

HPC User Environment 2

Jason Li

HPC User Services

LSU HPC / LONI

sys-help@loni.org

Louisiana State University
Baton Rouge
Sep 20, 2023

HPC User Environment 1

- 1. Intro to HPC
- 2. Getting started
- 3. Into the cluster
- 4. Software environment (modules)

- 1. Basic concepts
- 2. Preparing my job
- 3. Submitting my job
- 4. Managing my jobs

- 1. Basic concepts
- 2. Preparing my job
- 3. Submitting my job
- 4. Managing my jobs

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1) Previously on HPC User Environment 1...

Two things needed to run jobs on our clusters:

1) Account

2) Allocation

1) Previously on HPC User Environment 1....

1) Previously on HPC User Environment 1....

Run my code on **all** the resources you have, **however long** it takes

sudo! yum! apt-get!

Yes, my master!

1) Previously on HPC User Environment 1...

1) Previously on HPC User Environment 1...

I will ask nicely. Please grant me the use of **24 cores** for **10 hours** to run my code.

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

a) What's a "job"?

- A user's request to use a number of nodes/cores for a certain amount of time on a cluster.
- Calculation MUST be done via jobs (NO heavy calculation on head nodes!!)
- SUs deducted from allocations based on actual usage of each job.
 - Example:
 - My allocation: 50,000 SU
 - Running a job: 24 core * 10 hours = 240 SU
 - Balance: 49,760 SU

b) What's a "job scheduler"?

b) What's a "job scheduler"?

b) What's a "job scheduler"?

i. Decides which job runs when and where

LSU

b) What's a "job scheduler"?

i. Decides which job runs when and where

ii. Enforces job policies

b) What's a "job scheduler"?

Job scheduler's responsibilities	Your responsibilities
 Decides which job runs when and where Enforces job policies 	 Decide a job's size and duration Understand the job queuing system and policies Submit/monitor/cancel jobs Diagnose job health

b) What's a "job scheduler"?

i) PBS

b) What's a "job scheduler"?

i) PBS

ii) Slurm

b) What's a "job scheduler"?

	LSU HPC	LONI	
i) PBS	SMIC	QB2	
ii) Slurm	Deep Bayou SuperMike III	QB3	

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers

2. Preparing my job

- 1) Basic principles
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1) Basic principles

- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough ...

Small enough ...

1) Basic principles

- Two basic principles of requesting resources
 - Number of nodes / cores, RAM size, job duration, ...

Large enough	Small enough
To successfully complete your job	 To ensure quick turnaround Not to waste resources for other users

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

2) Job duration (wall time)

- What is it?
 - Real-world (wall) time taken from the start to the end
 - Must tell job scheduler how long you want your job to run
 - There is a maximum wall time you may request (see later)

2) Job duration (wall time)

FAQ

Q	A
 What if my command is still running when the wall time runs out? 	Job terminated, any running process killed
 What if all my commands in the job finished before the wall time runs out? 	Job exits successfully when all commands finished
If my job exits before requested wall time, how many SUs will I be charged?	You will be charged based on your actual time used (if less than requested)
 In that case, why don't I just request maximum wall time every time? 	Your queuing time may be long

2) Job duration (wall time)

Back to basic principles...

Large enough	Small enough
To successfully complete your job	 To ensure quick turnaround Not to waste resources for other users

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

Previously in HPC User Environment 1 ...

Supe	rMIC		Deep Bayou		Superl	/like III
Hostname	smic.hpc.lsu.edu		Hostname	db1.lsu.edu	Hostname	mike.hpc.lsu.edu
 Peak Performance/TFlops	925		Peak Performance/TFlops	257	Peak Performance/TFlops	1,285
Compute nodes	360		Compute nodes	13	Compute nodes	183
Processor/node	2 10-core		Processor/node	2 24-core	Processor/node	2 32-core
Processor Speed	2.8 GHz		Processor Speed	2.4 GHz	Processor Speed	2.6GHz
Processor Type	Intel Xeon 64bit		Processor Type	Intel Cascade Lake Xeon 64bit	Processor Type	Intel Xeon Ice Lake
Nodes with Accelerators	360		Nodes with Accelerators	13	Nodes with Accelerators	8
Accelerator Type	Xeon Phi 7120P		Accelerator Type	2 x NVIDIA Volta V100S	Accelerator Type	4 NVIDIA A100
OS	RHEL v6		OS	RHEL v7	OS	RHEL v8
Vendor			Vendor	Dell	Vendor	Dell
Memory per node	64 GB		Memory per node	192 GB	Memory per node	256/2048 GB
Detailed Cluster Description		Detailed Cluster Description		Detailed Cluster Description		
<u>User Guide</u>			<u>User Guide</u>		<u>User (</u>	Guide
<u>Available</u>	<u>Software</u>		<u>Available So</u>	oftware	Available	<u>Software</u>

