

HPC User Environment 2

Feng Chen HPC User Services LSU HPC & LONI sys-help@loni.org

Louisiana State University Baton Rouge February 2, 2022

Outline

- Review HPC User Environment 1 topics
 - Cluster architecture
 - Connect to clusters
 - Software management using module

Things to be covered in this training

- Job management
 - Job queue basics
 - Interactive vs Batch jobs
 - Submit and monitor your jobs
- Understanding Job scheduling
 - Job priority
 - Backfill
- Compiling and analyze codes on cluster
 - Serial program
 - Parallel program

HPC User Environment 2

Review of HPC User Environment 1

Cluster Environment

- Multiple compute nodes
- Multiple users
- Each user may have multiple jobs running simultaneously
- Multiple users may share the same node

Conceptual Relationship

HPC User Environment 2 Spring 2022

Cluster Nomenclature

Term	Definition
Cluster	The top-level organizational unit of an HPC cluster, comprising a set of nodes, a queue, and jobs.
Node	A single, named host machine in the cluster.
Core	The basic computation unit of the CPU. For example, a quad-core processor is considered 4 cores.
Job	A user's request to use a certain amount of resources for a certain amount of time on cluster for his work.

HPC User Environment 2 Spring 2022

Accessing Cluster Using SSH (Secure Shell)

On Unix and Mac

- use ssh on a terminal to connect
- Windows box (ssh client):
 - MobaXterm (<u>http://mobaxterm.mobatek.net/</u>)
 - Putty, Cygwin
 (<u>http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html</u>)
- > ssh username@smic.hpc.lsu.edu

Host name

- LONI: <cluster_name>.loni.org
 - <cluster_name> can be:
 - qb.loni.org (QB2)
 - qbc.loni.org (QB3)
- LSU HPC: <cluster_name>.hpc.lsu.edu
 - <cluster_name> can be:
 - smic.hpc.lsu.edu (SuperMIC)
 - db1.hpc.lsu.edu (DeepBayou)

Software Management with Environment Modules

> To list all available or part of packages is: module av

module av <package name>

- To see what packages are currently loaded into a user's environment, the command is: module list
- The command for loading a package into a user's environment is: module load <package name>. If a specific version of a package is desired, the command can be expanded to: module load <package name>/<package version>.
- On HPC and LONI clusters, Modules can be loaded automatically on login by adding the appropriate module load commands to a user's ~/.bashrc or ~/.modules (recommended) file

HPC User Environment 2

Review Questions for Section 1

Access to Cluster

- > Which supercomputer cluster can you use?
 - a) SuperMike3 (upcoming)
 - b) SuperMIC (SMIC)
 - c) DeepBayou
 - d) QueenBee2 (QB2)
 - e) QueenBee3 (QB3)

LSU HPC

Access to Cluster

How do I connect to HPC/LONI cluster?

- a) By logging onto HPC webpage at www.hpc.lsu.edu
- b) Using an ssh (secure shell) client such as MobaXterm/Putty ③
- c) Go to the machine room in ISB in downtown Baton Rouge and connect my laptop to the nodes using a cable

Login onto SuperMIC or Queenbee2

ssh username@smic.hpc.lsu.edu
ssh username@qb.loni.org

Windows box (ssh client):

- MobaXterm (recommended)
- Putty
- Do you need help login to the supercomputer?

To run job on the cluster, you must

- a) Send your credit card information to the HPC staff
- b) Make sure your advisor has enough funding for you
- c) Have an activate allocation 😊
- d) All of the above

List active allocation balance: balance

<pre>[ychen64@smic1 ~]\$</pre>	balance		
Proj. Name	=== Allocation information fo Alloc Balance Deposited	or ychen64 ====================================	End
hpc_hpcadmin6 hpc_h hpc_train_2019 hpc_	pcadmin6 on @smic2 994513.02 train_2019 on @smic2 49500.9	1000000.00 0.55 99 50000.00 1.00	287 2020-06-30 196 2020-03-31

Note: Balance and Deposit are measured in CPU-hours

HPC User Environment 2 Spring 2022

Software Management

How do we manage the software installed on HPC/LONI clusters?

