiling threaded OpenMP code
	Sample OpenMP C code
	Sample OpenMP Fortran code
	Analyzing a parallel (OpenMP) program
	Available MPI libraries on LONI & HPC
	MPI Compilers (1)
	MPI Compilers (2)
	Compiling a MPI C program
	Compiling a MPI Fortran program
	Notes for compiling a MPI program (1)
	Notes for compiling a MPI program (2)
	Running and Analyzing MPI program
	Running and Analyzing MPI program
	Compiling hybrid (MPI+OpenMP) program
	Analyzing a hybrid program
	Exercise
	QB3 in Friendly User Mode