- When submitting you job...
 - Must tell job scheduler the number of nodes & cores you need

FAQ

Q	A
My code runs slow. Can I request more nodes / cores to make it faster?	 Not quite! Your code most likely is NOT using multiple nodes / cores, if: You do not know if it is using multiple nodes / cores You did not tell it to use multiple nodes / cores You are not familiar with names like "MPI" / "OpenMP" Underutilization is THE most common warning received on our clusters
How many nodes / cores should I request?	 In short: We can't answer that Each code / job is different. You must test to determine

Back to basic principles...

Large enough	Small enough
To successfully complete your job	 To ensure quick turnaround Not to waste resources for other users

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

4) Job queues

a) Definition

- Different groups / lines where jobs are being grouped into
- Must pick one queue to submit job
- Goal: Use the resources more efficiently

a) Definition

b) Available queues

i. workq / checkpt

Description		General purposes Most likely your default queue Difference: non-preemptable (workq) vs. preemptable (checkpt)	
Names		All clusters: workq / checkpt	
Nodes Resource		One or multiple Up to a maximum	
availability	Cores	All cores on the node(s)	
Memory		All memory on the node(s)	
Max duration		72 hours (3 days)	

b) Available queues

ii. single

Description		Only need a portion of one node	[SuperMike 3]
Names		All clusters: single	- Total : 64 cores & 256 GB memory → 4 GB / core
	Nodes	A portion of one node	
Resource Cores		 PBS: 1/2/4/6/8 Slurm: 1 ~ all cores 	- Request : 10 cores → 40 GB memory
	Memory	 A portion, proportional to the number of re 	equested cores
Max duration		• 168 hours (7 days)	

b) Available queues

iii. bigmem

Description		•	Your job needs large memory
Names		•	All clusters: bigmem
Nodes		•	One or multiple
Resource availability	Cores	•	All cores on the node
	Memory	•	All memory on the node
Max duration		•	72 hours (3 days)

b) Available queues

iv. **GPU**

Description		Your job needs GPU				
Names		 SMIC: v100 Deep Bayou (*): gpu, nvlink SuperMike 3 (*): gpu QB3: gpu SuperMike 3 (*): gpu SuperMike 3 (*): gpu (4 GPUs / node) 				
	Nodes	 One or multiple Portion of one node 				
Resource	Cores	 All cores on the node Portion of one node 				
availability Memory		 All memory on the node Portion of one node 				
GPU		 All GPU devices on the node 1 ~ all GPU devices 				
Max duration		72 hours (3 days)				

c) Queues by clusters (LSU HPC)

Cluster	Queue	Cores per node (ppn)	Max running jobs	Max nodes per user	
	workq	20			
	checkpt	20		86	
SuperMIC	single	1,2,4,6,8,16	45		
	v100	36	(global)	2	
	bigmem	28		3	
DoopPoyou	gpu	24,48	4	4	
DeepBayou	nvlink	12,24,36,48	(global)	2	
	workq	64			
	checkpt	04		84	
SuperMike3	single	1 ~ 64	32 (global)		
	gpu	16,32,48,64	(9.000.)	4	
	bigmem	64		4	

c) Queues by clusters (LONI)

Cluster	Queue	Cores per node (ppn)	Max running jobs	Max nodes per user	
	workq	20			
QB-2	checkpt	20	32	128	
QD-2	single	1,2,4,6,8	(global)		
	bigmem	48		1	
	workq	48			
	checkpt	40	20	96	
QB-3	single	1 ~ 48	32 (global)		
	gpu	48	,	4	
	bigmem	48		2	

d) Choose your queue

Large enough	Small enough
To successfully complete your job	 To ensure quick turnaround Not to waste resources for other users

d) Choose your queue

d) Choose your queue

Test

My job	Queue choice? (include number of nodes / cores)
 SMIC MPI code, needs 100 CPU cores Hint: SMIC has 20 cores / node 	workq / checkpt (5 nodes, 20 cores per node)
 SuperMike 3 Uses 2 GPUs to train a neural network Hint: SuperMike 3 has 64 cores / node, 4 GPUs / node → 16 cores / GPU 	gpu (1 node, 32 cores per node)
 QB-3 Single-core serial code Needs to store and process 30 GB data in RAM Hint: QB-3 has 192 GB RAM / node, 4 GB RAM / core 	single (1 node, 8 cores per node)