- a) Using Environment Modules 😊
- b) Using a drop down menu on the <u>www.hpc.lsu.edu</u> webpage

Check your software environment

<pre>[ychen64@smic2 ~]\$ mod</pre>	dule list	
Currently Loaded Modul	lefiles:	
1) intel/18.0.0	2) INTEL/18.0.0	<pre>3) mvapich2/2.2/INTEL-18.0.0</pre>
<pre>[ychen64@qb2 ~]\$ modul</pre>	le list	
Currently Loaded Modul	lefiles:	
1) intel/14.0.2	2) INTEL/14.0.2	<pre>3) mvapich2/2.0/INTEL-14.0.2</pre>

Outline

- Review HPC User Environment 1 topics
 - Cluster architecture
 - Connect to clusters
 - Software management using softenv and module

Things to be covered in this training

- Job management
 - Job queue basics
 - Interactive vs Batch jobs
 - Submit and monitor your jobs

HPC User Environment 2

Job Queue Basics

Job Submission Basics

- 1. Find appropriate queue
 - Understand the queuing system and your requirements and
 - Queue Querying
- 2. Submit job
 - PBS: SuperMIC and QueenBee2
 - SLURM: DeepBayou and QueenBee2/QueenBee3, SuperMike3
- 3. Monitor jobs during execution

Job Queues

- Nodes are organized into queues.
- Each job queue differs in
 - Number of available nodes
 - Max run time
 - Max running jobs per user
 - Nodes may have special characteristics: GPU, large memory, etc.
- Jobs need to specify resource requirements
 - Nodes, time, queue
- It is called a queue for a reason, but jobs don't run on a "First Come First Served" policy.
 - This will be detailed in later slides

Queue Characteristics – LONI Clusters

Machine	Queue	Max Runtime	ppn	Max running jobs	Max nodes per job	Use
	workq		20		128	Unpreemptable
	checkpt	3 days	20		256	Preemptable
QB2	bigmem		48	64	1	Big memory
	single	7 days	1,2,4,6,8		1	Single node jobs
	workq		48		128	Unpreemptable
	checkpt	2 dovo	48		256	Preemptable
QB3	gpu	5 uays	48	64	8	Preemptable
	bigmem		48	0.	1	Big memory
	single	7 days	1-47		1	Single node jobs

Unpreemptable vs Preemptable

http://www.adaptivecomputing.com/blog-hpc/understanding-moab-scheduling-part-iii/

HPC User Environment 2 Spring 2022

Machine	Queue	Max Runtime	ppn	Max running jobs	Max nodes per job	Use
	workq		20		128	Unpreemptable
	checkpt		20		200	Preemptable
SuperMIC	gpu	3 days	20	34	20	Job using GPU
	single		1,2,4,6,8		1	Single node jobs
	checkpt	2 dave	48		8	Preemptable
DeepBayou	nvlink	5 uays	48	34	1	Job using GPU
DeepBayou	single	7days	1,2,4,6,8		1	Single node jobs
SuperMike3		Su	perMike:	3 is upco	ming.	

HPC User Environment 2 Spring 2022

Queue Characteristics

"qstat -q" will give you more info on the queues

[fchen14@smic2 ~]\$ qstat -q

server: smic3

Queue	Memory	CPU Time	Walltime	Node	Run	Que	Lm	State
workq			72:00:00	128	31	6		ER
mwfa			72:00:00	8	3	0		ER
bigmem			48:00:00	1	0	0		ER
lasigma			72:00:00	28	28	7		ER
bigmemtb			48:00:00	1	0	0		ER
priority			168:00:0	128	0	0		ER
single			72:00:00	1	62	0		ER
gpu			24:00:00	16	1	0		ER
preempt			72:00:00		0	0		ER
checkpt			72:00:00	128	31	137		ER
admin			24:00:00		0	0		ER
scalemp			24:00:00	1	0	0		ER
					15	5 3	150	