- e) Useful commands to check queues
 - i. qstat -q: All queue information

(base) [jas Queue	onli3@mike2 ~ Memory	-q Walltime	Node	Run	Que Lm	State
admin		 			0	F R
single		168:00:00) 1	_	0	
checkpt		72:00:00		3	0	E R
workq		72:00:00		12	0	E R
bigmem		72:00:00		0	0	E R
gpu		72:00:00		0	0	E R
				15	0	

e) Useful commands to check queues

ii. qfree: Free nodes in each queue

```
(base) [jasonli3@mike2 ~]$ qfree
PBS total nodes: 183, free: 120, busy: 58, down: 2, use: 31%
PBS workq nodes: 171, free: 108, busy: 54, queued: 0
PBS single nodes: 171, free: 108, busy: 0, queued: 0
PBS checkpt nodes: 171, free: 108, busy: 4, queued: 0
PBS bigmem nodes: 4, free: 4, busy: 0, queued: 0
PBS gpu nodes: 8, free: 8, busy: 0, queued: 0
```


e) Useful commands to check queues

iii. sinfo (Slurm only): Detailed node health information of all queues

```
(base) [jasonli3@mike2 ~]$ sinfo
PARTITION AVAIL TIMELIMIT NODES
                                   STATE NODELIST
single*
             up 7-00:00:00
                                    inval mike[035,138]
                                    comp mike144
single*
             up 7-00:00:00
                                   alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
single*
             up 7-00:00:00
                               58
single*
             up 7-00:00:00
                               108
                                    idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
                                    down mike[140,147]
single*
             up 7-00:00:00
                                    inval mike[035,138]
checkpt
             up 3-00:00:00
checkpt
             up 3-00:00:00
                                    comp mike144
checkpt
                               58
                                   alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
             up 3-00:00:00
checkpt
             up 3-00:00:00
                               108
                                     idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
checkpt
                                    down mike[140,147]
             up 3-00:00:00
                                    inval mike[035,138]
workg
             up 3-00:00:00
workg
             up 3-00:00:00
                                    comp mike144
                                   alloc mike[008-026,031-034,036-044,046-050,141-143,148-162,167-169]
             up 3-00:00:00
workg
                                     idle mike[001-007,027-030,045,051-137,139,145-146,163-166,170-171]
workq
             up 3-00:00:00
                               108
                                    down mike[140,147]
workq
             up 3-00:00:00
                                     idle mike[172-175]
bigmem
             up 3-00:00:00
                                4
                                     idle mike[176-183]
             up 3-00:00:00
gpu
```


Summary

1. Basic concepts

- a) How job works on clusters
- b) Job scheduler and how it works

2. Preparing my job

- a) Basic principles
 - "large enough" and "small enough"
- b) Information you need to tell job scheduler:
 - Duration
 - Number of nodes & cores
 - Job queue

Break

- 1) Have your terminal open and ready to connect to HPC
- 2) Download our testing code (π calculation) to your /home directory
 - http://www.hpc.lsu.edu/training/weekly-materials/Downloads/pi_Jason.tar.gz
 - Hint: use wget command

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues

3. Submitting my job

- 1) Interactive job
- 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

3. Submitting a job

Two types of jobs:

1) Interactive job

- Runs in terminal (just like using a local machine)
- Can interact with the job while running

2) Batch job

- Submit to server and runs **by itself**, until finished or error
- Cannot interact with the job while running

3. Submitting a job

Two types of jobs:

	1) Interactive job	2) Batch job
Pros	Can interact and monitor with job in real time	Submit and leave it
Cons	 Waiting for human intervention is the opposite of "high performance" 	 Cannot edit or interact with job while running
Ideal for	Debugging and testingLarge compilation	• Production

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

PBS	Slurm

PBS	Slurm
<pre>qsub -I [options]</pre>	srun [options]pty bash (Or any other shell of your preference)


```
Slurm
                 PBS
qsub -I \
                                                   srun \
     -X \
                                                        --x11 \
     -A <Allocation name> \
                                                        -A <Allocation name> \
     -q <Queue name> \
                                                        -p <Queue name> \
     -1 walltime=<HH:MM:SS>,nodes=<# of</pre>
                                                        -t <HH:MM:SS> \
    nodes>:ppn=<# of cores PER NODE>
                                                        -N <# of nodes> \
                                                        -n <# of TOTAL cores> \
                                                        --pty bash
```


PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>Enable X11 forwarding x11 \ -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \pty bash</hh:mm:ss></queue></allocation></pre>

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ -A <allocation name=""> \ -p <queue name=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></queue></allocation></pre> Allocation name x11 \ -A <allocation bash<="" name="" pty="" td=""></allocation>

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \</pre>

PBS	Slurm
<pre>qsub -I \ -X \ -A <allocation name=""> \ -q <queue name=""> \ -1 walltime=<hh:mm:ss>,nodes=<# of nodes>:ppn=<# of cores PER NODE></hh:mm:ss></queue></allocation></pre>	<pre>srun \ x11 \ -A <allocation -p="" <queue="" cores="" name="" nodes,="" number="" of=""> \ -t <hh:mm:ss> \ -N <# of nodes> \ -n <# of TOTAL cores> \ pty bash</hh:mm:ss></allocation></pre>

b) Starting an interactive job

PBS	Slurm
<pre>(base) [jasonl(3@smic1 p)]\$ qsub -I -A hpc_h n=20 qsub: waiting for job 911565.smic3 to start Interactive job 911565.smic3 waiting: qsub: job 911565.smic3 ready Concluding PBS prologue script - 31-Jan-2023 (base) [jasonli3@smic045 ~]\$ ■</pre>	(base) [jasonl(3@mike1 pi]\$ srun -A hpc_h srun: Job is in held state, pending sched srun: job 38634 queued and waiting for re Interactive job 38634 waiting: srun: job 38634 has been allocated resour (base) [jasonli3@mike147 pi]\$ ■

b) Starting an interactive job

b) Starting an interactive job

PBS: Job starts in /home directory

Slurm: Job starts in where the job was submitted

c) One more thing about GPU jobs ...

```
Srun \
--x11 \
--x11 \
--A <Allocation name> \
-p < Queue name> \
-t < HH · MM · SS > \
-N1 \
-n16 \
--gres=gpu:1 \
--pty bash
```


1) Interactive job

d) Running an interactive job

- i. Serial (single-thread)
- ii. Parallel (MPI)

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

What do you need?

- i. A batch file (containing job parameters and bash scripts)
- ii. Run a **submission command** to submit this batch file

PBS	Slurm


```
PBS
                                                                  Slurm
#!/bin/bash
                                                  #!/bin/bash
#PBS -A <Allocation name>
                                                   #SBATCH -A <Allocation name>
#PBS -q workq
                                                  #SBATCH -p workq
#PBS -l walltime=1:00:00
                                                  #SBATCH -t 1:00:00
#PBS -l nodes=1:ppn=20
                                                  #SBATCH -N 1
                                                  #SBATCH -n 64
cd $PBS_O_WORKDIR
                                                   cd $SLURM_SUBMIT_DIR
                                                   ./pi_serial.out 100000000
./pi_serial.out 100000000
```



```
PBS
                                                                  Slurm
#!/bin/bash
                                                  #!/bin/bash
                                                                         Queue name
#PBS -A <Allocation name>
                                                   #SBATCH -A <Allocation name>
#PBS -q workq
                                                  #SBATCH -p workq
#PBS -l walltime=1:00:00
                                                  #SBATCH -t 1:00:00
#PBS -l nodes=1:ppn=20
                                                  #SBATCH -N 1
                                                  #SBATCH -n 64
cd $PBS_O_WORKDIR
                                                  cd $SLURM_SUBMIT_DIR
./pi_serial.out 100000000
                                                   ./pi_serial.out 100000000
```


PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	#!/bin/bash #SBATCH -A <allo #sbatch="" &="" -+="" -n="" 1="" 1:00:00="" 64<="" cores="" nodes="" of="" td="" wumber=""></allo>
cd \$PBS_0_WORKDIR ./pi_serial.out 100000000	cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000

PBS	Slurm
<pre>#!/bin/bash #PBS -A <allocation name=""> #PBS -q workq #PBS -l walltime=1:00:00 #PBS -l nodes=1:ppn=20</allocation></pre>	<pre>#!/bin/bash #SBATCH -A <allocation name=""> #SBATCH -p workq #SBATCH -t 1:00:00 #SBATCH -N 1 #SBATCH -n 64</allocation></pre> Commands to run after job starts
cd \$PBS_0_WORKDIR ./pi_serial.out 100000000	cd \$SLURM_SUBMIT_DIR ./pi_serial.out 100000000