Queue Querying – Linux Clusters

Displays information about active, eligible, blocked, and/or recently completed jobs: showq command

\$ showq					
<pre>active jobs</pre>					
JOBID	USERNAME	STATE	PROCS	REMAINING	STARTTIME
236875	ebeigi3	Running	16	1:44:29	Mon Sep 15 20:00:22
236934	mwu3	Running	16	00:03:27	Mon Sep 15 19:04:20
•••					
eligible jobs-					
JOBID	USERNAME	STATE	PROCS	WCLIMIT	QUEUETIME
236795	dmarce1	Idle	1456	00:15:00	Mon Sep 15 16:38:45
236753	rsmith	Idle	2000	4:00:00	Mon Sep 15 14:44:52
236862	dlamas1	Idle	576	2:00:00	Mon Sep 15 17:28:57
•••					
121 eligible j	obs				
<pre>blocked jobs</pre>					
JOBID	USERNAME	STATE	PROCS	WCLIMIT	QUEUETIME
232741	myagho1	Idle	2000	1:00:00:00	Mon Sep 8 07:22:12
235545	tanping	Idle	1	2:21:10:00	Fri Sep 12 16:50:49
235546	tanping	Idle	1	2:21:10:00	Fri Sep 12 16:50:50
• • •					

Queue Querying – Free Nodes

> Query free nodes: qfree command

\$ qfree

. . .

PBS total nodes: 506, free: 215, busy: 290 *33, down: 1, use: 57%
PBS workq nodes: 476, free: 190, busy: 162, queued: 163
PBS checkpt nodes: 476, free: 190, busy: 124, queued: 284
PBS single nodes: 18, free: 15 *258, busy: 13, queued: 0
PBS k40 nodes: 4, free: 3, busy: 1, queued: 0
(Highest priority job 660266 on queue checkpt will start in 2:27:00)

Queue Characteristics

"sinfo" will give you more info on the queues (DeepBayou and QB3)

[fchen14@qbc1 ~]\$ sinfo PARTITION AVAIL TIMELIMIT NODES STATE NODELIST single* 4 drain qbc[114-115,119-120] up 7-00:00:00 single* up 7-00:00:00 119 alloc gbc[001-002,006-018,021-024,026,031-039,041-057,062-066,069-076,079-086,088-093,095-113,116-117,121-126,148-151,154-163,166,186-189] idle qbc[003-005,019-020,025,027-030,040,058-061,067single* up 7-00:00:00 69 068,077-078,087,094,118,127-147,152-153,164-165,167-185,190-192] checkpt up 3-00:00:00 4 drain qbc[114-115,119-120] alloc gbc[001-002,006-018,021-024,026,031-039,041-057,062checkpt up 3-00:00:00 119 066,069-076,079-086,088-093,095-113,116-117,121-126,148-151,154-163,166,186-189] checkpt up 3-00:00:00 idle gbc[003-005,019-020,025,027-030,040,058-061,067-69 068,077-078,087,094,118,127-147,152-153,164-165,167-185,190-192] workg up 3-00:00:00 4 drain qbc[114-115,119-120] workg up 3-00:00:00 alloc qbc[001-002,006-018,021-024,026,031-039,041-057,062-119 066,069-076,079-086,088-093,095-113,116-117,121-126,148-151,154-163,166,186-189] workg up 3-00:00:00 69 idle qbc[003-005,019-020,025,027-030,040,058-061,067-068,077-078,087,094,118,127-147,152-153,164-165,167-185,190-192] up 3-00:00:00 idle qbc[193-200] 8 gpu idle gbc[201-202] bigmem up 3-00:00:00 2