PBS ^{[7}	1]	Slurm ^[2]		Description	
#PBS -A		#SBATCH -A		Allocation name	
#PBS -q		#SBATCH -p		Queue name	
		#SBATCH -t			Wall time
#PBS -1		#SBATCH -N	#SBATCH -N		Number of nodes
#PD3 -1		#SBATCH -n	Resource request	Resource request	Number of tasks
		#SBATCH -c			Number of cores per task
#PBS -o		#SBATCH -o		Standard output file	
#PBS -e		#SBATCH -e		Standard error file	
	a		FAIL		Job aborts / fails
#PBS -m	b	#SBATCHmail-type	BEGIN	Send email when	Job begins
	е		END		Job ends
#PBS -M		#SBATCHmail-user		Email address	
#PBS -N		#SBATCH -J		Job name	

b) Command

PBS	Slurm
<pre>qsub <batch file="" name=""></batch></pre>	<pre>sbatch <batch file="" name=""></batch></pre>

c) Useful environmental variables

PBS ^[1]	Slurm ^[2]	Description
\$PBS_JOBID	\$SLURM_JOBID	Job ID
\$PBS_O_WORKDIR \	\$SLURM_SUBMIT_DIR	Job submit directory
\$PBS_NODEFILE	\$SLURM_JOB_NODELIST	A temp file, contains a list of allocated nodes' names (for MPI)
\$PBS_NUM_NODES	\$SLURM_NNODES	Number of allocated nodes
\$PBS_NP	\$SLURM_NTASKS	Number of allocated cores (tasks)
•••		

```
#!/bin/bash
#PBS -A <Allocation name>
#PBS -q workq
#PBS -l walltime=12:00:00
#PBS -l nodes=1:ppn=20

cd $PBS_0_WORKDIR
mpirun -np 20 ./mpi_pi.out 1000000000
```

- [1] http://www.hpc.lsu.edu/docs/pbs.php
- [2] http://www.hpc.lsu.edu/docs/slurm.php

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

4. Manage jobs

- Running jobs on HPC # "Submit and done"
 - Monitoring and managing jobs are part of the work

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

1) Useful commands

	PBS ^[1]	Slurm ^[2]		Description	
				List all jobs	
qstat	-n	squeue		List job details	
	-u <username></username>		-u <username></username>	List all jobs belong to <username></username>	
qde:	l <job id=""></job>	scance	·1 <job id=""></job>	Cancel <job id=""></job>	
check	job <job id=""></job>	scontrol show job <job id=""></job>		Show job details (running or recently finished)	

Alter jobs after submission? → NOT allowed!

[1] http://www.hpc.lsu.edu/docs/pbs.php

[2] http://www.hpc.lsu.edu/docs/slurm.php

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- 2. Preparing my job
 - 1) Basic principles
 - 2) Job duration (wall time)
 - 3) Number of nodes & cores
 - 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job
- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health

A job requesting n cores ≠ A job utilizing n cores

- Goal
 - Use the allocated resources (CPU cores, RAM, time, ...) as fully and efficiently as possible
 - No serious underutilizing
 - No serious overutilizing
- Things to check
 - CPU load
 - RAM usage

- a) Method 1: qshow <Job ID>
 - Displays diagnostic information of a running job
 - Can be run on head node

a) Method 1: qshow <Job ID>

```
(base) [jasonli3@mike4 ~]$ qshow 38581
PBS job: 38581, nodes: 1
Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)
           278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5
yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5
yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5
yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5
yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5
yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5
yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5
yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5
yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5
yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5
yxan:lmp_mik+:558M:108M:13.5 yxan:lmp_mik+:524M:102M:13.5 yxan:lmp_mik+:537M:103M:13.5 yxan:lmp_mik+:572M:109M:13.5 yxan:lmp_mik+:549M:104M:13.5
yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:03M:13.5
yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:515M:04M:13.5
yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M
PBS job=38581 user=yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp
n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik
e145:730M:125M node processes=68
```


a) Method 1: qshow <Job ID>

```
(base) [jasonli3@mike4 ~]$ qshow 38581
PBS job: 38581, nodes: 1
Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)
           278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5
yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5
yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5
yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5
yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5
yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5
yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5
yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5
yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5
yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5
yxan:lmp_mik+:558M:108M:13.5 yxan:lmp_mik+:524M:102M:13.5 yxan:lmp_mik+:537M:103M:13.5 yxan:lmp_mik+:572M:109M:13.5 yxan:lmp_mik+:549M:104M:13.5
yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:03M:13.5
yxan:lmp mik+:520M:105M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:515M:104M:13.5
yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M
PBS job-20501 user-yxan allocation=hpc lipidhpre queue=checkpt total load=64.12 cpu hours=866.08 wall hours=13.21 unused nodes=0 total nodes=1 pp
n=64 avg load=64.12 avg cpu=6033% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik
e145:730M:125M node processes=68
```