HPC User Environment 2

Submit and Monitor Your Jobs

Two Job Types

Interactive job

- Set up an interactive environment on compute nodes for users
 - Advantage: can run programs interactively
 - Disadvantage: must be present when the job starts
- Purpose: testing and debugging, compiling
 - NEVER RUN COMPUTATIONALLY INTENSIVE CODE ON THE HEAD NODE (Login Node)
 - Try not to run interactive jobs with large core count, which is a waste of resources

Batch job

- Executed without user intervention using a job script
 - Advantage: the system takes care of everything
 - Disadvantage: can only execute one sequence of commands which cannot changed after submission
- Purpose: production run

Check Your Available Allocations

[fchen14@smic1 ~]\$ showquota

Hard disk quotas for user fchen14 (uid 32584):

Filesystem	MB used	quota	files	fquota
/home	3463	5000	26880	0
/work	2678135	0	2405526	4000000
/project	2678135	0	2405526	4000000

CPU Allocation SUs remaining:

hpc_hpcadmin8:	1938592.91	2000000.00	2022-07-01
hpc_train_2021:	27129.33	50000.00	2022-07-01

Submitting Jobs on Linux Clusters

Interactive job example:

PBS for SuperMIC and QueenBee2

qsub **-I** ∖

- -1 walltime=<hh:mm:ss>,nodes=<num_nodes>:ppn=<num_cores> \
- -A <Allocation> $\$
- -q <queue name> \
- -X to enable X11 forwarding
- SLRUM for DeepBayou and QueenBee3

```
srun -t hh:mm:ss \
```

- -N short for --nodes, number of nodes \setminus
- -n short for --ntasks, number of tasks to run job on \setminus
- -c short for --ncpus-per-task, number of threads per process \setminus
- -A <Allocation> $\$
- -p <queue name> \
- --x11 enable X11 forwarding $\$
- --pty bash

HPC User Environment 2 Spring 2022

Submit a PBS Interactive Job on SuperMIC

[fchen14@smic1 ~]\$ qsub -I -X -l nodes=1:ppn=20,walltime=2:00:00 -q workq -A hpc_train_2022
qsub: waiting for job 675733.smic3 to start
qsub: job 675733.smic3 ready

Note the digit change.

Running PBS prologue script

• • •

Job ID: 675733.smic3

Username: fchen14

Group: Admins

Date: 13-Jun-2017 15:34

Node: smic044 (62703)

PBS has allocated the following nodes:

smic044

A total of 16 processors on 1 nodes allocated

Concluding PBS ppologue script - 13-Jun-2017 15:34:19

[fchen14@smic044 ~]\$

HPC User Environment 2 Spring 2022

Submit a PBS Interactive Job on QB2 and SMIC

[ychen64@q	b2 ~]\$ q <mark>sub -I -X -l nodes=1:pp</mark> r	n=20,walltime=02:00:00, -q	<pre>workq -A loni_train_2022</pre>
qsub: wait qsub: job 	ing for job 505851.qb3 to start 505851.qb3 ready		
Running PB	8S prologue script		
User and J	lob Data:	20 cores per node	Allocation name
Job ID:	505851.qb3		
Username:	ychen64		
Group:	loniadmin		
Date:	13-Jun-2018 01:27		
Node:	qb061 (4497)		
PBS has al 	located the following nodes:		
Concluding	g PBS prologue script - 13-Jun-20	018 01:27:39	
[ychen64@q	lb061 ~]\$		

Note the digit change.

HPC User Environment 2 Spring 2022

Exercise

Start an interactive job session for 1 hour (or a time with 30-min increment)

- Find out your allocation name if you don't remember
- Decide how many node and which queue to use
- Use "qsub -I" or "srun", including all necessary options
- Once job started, verify that you are NOT on the head node
- > Why 30 min for the interactive jobs?
 - The requested time for the interactive jobs should have 30-min increment
 - A 30-min job is the easiest job to be fit into the job queue.
 - Based on the actual test needs, longer time can be requested, max 12 hours.