What to look at	Normal behavior	You should be concerned if
avg_load	Close to allocated number of cores on the node	Consistently too low or too high

a) Method 1: qshow <Job ID>

```
(base) [jasonli3@mike4 ~]$ qshow 38581
PBS job: 38581, nodes: 1
Hostname Days Load CPU U# (User:Process:VirtualMemory:Memory:Hours)
           278 64.12 6033 68 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:533M:107M:13.5 yxan:lmp mik+:748M:128M:13.5
yxan:lmp mik+:738M:124M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:587M:109M:13.5 yxan:lmp mik+:743M:128M:13.5 yxan:lmp mik+:696M:118M:13.5
yxan:lmp mik+:528M:101M:13.5 yxan:lmp mik+:578M:108M:13.5 yxan:lmp mik+:528M:105M:13.5 yxan:lmp mik+:528M:106M:13.5 yxan:lmp mik+:520M:105M:13.5
yxan:lmp mik+:561M:106M:13.5 yxan:lmp mik+:583M:109M:13.5 yxan:lmp mik+:520M:103M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:738M:125M:13.5
yxan:lmp mik+:709M:119M:13.5 yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:574M:107M:13.5 yxan:lmp mik+:697M:121M:13.5 yxan:lmp mik+:658M:115M:13.5
yxan:lmp mik+:528M:102M:13.5 yxan:lmp mik+:557M:108M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:524M:105M:13.5 yxan:lmp mik+:515M:102M:13.5
yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:567M:108M:13.5 yxan:lmp mik+:566M:108M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:536M:105M:13.5
yxan:lmp mik+:519M:104M:13.5 yxan:lmp mik+:528M:103M:13.5 yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:524M:104M:13.5 yxan:lmp mik+:524M:104M:13.5
yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:516M:101M:13.5 yxan:lmp mik+:515M:101M:13.5 yxan:lmp mik+:515M:104M:13.5 yxan:lmp mik+:520M:101M:13.5
yxan:lmp mik+:524M:103M:13.5 yxan:lmp mik+:520M:101M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:516M:102M:13.5 yxan:lmp mik+:587M:110M:13.5
yxan:lmp_mik+:558M:108M:13.5 yxan:lmp_mik+:524M:102M:13.5 yxan:lmp_mik+:537M:103M:13.5 yxan:lmp_mik+:572M:109M:13.5 yxan:lmp_mik+:549M:104M:13.5
yxan:lmp mik+:519M:103M:13.5 yxan:lmp mik+:528M:104M:13.5 yxan:lmp mik+:520M:104M:13.5 yxan:lmp mik+:515M:103M:13.5 yxan:lmp mik+:515M:03M:13.5
yxan:lmp_mik+:520M:105M:13.5 yxan:lmp_mik+:528M:105M:13.5 yxan:lmp_mik+:515M:103M:13.5 yxan:lmp_mik+:515M:104M:13.5 yxan:lmp_mik+:515M:04M:13.5
yxan:slurm s+:12M:3M yxan:srun:324M:8M yxan:srun:53M:1M
PBS_job=38581 user=yxan allocation=hpc_lipidhpre_queue=checkpt total_load=64.12 cpu_hours=866.08 wall_hours=13.21 unused_nodes=0 total_nodes=1 pp
n=64 avg load=64.12 avg cpu=603% avg mem=6852mb avg vmem=36176mb top proc=yxan:lmp mik+:mike145:524M:104M:13.5hr:100% toppm=yxan:lmp mikeCpu:mik
e145:730M:125M node processes=68
```

What to look at	Normal behavior	You should be concerned if
avg_load	Close to allocated number of cores on the node	Consistently too low or too high
ave_mem	Does not exceed total allocated memory	Exceeds total allocated memory