Exercise (Continue)

Computing an approximate value for PI

- cd to your work directory
 - \$ cd /work/\$USER
- Download the tarball from HPC website to the home directory
 - \$ wget http://www.hpc.lsu.edu/training/weekly-materials/Downloads/pi.tar.gz
- Untar it
 - \$ tar -xvzf pi.tar.gz
- cd to the directory "pi"
 - \$ cd pi
- Use "module list" to make sure the mvapich2 is loaded.
- Execute serial or mpi version
 - \$ serialpi.out #serial version, if no argument given, default value 100000000
 - # MPI version:
 - # QueenBee2 or SuperMIC:
 - \$ mpirun -np 20 ./mpi_pi.out 10000000000 # default 10000000000
 - # DeepBayou or QueenBee3
 - \$ srun ./ mpi_pi.out 1000000000 # default 10000000000

Appendix

Computing an approximate value for PI

The executables in this training calculate the value for PI based on the math which is actually quite simple: Imagine a square dartboard with circle inscribed within it such that the diameter of the circle is the length of a side of the square.

We can observe that the ratio of the area of the circle to the area of the square is equal to some constant, $\pi/4$ (since the square's area is $2^*2 = 4$ and area_circle = $\pi^*r^2 = \pi$). If we randomly place many points (darts) inside the square, we can count how many are also inside the circle (satisfy $x^2+y^2 <= 1$) vs the total number of points and compute an estimate for the value of π . (Problem description is from Jared Baker, UW; Ben Matthews, NCAR)

During the break...

- Finish the exercise run.
- If you are not familiar with the Linux commands used in the exercise, review the Linux commands cheat sheet in the next slide.

HPC User Environment 2 Spring 2022

Cheat Sheet of Commands in Linux

- history
- mkdir (name of file) # makes a folder
- ls # list
 - -a list all files including hidden
 - -1 shows files with a long listing format
- cd # change directory
- pwd # shows location
- cp # copy
- rm # Remove files (careful)
- Up arrow (1) # moves back in history
- Tab -> fills in unique file name
- Tab Tab -> press tab twice, shows all available file names

Submit a Batch Job

PBS batch Job example:

[ychen64@qb2 pi]\$ qsub qsub.submit

> SLURM batch Job example:

[ychen64@qbc1 pi]\$ sbatch sbatch.submit

Batch job cannot be submitted when you are on the compute node [ychen64@qb023 pi]\$ qsub qsub.submit qsub: Bad UID for job execution MSG=ruserok failed validating ychen64/ychen64 from qb023

- > Carefully prepare the PBS/SLURM job script
 - examples in the next few slides

PBS Job Script – Parallel Job

#!/bin/bash								
<pre>#PBS -1 nodes=2:ppn=20 #Number of nodes and processors per node</pre>								
<pre>#PBS -1 walltime=24:00:00</pre>	#Maximum wall time							
#PBS -N myjob	#Job name	Tells the						
<pre>#PBS -o <file name=""></file></pre>	<pre>#File name for standard output</pre>	scheduler						
<pre>#PBS -e <file name=""></file></pre>	<pre>#File name for standard error</pre>	how much						
#PBS -q checkpt	#Queue name	resource						
<pre>#PBS -A <allocation_if_needed></allocation_if_needed></pre>	#Allocation name	you need.						
#PBS -m e	#Send mail when job ends							
<pre>#PBS -M <email address=""></email></pre>	#Send mail to this address	1						
<pre><shell commands=""></shell></pre>								
(choll commands)								
		vou use the						
Note: don't let your <path executable="" to=""> <options> be the EOF resources?</options></path>								

EOF can be <shell commands>, comments or a blank line.

SLURM Job Script – Parallel Job

```
#!/bin/bash
#SBATCH -N 2
#SBATCH -n 96
#SBATCH -t hh:mm:ss
#SBATCH -o <file name>
#SBATCH -o <file name>
#SBATCH -e <file name>
#SBATCH -p checkpt
#SBATCH -p checkpt
#SBATCH -A <allocation_if_needed>
#SBATCH --mail-type END
#SBATCH --mail-user <email>
```

#number of nodes
#total number of MPI processes
#short for --time
#File name for standard output
#File name for standard error
#Queue name
#Allocation name
#Send mail when job ends
#Send mail to this address

<shell commands>
srun <path_to_executable> <options>
<shell commands>

How will you use the resources?

Note: don't let your <path_to_executable> <options> be the EOF
 EOF can be <shell commands>, comments or a blank line.

True or False?

- I have the below job script on QB2, since I used nodes=2:ppn=20, my script will run in parallel using 2 nodes with 40 cores.
 - a) True
 - b) False
- #!/bin/bash
 #PBS -1 nodes=2:ppn=20
 #PBS -1 walltime=24:00:00
 #PBS -N myjob
 #PBS -j oe
 #PBS -j oe
 #PBS -q checkpt
 #PBS -A my allocation

./my_executable.out

Job Monitoring - PBS

- Check details on your job using qstat
 - \$ qstat -n -u \$USER : For quick look at nodes assigned to you
- Delete job using qdel
 - \$ qdel <jobid>
- Check details of your job using checkjob
 - \$ checkjob <jobid>
- Check health of your job using qshow
 - \$ qshow <jobid>

Please pay close attention to the CPU load and the memory consumed by your job!

Job Monitoring - SLURM

Check details on your job using squeue

\$ squeue -u \$USER : For quick look at nodes assigned to you

- Delete job using scancel
 - \$ scancel -c <job-id>
- Check details of your job using scontrol
 - \$ scontrol show job <job-id>
- Check health of your job using qshow
 - \$ qshow <jobid>

Please pay close attention to the CPU and the memory consumed by your job!

Using the "top" command

- The Linux top program provides a dynamic real-time view of a running system.
- Should be used on the compute node assigned to you (ssh to it first)

top - 19:39:56 up 89 days, 4:13, 1 user, load average: 0.63, 0.18, 0.06
Tasks: 489 total, 2 running, 487 sleeping, 0 stopped, 0 zombie
Cpu(s): 6.3%us, 0.0%sy, 0.0%ni, 93.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 65909356k total, 3389616k used, 62519740k free, 151460k buffers
Swap: 207618040k total, 5608k used, 207612432k free, 947716k cached

PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
39595	fchen14	20	0	266 m	257m	592	R	99.9	0.4	0:06.94	a.out
39589	fchen14	20	0	17376	1612	980	R	0.3	0.0	0:00.05	top
38479	fchen14	20	0	108 m	2156	1348	S	0.0	0.0	0:00.03	bash
39253	fchen14	20	0	103m	1340	1076	S	0.0	0.0	0:00.00	236297.smic3.SC
39254	fchen14	20	0	103 m	1324	1060	S	0.0	0.0	0:00.00	<pre>bm_laplace.sh</pre>
39264	fchen14	20	0	99836	1908	992	S	0.0	0.0	0:00.00	sshd
39265	fchen14	20	0	108 m	3056	1496	S	0.0	0.0	0:00.03	bash

Using the "free" command

- The Linux free displays the total amount of free and used physical and swap memory in the system
- Should be used on the compute node assigned to you (ssh to it first)
- **\$** free -h

	total	used	free	shared	buffers	cached
Mem:	62G	3.1G	59G	177M	31M	1.3G
-/+ buffe	rs/cache:	1.7G	61G			
Swap:	127G	0B	127G			