- b) Method 2: top
 - Displays dynamic real-time view of a computing node
 - Must run on computing nodes!
 - * ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

b) Method 2: top

load average: 63.63, 39.81, 17.49 top - 02:23:58 up 278 days, 19:17, 2 users, Tasks: 981 total, 65 running, 916 sleeping, 0 stopped, 0 zombie %Cpu(s): 90.2 us, 9.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st MiB Mem : 257004.8 total, 211261.0 free, 41926.9 used, 3816.9 buff/cache MiB Swap: 16641.0 total, 16580.7 free, 60.2 used. 212737.8 avail Mem TIME+ COMMAND PID USER **VIRT** RES SHR S %CPU %MEM NI 2701318 jasonli3 595668 582356 2568 R 100.0 4:08.94 TDSE np3 e0 2701342 jasonli3 595668 581944 2616 R 100.0 4:08.90 TDSE np3 e0 2701249 jasonli3 4:08.97 TDSE np3 e0 595668 581792 2464 R 99.7 4:09.00 TDSE np3 e0 2701252 jasonli3 595668 514684 2520 R 99.7 2701261 jasonli3 4:08.97 TDSE np3 e0 595668 393828 2616 R 2701264 jasonli3 595668 581856 2532 R 4:08.92 TDSE np3 e0 2701270 jasonli3 595668 582480 2432 R 4:08.95 TDSE np3 e0 2701273 jasonli3 595668 581776 2448 R 99.7 4:08.81 TDSE np3 e0 2701276 jasonli3 595668 582160 2568 R 99.7 0.2 4:08.98 TDSE np3 e0

What to look at	Normal behavior	You should be concerned if
-----------------	-----------------	----------------------------

b) Method 2: top

```
top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49
Tasks: 981 total, 65 running, 916 sleeping, 0 stopped, 0 zombie
%Cpu(s): 90.2 us, 9.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st
MiB Mem : 257004.8 total, 211261.0 free, 41926.9 used,
                                                        3816.9 buff/cache
MiB Swap: 16641.0 total, 16580.7 free,
                                           60.2 used. 212737.8 avail Mem
                                                               TIME+ COMMAND
    PID USER
                           VIRT
                                   RES
                                          SHR S %CPU
                                                      %MEM
                     NI
2701318 jasonli3
                         595668 582356
                                         2568 R 100.0
                                                             4:08.94 TDSE np3 e0
2701342 jasonli3
                         595668 581944
                                         2616 R 100.0
                                                             4:08.90 TDSE np3 e0
2701249 jasonli3
                                                             4:08.97 TDSE np3 e0
                        595668 581792
                                         2464 R 99.7
                                                             4:09.00 TDSE np3 e0
2701252 jasonli3
                      0 595668 514684
                                         2520 R
                                                99.7
2701261 jasonli3
                                                             4:08.97 TDSE np3 e0
                        595668 393828
                                         2616 R
                                                99.7
2701264 jasonli3
                      0 595668 581856
                                         2532 R
                                                             4:08.92 TDSE np3 e0
2701270 jasonli3
                      0 595668 582480
                                         2432 R 99.7
                                                             4:08.95 TDSE np3 e0
2701273 jasonli3 20
                        595668 581776
                                         2448 R 99.7
                                                             4:08.81 TDSE np3 e0
2701276 jasonli3 20
                         595668 582160
                                         2568 R 99.7
                                                       0.2
                                                             4:08.98 TDSE np3 e0
```

What to look at	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high

b) Method 2: top

```
top - 02:23:58 up 278 days, 19:17, 2 users, load average: 63.63, 39.81, 17.49
Tasks: 981 total, 65 running, 916 sleeping,
                                              0 stopped,
                                                           0 zombie
%Cpu(s): 90.2 us, 9.2 sy. 0.0 ni, 0.0 id, 0.0 wa, 0.5 hi, 0.0 si, 0.0 st
MiB Mem : 257004.8 total, 211261.0 free, 41926.9 used,
                                                         3816.9 buff/cache
MiB Swap: 16641.0 total, 16588.7 free,
                                            60.2 used. 212737.8 avail Mem
    PID USER
                           VIRT
                                          SHR S %CPU
                                                       %MEM
                                                                TIME+ COMMAND
                     NI
                                   RES
2701318 jasonli3
                         595668 582356
                                         2568 R 100.0
                                                              4:08.94 TDSE np3 e0
2701342 jasonli3
                         595668 581944
                                         2616 R 100.0
                                                              4:08.90 TDSE np3 e0
2701249 jasonli3
                                                              4:08.97 TDSE np3 e0
                         595668 581792
                                         2464 R 99.7
2701252 jasonli3
                         595668 514684
                                         2520 R
                                                 99.7
                                                              4:09.00 TDSE np3 e0
2701261 jasonli3
                        595668 393828
                                         2616 R
                                                 99.7
                                                              4:08.97 TDSE np3 e0
2701264 jasonli3
                        595668 581856
                                         2532 R
                                                              4:08.92 TDSE np3 e0
2701270 jasonli3
                        595668 582480
                                         2432 R
                                                             4:08.95 TDSE np3 e0
2701273 jasonli3
                        595668 581776
                                         2448 R 99.7
                                                              4:08.81 TDSE np3 e0
2701276 jasonli3 20
                         595668 582160
                                         2568 R
                                                 99.7
                                                        0.2
                                                              4:08.98 TDSE np3 e0
```