PBS Environmental Variables

[fchen14@smic315 ~]\$ echo \$PBS_								
<pre>\$PBS_ENVIRONMENT</pre>	<pre>\$PBS_MOMPORT</pre>	\$PBS_NUM_PPN	<pre>\$PBS_0_MAIL</pre>					
\$PBS_QUEUE	<pre>\$PBS_WALLTIME</pre>	<pre>\$PBS_GPUFILE</pre>	<pre>\$PBS_NODEFILE</pre>					
\$PBS_O_HOME	\$PBS_O_PATH	<pre>\$PBS_SERVER</pre>	<pre>\$PBS_JOBCOOKIE</pre>					
<pre>\$PBS_NODENUM</pre>	<pre>\$PBS_0_HOST</pre>	<pre>\$PBS_0_QUEUE</pre>	\$PBS_TASKNUM					
\$PBS_JOBID	\$PBS_NP	<pre>\$PBS_0_LANG</pre>	\$PBS_O_SHELL					
<pre>\$PBS_VERSION</pre>	<pre>\$PBS_JOBNAME</pre>	<pre>\$PBS_NUM_NODES</pre>	<pre>\$PBS_0_LOGNAME</pre>					
\$PBS_O_WORKDIR	\$PBS VNODENUM							

HPC User Environment 2 Spring 2022

LSU

TECHNOLO

HPC User Environment 2 Spring 2022

\$SLURM_SRUN_COMM_HOST

\$SLURM SRUN COMM PORT

\$SLURM_JOB_GID \$SLURM_JOB_ID \$SLURM_JOB_ID \$SLURM_JOB_NAME \$SLURM_TOPOLOGY_ADDR_PATTERN \$SLURM_JOB_NODELIST \$SLURM_JOB_NUM_NODES \$SLURM_JOB_PARTITION \$SLURM_JOB_QOS

\$SLURM_CLUSTER_NAME \$SLURM_CPU_BIND \$SLURM_CPU_BIND_LIST \$SLURM_CPU_BIND_TYPE \$SLURM_CPU_BIND_VERBOSE \$SLURM_CPUS_ON_NODE \$SLURM_GTIDS \$SLURM_GTIDS \$SLURM_STEP_TASKS_PER_NODE \$SLURM_JOB_ACCOUNT \$SLURM_JOB_CPUS_PER_NODE \$SLURM_JOB_GID

[ychen64@qbc025 ~]\$ echo \$SLURM

\$SLURM_NODELIST
\$SLURM_NPROCS
\$SLURM_NTASKS
\$SLURM_PRIO_PROCESS
\$SLURM_PROCID

\$SLURM PTY PORT

\$SLURM PTY WIN COL

\$SLURM PTY WIN ROW

\$SLURM_JOB_UID \$SLURM_JOB_USER \$SLURM_LAUNCH_NODE_IPADDR \$SLURM_LOCALID \$SLURM_MPI_TYPE \$SLURM_NNODES \$SLURM_NODEID \$SLURM_STEPID
\$SLURM_STEP_ID
\$SLURM_STEP_LAUNCHER_PORT
\$SLURM_STEP_NODELIST
\$SLURM_STEP_NUM_NODES
\$SLURM_STEP_NUM_TASKS

\$SLURM_SUBMIT_DIR

\$SLURM_SUBMIT_HOST \$SLURM_TASK_PID \$SLURM_TASKS_PER_NODE \$SLURM_TOPOLOGY_ADDR

\$SLURM_UMASK
\$SLURM_WORKING_CLUSTER

Exercise

Submit a batch job

- cd to the directory "pi"
 - \$ cd pi
- edit qsub.submit (change allocation name, email, ppn=, mpirun etc.)
 - \$ vi qsub.submit
- submit job
 - \$ qsub qsub.submit

Check details on your job using qstat or squeue

- \$ qstat -n -u \$USER #PBS
- \$ squeue -1 -u \$USER #SLURM
- Monitor the job
 - qshow or scontrol
 - **top** (must ssh to the compute node assigned to your job)
 - **free** (must ssh to the compute node assigned to your job)

Pay attention to single queue usage

- Single queue Used for jobs that will only execute on a single node, i.e. nodes=1:ppn=1/2/4/6/8.
- Jobs in the single queue should not use:
 - More than 3.2GB memory per core for QB2 and SuperMIC (64G/20).
 - More than 4.0GB memory per core for QB3 (192G/48).
- If applications require more memory, scale the number of cores (ppn) to the amount of memory required: i.e. max memory available for jobs in single queue is 8GB for -n2 on QB3.
- > Typical type of warning:
 - E124 Exceeded memory allocation. This Job XXXX appears to be using more memory (GB) than allocated (9 > 3).
 - E123 Exceeded ppn/core allocation. This Job XXXX appears to be using more cores than allocated (6 > 1). Please allocate the number of cores that the job will use, (ppn=6). This Job has 1 core(s) allocated (ppn=1).

Core and Memory in Single queue

64/20=3.2GB

Question:

On QB2, if my job needs 7GB memory, what ppn value should I use? On QB3, if my job needs 7GB memory, what -n value should I use?

PBS Job Script – Serial Job

#!/bin/bash							
<pre>#PBS -l nodes=1:ppn=1</pre>	# Number of nodes and processor						
<pre>#PBS -1 walltime=24:00:00</pre>	# Maximum wall time						
#PBS -N myjob	# Job name	Tells the job					
<pre>#PBS -o <file name=""></file></pre>	<pre># File name for standard output</pre>	scheduler					
<pre>#PBS -e <file name=""></file></pre>	<pre># File name for standard error</pre>	how much					
#PBS -q single	# The queue for serial jobs	resource you					
<pre>#PBS -A <loni_allocation></loni_allocation></pre>	# Allocation name	need.					
#PBS -m e	<pre># Send mail when job ends</pre>						
<pre>#PBS -M <email address=""></email></pre>	# Send mail to this address						

<shell commands>
<path_to_executable> <options>
<shell commands>

How will you use the resources?

Note: don't let your <path_to_executable> <options> be the EOF
 EOF can be <shell commands>, comments or a blank line.

More things to be noticed

- The purpose of bigmem queue is for jobs costing big (larger than 64 GB) memory not for jobs using more number of cores.
- GPU is available in workq or checkpt queues on QB-2.
- Users are encouraged to use accelerators (GPU) whenever possible. Application for allocation involving with usage of accelerators will be easier to be approved.

Job Submission Quiz

How to suspend your account? (cont'd)

- Use more memory than allowed. (e.g. use 5GB memory on SuperMIC with ppn=1)
- Seriously underutilize node resources (e.g. allocate 32 nodes but just use 1 core)
- Submit job to the big memory queue but use only few MB of memory
- Repeatedly running intensive jobs on the headnode (login node)
- How to monitor core and memory usage?

Summary

- Review of HPC User Environment 1 topics
- Understand job queues
- How to submit jobs
 - Interactive vs batch job
 - How to submit both jobs
 - How to monitor jobs

Future Training

- > 1. February 2,2022: HPC User Environment 2
- > 2. February 9,2022: Basic Shell Scripting
- > Keep an eye on:
 - <u>http://www.hpc.lsu.edu/training/tutorials.php#upcoming</u>

HPC@LSU User Services

Hardware resources

- Currently manages 5 clusters
- Software stack
 - Communication software
 - Programming support: compilers and libraries
 - Application software
- Contact user services
 - Email Help Ticket: sys-help@loni.org
 - Telephone Help Desk: +1 (225) 578-0900

Appendix

Computing an approximate value for PI

The executables in this training calculate the value for PI based on the math which is actually quite simple: Imagine a square dartboard with circle inscribed within it such that the diameter of the circle is the length of a side of the square.

We can observe that the ratio of the area of the circle to the area of the square is equal to some constant, $\pi/4$ (since the square's area is $2^*2 = 4$ and area_circle = $\pi^*r^2 = \pi$). If we randomly place many points (darts) inside the square, we can count how many are also inside the circle (satisfy $x^2+y^2 <= 1$) vs the total number of points and compute an estimate for the value of π . (Problem description is from Jared Baker, UW; Ben Matthews, NCAR)