What to look at	Normal behavior	You should be concerned if
Load average	Close to allocated number of cores on the node	Consistently too low or too high
Memory usage (not virtual memory)	Does not exceed total allocated memory	Exceeds total allocated memory

- Method 3: free C)
 - Displays free and used **physical and swap memory** in the system
 - Must run on computing nodes!
 - * ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

c) Method 3: free

```
(base) [jasonli3@mike166 ~]$ free
              total
                            used
                                         free
                                                   shared
                                                           buff/cache
                                                                         available
          263172900
                        43248372
                                    216007308
                                                   406352
                                                               3917220
                                                                         217528356
Mem:
           17040380
                           61696
                                     16978684
Swap:
```

What to look at ... Normal behavior ... You should be concerned if ...

c) Method 3: free

```
(base) [jasonli3@mike166 ~]$ free
                                                           buff/cache
              total
                                         free
                                                   shared
                                                                         available
                            used
          263172900
                        43248372
                                   216007308
                                                   406352
                                                               3917220
                                                                         217528356
Mem:
           17040380
                           61696
Swap:
                                    169/8684
```

What to look at	Normal behavior	You should be concerned if	
Memory usage (not virtual memory)	Does not exceed total allocated memory	Exceeds total allocated memory	

- d) Method 4: nvidia-smi (for GPU only)
 - Displays diagnostic information of GPUs
 - Must run on GPU nodes!
 - * ssh to computing nodes while job running (cannot ssh if you do not have jobs on it)

d) Method 4: nvidia-smi (for GPU only)

	(base) [jasonli3@qbc193 ~]\$ nvidia-smi Wed Feb						
NV:	IDI	[A-SMI	510.4	7.03 Driver	Version: 510.47.03	CUDA Versio	n: 11.6
GPI Fai				Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage 		
1	0 A			PCIE On	00000000:3B:00.0 Off 4155MiB / 32768MiB 		Off Off Default N/A
	1 A				00000000:AF:00.0 Off 4155MiB / 32768MiB 		Off Default N/A
	oce PU	esses: GI ID	CI ID	PID Ty _l	pe Process name		GPU Memory Usage
===: +	0 1		N/A N/A	259491 259491	Cche/TeraChem/bi Cche/TeraChem/bi		4147MiB 4147MiB 4147MiB

What to look at ...

Normal behavior ...

You should be concerned if ...

d) Method 4: nvidia-smi (for GPU only)

What to look at	Normal behavior	You should be concerned if
GPU usage	Close to 100%	Consistently too low

Method 4: nvidia-smi (for GPU only) d)

What to look at	Normal behavior	You should be concerned if	
GPU usage	Close to 100%	Consistently too low	
Memory usage (not virtual memory)	Not used up	Used up	

e) Common issues

Issue	What would happen
Exceeded memory allocation (e.g., using more memory than allocated w/ single queue)	Terminated. Receive email notice.
Exceeded ppn/core allocation (e.g., using more cores than allocated w/ single queue)	Terminated. Receive email notice.
Seriously underutilize node CPU cores (e.g., Requested multiple nodes but only runs on one node)	Receive email warning.
Submitting to bigmem but only using little memory	Nothing. Just not nice.
Running intensive calculation on head nodes	Terminated. Receive email notice.
Submitting too many (i.e., hundreds of) single-thread jobs	Poor parallelization and bad for server. We may reach out to you to help. (Better yet, reach out to us first)

Summary

A typical workflow --

Outlines

HPC User Environment 2

- 1. Basic concepts
 - 1) Previously on HPC User Environment 1...
 - 2) Job & Job schedulers
- → All calculation must be submitted as jobs

- 2. Preparing my job
 - 1) Basic principles

- → Large enough & small enough
- 2) Job duration (wall time)
- 3) Number of nodes & cores
- 4) Job queues
- 3. Submitting my job
 - 1) Interactive job
 - 2) Batch job

- → Good for testing and debugging
- → Good for production

- 4. Managing my jobs
 - 1) Useful commands
 - 2) Monitoring job health
- → How to monitor jobs health, and how to create health jobs

Next week

Basic Shell Scripting

Contact us

Contact user services

Email Help Ticket: sys-help@loni.org

Telephone Help Desk: +1 (225) 578-0900

